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A B S T R A C T   

The ability to predict the spatial distribution of tree root system variables (e.g., the Root system Area (RA), the 
maximum root diameter, the number of roots in diameter classes, the density of fine roots, etc.) under different 
environmental conditions is relevant to several scientific disciplines and to engineering practice. In this work, 
three well known analytical models from the literature are assembled into a unique framework called the Root 
Distribution Model (RDM). RDM models the expected vertical and horizontal distribution of coarse and fine root 
system variables for mature plants growing in different environmental conditions ranging from moderately 
humid to arid climates. All soil and moisture dynamic parameters are physically based, which make the model 
straightforward to calibrate via a single tuning parameter. At this investigative stage, it is shown that the model 
has the flexibility to represent a broad range of situations where soil moisture may result from precipitation 
inputs or from water level fluctuations due to either the presence of a water coarse or of deep aquifers or both. 
Accordingly, the distribution of the sectional RA may be either positively or negatively skewed, as well as show a 
peculiar bi-modal structure. The model can be used to study the impact of changing scenarios affecting pre
cipitation, aquifer and channel hydrology.   

1. Introduction 

Mathematical modelling of bio- and ecomorphodynamic processes in 
catchment slopes and fluvial systems has considerably advanced with 
the inclusion of flow and vegetation interaction dynamics (Camporeale 
et al., 2013; Gasser et al., 2019). Although research is ongoing, the role 
that vegetation above- and below-ground biomass plays in such dy
namics is also key for ecological and civil engineering applications. 
Vegetation contributes to all hydrogeological catchment processes 
including regulating the water budget at a point (Rodrigez-Iturbe and 
Porporato, 2005), controlling bank and bed erosion of river channels 
(Thorne, 1990; Abernethy and Rutherfurd, 2001), influencing slope 
stability in the catchment headwaters as well as triggering of mass 
movements (e.g., snow, mud, rock and debris in general, e.g. see Gasser 
et al. (2019); Reubens et al. (2007)). Modelling the distribution of 
vegetation roots is relevant to understand whether and how plant roots 
contribute to the mechanical reinforcement of soil on slopes (hence, 
slope stabilization (Schwarz et al., 2010b; Ennos and Pellerin, 2000; 

Stokes, 2002)), and to forecast when uprooting by flow occurs (Edmaier 
et al., 2011, 2015; Perona and Crouzy, 2018). In turn, this allows for 
assessment of the amount of potentially transportable wood biomass to 
downstream river sections (Gasser et al., 2019; Ruiz-Villanueva et al., 
2016; Wohl and Scott, 2017) and for calculation of the probability that 
wood accumulation may choke the stream (Schalko et al., 2020). Hence, 
the provision of model-based theory is useful for calculation of the 
exposure risk to natural hazards of the natural and the built 
environments. 

Modelling plant root growth and the related spatial distribution has 
been the object of several previous investigations. Both very detailed 3D 
explicit models (e.g., see Postma et al. (2017)) and simplified, 
physically-based (either laterally or vertically integrated) 1D models 
exist. Whilst the first are typically useful to investigate water uptake and 
the biomorphology and architecture of roots, their complexity is often 
unnecessary and excessively costly computationally (Schwarz et al., 
2010a). For practical applications including the creation of spatial 
hazard maps (e.g., see Gasser et al. (2019)), 1D models providing 
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analytical formulas for either the lateral root distribution (Schwarz 
et al., 2010a, 2012) or the vertical root profile (Laio et al., 2006; Tron 
et al., 2014) are more suitable. Such models are parameterized with 
physically-based (and commonly measured) soil, hydrological and bio
logical variables. However, progress is still required to make such 
models fully accessible in practice. A great improvement would be to 
develop a joint 2D model able to provide both the vertical and the lateral 
distributions of common tree root variables, including the sectional Root 
system Area (hereafter referred to as RA, see Fig. 1) thus representing 
more realistic estimates of the soil biomass distribution. First of all, such 
a model would allow study of the role of environmental variables, such 
soil moisture and texture, hydrology, groundwater, etc., in a more 
comprehensive and integrated way. Furthermore, by linking the RA to 
the mechanical reinforcement of the soil, the model could then be 
implemented as an additional module of existing bank erosion models at 
the river cross-section (e.g., BANKforNET, see Gasser et al. (2020) or 
BSTEM, see Pollen-Bankhead and Simon (2009)) and the reach scales (e. 
g., BANKforMAP, see Gasser (2020)). 

