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Rukhin(1988) introduced a loss function given by,

L(θ, δ, γ) = w(θ, δ)γ−
1
2 + γ

1
2 (1.1)

Where,γ is an estimator of the loss function w(θ, δ) ,which is non-negative. Guobing(2016)
used this loss function and derived estimates of the loss and risk function of the parameter
of Maxwell’s distribution.Singh (2021) took various forms of w(θ, δ) and derived estimates
of the loss and risk function of the parameter of a continuous distribution which gives
Half-normal distribution,Rayleigh distribution and Maxwell’s distribution as particular
cases. Rukhin(1988) considered the Bayesian estimation of the unknown parameter θ of
the binomial distribution by taking

w(θ, δ) = (θ − δ)2 (1.2)

In this paper,Bayes estimate of the unknown parameter θ of the binomial distribution has
been obtained by replacing w(θ, δ) by w1(θ, δ) given by

w1(θ, δ) = h(θ)(θ − δ)2 (1.3)

Where,

h(θ) =
1

{θ(1− θ)}
(1.4)

Notes

Summary- This paper aims at the Bayesian estimation for the loss and risk functions of the unknown parameter of the 
binomial distribution under the loss function which is different from that given by Rukhin(1988). The estimation 
involves beta distribution, a natural conjugate prior density function for the unknown parameter. Estimators obtained 
are conservatively biased and have finite frequentist risk.
Keywords: Bayes Estimator, Loss Function, Risk Function, Binomial Distribution.
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On Baysian Estimation of Loss of Estimators of Unknown Parameter of Binomial Distribution

Let the random variable X follows binomial distribution with parameters n and θ.Where
θ is unknown satisfying 0 ≤ θ ≤ 1.The prior p.d.f of θ,denoted by π1(θ) is as follows:

π1(θ) =

{
θα−1(1−θ)β−1

B(α,β)
if α ≥ 0,β ≥ 0,0 < θ < 1

0 Otherwise
(2.1)

Under the assumption of prior probability density function (p.d.f.) for θ as above,Bayes
estimates of θ derived by Rukhin (1988) were as follows: For α ≥ 0, β ≥ 0

δB(X) =
(X + α)

(n+ α + β)
(2.2)

γB(X) =
(X + α)(n+ β −X)

(n+ α + β)2(n+ α + β + 1)
(2.3)

and for α = 0, β = 0

δ0(X) =
X

n
(2.4)

γ0(X) =
X(n−X)

n2(n+ 1)
(2.5)

It was shown that

EθL(θ, δ0, γ0) =∞ (2.6)

Under,w1(θ, δ) as above, the corresponding Bayes estimate is given by, For α ≥ 0, β ≥ 0

δ1B(X) =
E{θh(θ)/X}
E{h(θ)/X}

(2.7)

Or,

δ1B(X) =
(X + α− 1)

A− 2
(2.8)

On simplification,provided,A = n+ α + β > 2 and,

γ1B(X) = E{θh(θ)/X} − {δ1B(X)}2E{h(θ)/X} (2.9)

Notes

Estimation of Loss and Risk of the Parameter of Binomial DistributionII.
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On Baysian Estimation of Loss of Estimators of Unknown Parameter of Binomial Distribution

EθL(θ, δ1B, γ1B) = Eθ[h(θ)(θ − (X + α− 1)(A− 2)−1)2](A− 2)1/2 + (A− 2)−1/2 (2.11)

Or,

EθL(θ, δ1B, γ1B) = [n+h(θ)(1− α + θ(α + β − 2))2](A−2)−3/2+(A−2)−1/2 <∞ (2.12)

In this case,

R(θ, δ1B) = Eθ{h(θ)(θ − δ1B)}2 (2.13)

Or,

R(θ, δ1B) = [n+ h(θ){1− α + θ(α + β − 2)}2](A− 2)−2 (2.14)

As mentioned by Keifer (1977),an estimator γ(X)is said to be conservatively biased
if,

Eθ{γ(X)} ≥ R(θ, δ) = Eθ{w(θ, δ)} (2.15)

In the light of this condition,γ0(X) as given by Rukhin (1988) is not conservatively
biased. In this case,

Eθ{γ1B(X)} =
1

A− 2
(2.16)

Let δ0B(X) and γ0B(X)be values of δ1B(X) and γ1B(X) ,respectively when,α = β = 0.If
possible let ,

Eθ{γ0B(X)} ≥ R(θ, δ0B (2.17)

which holds if,

−2θ2 + 2θ − 1 ≥ 0 (2.18)

which is a contradiction,since 0 < θ < 1 and maximum value of −2θ2 + 2θ− 1 is−1
2

which
corresponds to θ = 1

2
.Moreover,−2θ2 + 2θ − 1 = −1 for θ = 1 and θ = 0 Thus,γ0B(X) is

not conservatively biased.
When α