In this work, three existing 1-D plant root models are linked into a 
single 2D modelling framework, which provides the explicit distribution 
of the below-ground biomass variables along the lateral (horizontal) and 
the vertical (depth) directions. The 1D models are those Schwarz et al. 
(2010a, 2012), Laio et al. (2006) and Tron et al. (2014, 2015), whose 
main characteristics are hereafter briefly reviewed. 

The model of Schwarz et al. (2010a) is symmetrical around the 
vertical and provides the vertically integrated distribution of root 
geometrical variables (e.g., diameter, cross-section area, etc.) as a 
function of the lateral distance from the tree stem centerline, up to a 
maximal distance of growth. Root architecture statistics are linked to the 
distribution of fine roots via a fractal branching geometry model, and 
depend on the total biomass distributed around a circular cylinder of 
unitary soil depth. Eventually, the total biomass is parameterized as a 
function of macroscopic above-ground biomass quantities through 
allometric relationships, which is very convenient for rescaling purposes 
and building a linked framework. The model of Laio et al. (2006) de
scribes the stochastic dynamics of the soil moisture at a point. It ac
counts for moisture uptake due to root biomass as it varies with depth. 

At statistical equilibrium, the model relates the vertical root biomass 
distribution, r(z), to soil (e.g., porosity) and climatic conditions (e.g., 
rainfall and temperature) via the Budyko climate index (Dingman, 
2002). Both models, however, do not consider the role of watertable 
oscillations and are therefore of limited use for describing root growth in 
the vicinity of water courses (the case of riparian plants, for instance). 
This can be achieved by appealing to the model of Tron et al. (2014), 
which provides the statistical equilibrium solution of the vertical root 
profile under the effect of stochastic fluctuations of river levels, and 
dichotomic root growth and recession dynamics (see also Ridolfi et al. 
(2011)). This model was shown to agree well with data from both field 
and laboratory experiments (e.g., see Tron et al. (2015)), and thus 
provides the ideal missing modelling framework to describe the effect of 
groundwater fluctuations on the vertical root profile. 

Common to the three models is the provision of the statistical dis
tribution of plant root biomass-related quantities at their mature stage, 
which are complementary and not redundant. Consequently, the models 
can be combined into a unified framework. In the next Section, the main 
equations of each model are presented and then recast to build the Root 
Distribution Model. Section 3 presents results and then explores the 
potential of the model, highlighting novel features of this new modelling 
framework. Section 4 presents conclusions. 

2. Mathematical frameworks and the root distribution model 

2.1. Framework models description 

We start by considering the model of Schwarz et al. (2010b, 2012) in 
the scheme shown in Fig. 1. Defining the lateral distance from the tree 
stem as x, Schwarz et al. (2012) obtained the number of roots, N(ϕ,x), as 
a function of x and the root diameter class size, ϕ, as 

N(ϕ, x) = Dfr
ln(1 + ϕM) − ln(1 + ϕ)

ln(1 + ϕM)

(
ϕ
ϕ0

)λr

, (1)  

which is valid for ϕt/2 ≤ x ≤ dM and ϕ0 < ϕ ≤ ϕM. At a given radial 
distance, x = dlim, the maximum root diameter, ϕM, is equal to ϕ0, which 
is a reference diameter (usually assumed to be 1 mm, see Schwarz et al. 
(2012)) below which roots are classified as fine roots. The maximum 
rooting distance, dM, is generically parameterized as a function of the 
trunk Diameter at Breast Height (DBH), here indicated by ϕt, whereas λr 
is an empirical exponent according to (Schwarz et al., 2012). It is 
assumed dM = a0ϕt, where a0 is simply a proportionality constant 
depending on tree species. Dfr is the density of fine roots, which are a key 
reference quantity used in below-ground biomass investigations given 
their key role in uptaking water and nutrients from soil (Stokes, 2002; 
Smith, 2007). The density of fine roots is also a function of the distance x 
from the trunk and assumed to have the following stepwise distribution 
function 

Dfr(x) =
μϕt

2πdM

(
1

5ϕt

(

0.7+ 0.3
x

5ϕt

)

Θ[5ϕt − x] +
1
x

Θ[x − 5ϕt]

)

, (2)  

where Θ[⋅] is the Heaviside function and μ is a pipe-theory coefficient. 
Notice that this distribution normalizes the total number of fine roots to 
the cylinder of circumference radius x and unitary depth. As above, the 
distribution is defined in the domain ϕt/2 ≤ x ≤ dM. 

Finally, the maximum diameter of roots at a given distance is taken 
as the result of fractal branching trees involving the branching distance b 
and the reference cross-sectional area Afr of fine roots with diameter ϕ0, 
i.e. Afr = π/4 mm2. ϕM changes with the distance from the stem as 

ϕM(x) = s
dM − x

b
AfrΘ[dM − x], (3)  

where s is a scaling factor. This relation is defined in the range ϕt/2 ≤ x 
≤ dlim, where dlim = dM − ϕ0b/sAfr, which is the radial distance where 

Fig. 1. Scheme of the model variables. The yellow dot indicates the origin of 
the coordinates (x,z) = (0,0), which is coincident with top soil elevation where 
the tree grows. The model variables are explained in the text, whereas the 
zoomed cross-section shows the RA as the sum of the brown areas of all coarse 
roots with diameter ϕ0 < ϕ ≤ ϕM within the section at lateral coordinate x. The 
uniform cyan zone indicates the watertable (upper limit of the saturated zone, 
water pressure is atmospheric), the light dark blue zone is the capillary fringe 
(water pressure is less than atmospheric) available for root growth as in the 
Tron et al. (2014) model, the upper non-uniform light cyan zone indicates 
where soil moisture recharge occurs via rainfall as per the Laio (2006) model. 
As shown in the figure, fluctuations in the river level drive fluctuations in the 
watertable level. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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ϕM(dlim) = ϕ0 (see also Schwarz et al. (2012) for details). 
The model of Laio et al. (2006) provides the expected vertical (i.e., 

along z) root biomass probability density function (pdf) as analytical 
solutions of a point water balance stochastic model. For semi-arid and 
arid climatic conditions, if precipitation magnitude is exponentially 
distributed with mean γp and occurs as a Poisson stochastic process of 
rate λp, then Laio et al. (2006) predicts that the pdf of roots, rL(z), is also 
exponential 

rL(z) =
1
bL

exp( − z/bL). (4) 

In this relationship, bL = γp/A is the mean rooting depth, whereas A is 
a nondimensional value that depends on soil, plant and climate 
characteristics: 

A = n
(
sfc − sw

)
(

1 −
1

DI

)

. (5)  

where n is soil porosity, sfc is soil moisture content at field capacity, sw is 
the soil moisture triggering the wilting conditions in plant leaves and DI 
is the Budyko index of climatic conditions, given by 

DI =
Tp

λpγp
, (6)  

with Tp, being the mean potential evapotranspiration during the 
growing season. The exponential solution for rL(z) is derived under the 
hypothesis that hydrotropism is the dominant factor and therefore roots 
optimally grow where water availability is higher. This condition is 
valid for moderate humid to arid conditions, but it may becomes a strong 
limiting assumption for very humid environments (e.g., tropics). 

The model of Tron et al. (2014) provides the vertical root biomass 
distribution in response to river level oscillations. That is, the model 
describes how plants develop roots in the riparian zone where ground
water responds promptly to river level fluctuations. Moreover, in the 
model water is assumed to be available for uptake from roots only within 
the capillary fringe zone, which is subject to negative pore-water pres
sure. Whilst referring the reader to Tron et al. (2014) for mathematical 
details, here it suffices to say that river level variability is assumed to 
follow a Compound Poisson Process (Ridolfi et al., 2011) of rate λT, rate 
of exponential decay ηT, and mean jump magnitude αT. Above the 
watertable, the capillary fringe has moisture available to roots within a 
window of amplitude L. The vertical motion of the capillary fringe fol
lows the river level fluctuations so that roots can grow during the pe
riods when they are inside the band L or die if they are outside of it. 
This“switching” dynamic is also stochastic and follows the so-called 
Dichotomous process (Ridolfi et al., 2011), where the switch between 
growth and death depends on periods of wetness and dryness. The model 

possesses only physically-based parameters and the solution for the 
vertical root profile, RT(z), reads as 

RT(z) =
2θ(z)k(z)

θ(z) + θ(z)k(z) + 1 − k(z)
. (7)  

where θ(z) is the ratio between root growth and decay rates, which 
varies with the depth z from the surface (positive downward). θ(z) is 
assumed to be decreasing with z to describe the difficulty of plants to 
develop roots at greater depths. The function k(z) is given by 

k(z)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

Γ
(

λ̃T ,
h − z − L

αT

)

− Γ
(

λ̃T ,
h − z
αT

)]

Γ
(

λ̃T

)− 1

if − ∞< z< h − L,

1 − Γ
(

λ̃T ,
h − z
αT

)

Γ
(

λ̃T

)− 1

if h − L< z< h,

(8)  

where Γ(⋅) is the gamma function and Γ(⋅, ⋅) is the incomplete gamma 
function. According to Tron et al. (2014) and Tron et al. (2015), the 
parameters h and L depend on plant and soil characteristics, in partic
ular, h represents the soil depth below which roots do not grow due to 
persistent saturated conditions and so coincide with the minimum river 
level. The parameter λ̃T is the ratio between the mean frequency of 
watertable rises, λT, and the mean rate of watertable decrease in time, ηT, 
whereas αT is the mean vertical jump with which the river oscillates. 
Root profiles of riparian plants found remarkable agreement with the 
Tron et al. (2014) model (Tron et al., 2015). 

2.2. Root distribution model: two-dimensional description of plant roots 
profile 

It is instructive to obtain the total biomass of fine roots, TBfr, pre
dicted by the model of Schwarz et al. (2013). This can be done by 
integrating Eq. (2) along the lateral distance and under the assumption 
that a0 > 5 (in order to capture the contribution of both terms of the 
distribution): 

TBfr =

∫ dM

ϕt/2
2πxDfr(x)dx =

(a0 − 2.768)μϕt

a0
, (9)  

where the product μϕt is the total number of fine roots, Nfr Schwarz et al. 
(2013). 

An expression for the Root system Area, RA(x) as a function of the 
radial distance x is derived as follows. By summing the areal contribu
tion of all roots with diameters in the range ϕ0 < ϕ ≤ ϕM(x) at a given 
distance, x, one obtains 

RA(x) =
∫ ϕM (x)

ϕ0

πϕ2

4
N(ϕ, x)dϕ, (10) 

i.e., 

RA(x) =
∫ ϕM (x)

ϕ0

πϕ2

4
Dfr

ln(1 + ϕM) − ln(1 + ϕ)
ln(1 + ϕM)

(
ϕ
ϕ0

)λr

dϕ. (11) 

After some algebraic manipulation, the solution reads  

where Bz[⋅, ⋅ , ⋅] is the incomplete Beta function (Abramowitz and 
Stegun, 1965). This function provides the total area of roots with a 
diameter ϕ in the range ϕ0 < ϕ ≤ ϕM(x), as a function of the radial 
distance from the stem, x. From this quantity, the Root Area Ratio, 
widely used in the literature (Bischetti et al., 2007; Smit et al., 2013), 
could easily be calculated. Notice, that the contribution of fine roots is 
not taken into account by this solution. In order to take fine roots into 
account in an approximate way one could extend the lower extreme of 
the integral term in (11) down to zero. Clearly, this operation is valid 
under the crude assumption that N(x,ϕ) provides a good estimates of the 

RA(x) = π
Dfr(x)

(

− ( − ϕ0)
− λr Bz

[
− ϕ0 , 4 + λr,0

]

+ ( − ϕM(x) )
− λr

(
ϕM (x)

ϕ0

)λr
Bz

[

− ϕM(x) , 4 + λr,0
]
+ ϕ3

0

(
ln[1 + ϕ0] − ln[1 + ϕM(x) ]

)

4(3 + λr)ln[1 + ϕM(x) ]
, (12)   
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number of fine roots for diameters ϕ < ϕ0. Hence, one obtains 

RA(x) =
∫ ϕM (x)

0

πϕ2

4
Dfr

ln(1 + ϕM) − ln(1 + ϕ)
ln(1 + ϕM)

(
ϕ
ϕ0

)λr

dϕ, (13)  

whose solution reads 

RA(x) = π
Dfr(x)ϕM(x)4

(
ϕM (x)

ϕ0

)λr
Φ[ − ϕM(x), 1, 4 + λr ]

4(3 + λr)ln[1 + ϕM(x) ]
, (14)  

where, Φ[⋅, ⋅ , ⋅] is the Lerch transcendent function (Abramowitz and 
Stegun, 1965). 

Next, one can proceed towards assembling the three models and use 
the models of Laio et al. (2006) and Tron et al. (2014) to redistribute the 
biomass along the vertical. For this, the pdf of the Tron et al. (2014) 
model's root profile, RT(z), must be obtained by operating the following 
transformation 

rT(z) =
RT(z)

∫ h
0 RT(z)dz

, (15)  

which ensures that 
∫

rT(z)dz = 1. 
By combining the root distributions of Laio (2006) and of Tron et al. 

(2014) a more comprehensive modelling framework is built. The new 
model describes how roots develop in soil because of soil moisture 
changes induced by rainfall infiltration (piston flow) and watertable 
oscillations (i.e., either due to river water level fluctuations or to oscil
lations of the watertable). The density functions for rL(z) and rT(z) are 
first defined over a vertical domain 0 ≤ z ≤ h and then combined via a 
weighting coefficient wL ranging between 0 and 1, 

r(z) = wLrL(z)Θ[h − z] + (1 − wL)rT(z), (16)  

where wL = 0 corresponds to the Tron et al. (2014) model whereas wL =

1 corresponds to the model of Laio (2006). The coefficient wL is intended 
to be the only calibration parameter of the Root Distribution Model 
(RDM) and its role will be discussed in Section 3.3. Notice, that whilst 
rL(z) is mathematically defined for 0 ≤ z > ∞ due to the hypothesis of 
absence of deep aquifer in the Laio (2006) model, in the presence of an 
aquifer at the depth h, its actual domain is restricted to the lower 
boundary z ≤ h. This implies that 

∫
0
hrL(z)dz < 1, i.e. the root profile of 

model (Laio et al., 2006) has lost part of the biomass that would be 
created due to deep rainfall infiltration. However, for the RDM, this 
assumption may reasonably be associated with the loss of biomass due to 
precipitation events that infiltrated down to a depth z > h where roots 
cannot grow because the soil is fully saturated. 

The function r(z) is then transformed into a pdf using 

pr(z) =
r(z)

∫ h
0 r(z)dz

, (17)  

which re-scales pr(z) to be in the range 0 ≤ pr(z) ≤ 1. The function pr(z) 
can now be used to redistribute the model of Schwarz et al. (2012) along 
the vertical axis z. The global distribution of fine roots thus becomes 

Dfr(x, z) =
pr(z)μϕt

2πdM

(
1

5ϕt

(

0.7+ 0.3
x

5ϕt

)

Θ[5ϕt − x] +
1
x

Θ[x − 5ϕt]

)

, (18)  

with a total biomass of fine roots at each depth z equal to 

TBfr(z) = pr(z)
(a0 − 2.768)μϕt

a0
. (19) 

As a consequence, the distribution of the number of roots, N, is also a 
function of three variables, that is N(x,ϕ,z) as well as the density of fine 
roots and the Root Area function, which we denote therefore as 
RARDM(x,z). 

3. Results and discussion 

3.1. Root geometry distributions and contribution of fine roots to the RA 

After integration along the vertical, the RDM provides the basic 
statistics of the model of Schwarz et al. (2012). Whilst referring to the 
original publication for details, it is insightful to plot the density of fine 
roots, the distribution of the root diameters at a given distance, and the 
distribution of a given diameter at all distances. These quantities are 
shown in Fig. 2 and are important for depicting the root distribution for 
a vertical slice of soil as shown in Fig. 1. The density of fine roots 
(Fig. 2a) typically increases up to a given distance from the trunk and 
then decreases. The number of roots within each class diameter is a 
monotonically decreasing function of the diameter size (Fig. 2b). The 
maximum root diameter (not shown) decreases linearly with increasing 
the distance from the trunk. However, the distribution of roots of a given 
diameter (Fig. 2c) shows non monotonic behaviour, i.e., it reaches a 
maximum before decreasing to zero at the distance beyond which that 
diameter class ends. 

The contribution of fine roots to the RA as a function of the distance 
from the trunk, x, is shown in dimensionless variables in Fig. 3. The RA 
decreases with increasing lateral distance because of the decrease (with 
x) in the maximum root diameter and therefore the associated distri
butions of root diameters (see Schwarz et al. (2012) for details). Whilst 
for small trunk diameter (ϕt) the difference between the two solutions 
(12) and (14) is considerable, this difference tends to vanish as ϕt in
creases. This indicates that for large trunk diameters the role of fine 
roots in defining the RA becomes negligible compared to the contribu
tion of roots with diameters larger than ϕ0. Consequently, for small di
ameters (e.g., ϕt < 100 mm), the solution (12) might noticeably 
underestimate the actual RA (Fig. 3) and so the use of (14) is preferred. 
In Fig. 3, the relative effect of the branching length for the same trunk 
diameter is evident. Reducing the branching length generally increases 
the amount of root biomass and therefore increases the similarity be
tween the two solutions. 

3.2. Effects of climate and root-aquifer connectivity 

Climate and soil parameters affect the model directly according to 
the structure of Laio (2006) and Tron et al. (2014) models, whilst they 
only indirectly affect the Schwarz et al. (2012) allometric model. The 
effect of climate is shown in Fig. 4 for a tree with a root system that is (i) 
disconnected from the watertable (Fig. 4a-c), (ii) weakly (Fig. 4d-f) and 
(iii) strongly connected to it (Fig. 4g-i). The corresponding model pa
rameters are reported in Table 1. The Budyko index is used to show how 
the root structure is redistributed in the soil as the dryness increases. 
When the root system is disconnected from the aquifer (e.g., Figs. 4a-c), 
it is expected that moisture would be more readily available in the upper 
layers of the soil and so the root structure becomes shallower and 
concentrated in the top of the soil profile. Schenk and Jackson (2002b) 
and Schenk and Jackson (2002a) reported that trees growing in semi- 
arid environments tend to generally develop deeper roots accessing 
the groundwater table, which allows to overcome moisture shortages. 
However, Zanetti et al. (2015) observed that this behaviour may be soil 
texture dependent and reported an opposite behaviour for trees growing 
on dikes and with a texture comparable to the one used in our model (in 
terms of soil porosity). This would also be consistent with the strategy of 
non-phreatophytic vegetation species (e.g., Nitraria tangutorum and 
Calligonum mongolicum) of uptaking water from larger spatial areas 
(Shiqin et al., 2017). This is also in general agreement with other 
models, e.g., Guswa (2008). Guswa (2008) uses a marginal carbon cost/ 
benefit approach for determining the optimal root development in the 
soil. The present model shows that the root biomass spreads laterally in 
order to increase water uptake efficiency (Cannon, 1949; Smit et al., 
2013). Hence, for increasing dryness index there would be not sufficient 
water available for uptake from the soil so that the tree would develop a 
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root density distributions, which is generally higher closer to the soil 
surface and extend towards larger distances from the tree stem. The 
presence of an aquifer accessible by the roots may change this picture as 
hereafter discussed. 

As far as the case of plants with roots directly connected to an aquifer 
is concerned, this can be taken into account by the model of Tron et al. 
(2014) as a constant -non-oscillating (or slowly oscillating) watertable 
located at a depth h from the soil surface (z in the model is directed 
downwards). This will limit plant root growth to a depth to z ≤ h. Again, 
the amplitude L of the capillary fringe above the minimum river level 
where conditions are favourable for root water uptake and growth is 
generally well correlated to the sediment grain-size distribution (e.g., 
quantiles d90 and d10). 

In Figs. 4d-i, we show a few examples of spatial root distribution for a 
plant growing in a soil either weakly or highly connected to the aquifer. 
In both cases, the soil moisture availability depends both on precipita
tion and on aquifer fluctuations. The weakly connected case is charac
terized by a small capillary fringe amplitude that only reaches the 
deepest roots. On the contrary, the highly connected case entails a large 
capillary fringe amplitude that potentially oscillates up to the soil sur
face thus affecting the root structure over the entire profile. For the 
plant, connectivity is is related to a strategy that varies according to the 
plant species, i.e., from the physiological and phytological characteris
tics that make the plant able to allocate energy to the most efficient 
source of moisture. 

The relevant model parameters are shown in Table 1. Figs. 4d-f show 
the case of a weakly connected aquifer characterized by a small ratio 

between the capillary fringe thickness and the aquifer depth to soil 
elevation, i.e. L/h = 0.2. In this environment roots are able to reach and 
uptake water from the capillary fringe, but are still predominantly 
influenced by the precipitation input. Interestingly, this situation can 
result in a bi-modal distribution of the RA. For example, when the 
groundwater level does not oscillate much in comparison with the 
rooting depth, then a small RA increase is already expected within the 
capillary fringe (Fig. 4d). If the aquifer oscillates slowly, then the 
amplitude of the oscillation affects the root density distribution. Because 
the capillary fringe recharges the soil moisture, the resulting RA distri
bution can become bi-modal. This effect is seen in larger sections of the 
soil profile as the mean magnitude of the (random) fluctuations in
creases, i.e., for larger αT. The cases above are representative of plants 
growing on slopes in the vicinity of a water course that may slightly 
affect the position of the watertable. However, it is when the capillary 
fringe length, L, becomes comparable to the depth of the watertable, that 
the connectivity really increases. In this case, soil moisture availability is 
not limiting to plant growth throughout the soil profile, which therefore 
drives the water uptake. This is the case of riparian plants, whose root 
structure seems mainly be determined by water level oscillations due to 
the river hydrological regime (Tron et al., 2015; Pasquale et al., 2012). 
In this case, the root profile may deepen and show different shapes ac
cording to the water level fluctuation statistics. An interesting case is the 
inversion of the skewness of the root profile, which becomes negative, i. 
e., the distribution shows a deeper mode. As an example, Figs. 4g-i show 
the effect of the fluctuation magnitude for the case L/h = 0.5. 

The maximal depth h of the watertable acts as a measurable 

Fig. 2. Typical statistical distributions of the vertically integrated model (i.e., the Schwarz et al. (2012)) model generated with parameters ϕt = 200 mm, μ = 9 × 106 

roots/mm, b = 90 mm, s = 0.36 mm− 1, a0 = 18.5. (a) Density of fine roots as a function of lateral distance; (b) number of roots per square metre of diameter ϕ (in 
mm) at a distance x = 800 mm from trunk; (c) number of roots per square metre with diameter ϕ = 6 mm with distance; (d) 3D normalized plot of the root dis
tribution N(ϕ,x). 

P. Perona et al.                                                                                                                                                                                                                                  



Ecological Engineering 185 (2022) 106811

6

adjustable parameter that can be assessed at each distance from the 
main channel in order to simulate the presence of an aquifer at a certain 
depth. In practice, one could also make the relative frequency ̃λT and the 
mean amplitude of the oscillations αT functions of the distance from the 
river channel in order to simulate the potential reduction in the fre
quency of capillary fringe oscillations above h, although they are ex
pected to remain (weakly) correlated to river fluctuations. In this case, 
without any precipitation and for a non-oscillating capillary fringe, the 
model would predict that plants develop a rectangular root profile of 
amplitude equal to L above h. 

3.3. Role of the weighting parameter wL 

The parameter wL is technically the only fitting parameter of RDM. 
However, because the level of connectivity of a plant with the aquifer 
also depends on plant species' strategy for water uptake from one or 
another source, wL is actually expected to correlate with plant species 
characteristics. Regardless, wL can easily be calibrated from the avail
able data. Unfortunately, it is difficult to find complete sets of hydro
meteorological, soil, groundwater and root data for a specific site, which 
precludes the validation of RDM for the time being. Indeed, while root 
excavation is technically easy to plan and conduct, a critical issue is to 
find locations where also long-enough records of groundwater and hy
drometeorological variables that allow to estimate the parameters of the 
stochastic modelling components are simultaneously. In the following, 
we therefore advance a gross sensitivity analysis that demonstrates the 
effect of wL on the vertical distribution function, pr(z) namely Eq. (17). 
This is shown in Fig. 5 for the cases of weak and high connectivity 
described in Fig. 4e,h. Notice that although the shape of the function 
pr(z) resembles the vertical shape of the RA, the two forms are not the 
same. This is due to the modulating effect that pr(z) has on the root 

quantities being plotted. This is particularly evident when comparing 
the RA profile (for equal RA) of Fig. 4h with the form of the redistri
bution function shown in Fig. 5b. Similarly, the comparison between 
Fig. 4e and Fig. 5a shows that pr(z) shifts the maximum of RA towards 
deeper depths so that the position of the maximum for the two functions 
does not coincide. RDM contains almost all physically based parameters 
except wL, and should therefore be easy to calibrate provided that joint 
information about root (e.g., the RA and the allometric parameters of 
Schwarz et al. (2012) models) and environmental variables are avail
able. Hence, from an practical point of view the fitting of pr(z) should be 
done indirectly via one of the available measured root quantities. Then, 
as wL appears as a weighting coefficient of highly nonlinear functions, its 
calibration does not require particular tools and can be done with 
relatively few observations. 

4. Conclusions 

By assembling three root profile and distribution models from the 
literature, we built the Root Distribution Model, a unique framework 
that describes the expected spatial distribution of some typically used 
root system variables, including the RA. An alternative variable that is 
widely used in the literature is the closely related Root Area Ratio, which 
could be easily obtained from RA. 

The main characteristic of the coupled model is that it models the 
spatial variability of tree root variables (i.e., along a radial distance from 
the main stem and as a function of the vertical depth) that are typically 
used in plant root quantification analysis (e.g., RA, spatial distribution of 
specific root diameters, distribution of root diameters at a specific 
location, maximum root diameter at a specific location, number of roots 
and density of fine-root.). The model can well represent the effect of 
different climatic conditions described by the Budyko index where the 
evaporative demand interplays with total precipitation. For example, in 

Fig. 3. RA(x) normalized to the trunk area at DBH computed for a DBH, ϕt = 50 mm, and branching length b = 90 mm (a1), ϕt = 100 mm and b = 90 mm (a2), ϕt =

50 mm and b = 45 mm (b1) and ϕt = 100 mm and b = 45 mm (b2). 
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Fig. 4. Density plot of the RA normalized to the trunk DBH area as a function of the normalized horizontal distance x/dM from the stem (in abscissas) and the 
normalized soil depth z/h (in ordinate). This collection of cases summarizes the effect of climate in terms of Budyko index, as well as the connection to static, slow 
and fast varying groundwater oscillations of different amplitude. The below-ground biomass is exaggerated compared to tree size for the sake of readability. 
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dry climates and in the absence of connectivity with a deep aquifer, the 
expected RA becomes shallower and spread over larger distances from 
the main stem than in moderately humid environments. On the contrary, 
the connectivity to a deep aquifer changes this picture and reproduces 
root biomass plasticity characteristics (e.g., bi-modality for efficient 
water uptake both from rainfall input and the aquifer) that depend on 
soil properties, the degree of connectivity and the aquifer temporal 
dynamics. 
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Table 1 
Model parameters used for the simulations shown in Fig. 4. Fixed parameters for all simulations: ϕt = 300 mm, ϕ0 = 1 mm, μ = 9 × 106 roots/mm, b = 90 mm, s = 0.36 
mm− 1, λr = − 1, a0 = 18.5, λp = 0.1 d− 1, γp = 10 mm, sfc = 0.65, sw = 0.2.  

Figure panel (a) (b) (c) (d) (e) (f) (g) (h) (i) 

Parameter Unconnected Weakly connected Highly connected 

DI 1.01 1.1 1.2 1.01 1.01 1.01 1.01 1.01 1.01 
h 5000 5000 5000 5000 5000 5000 1000 1000 1000 
αT <10− 2 <10− 2 <10− 2 <10− 2 200 1500 <20 100 500 
ηT – – – 0.0025 0.0025 0.0025 0.0025 0.1 0.1 
λ̃T = λT/ηT 

– – – 0.004 4 4 2 2 2 
wL 1 1 1 0.9 0.9 0.9 0.2 0.2 0.2  

Fig. 5. Effect of the weighting parameter wL on the shape of the vertical redistribution function pr(z) normalized at the maximum rooting depth imposed by the 
saturated watertable at a depth h. Panel (a) and (b) correspond to the parameters used in Fig. 4e and h, respectively. 
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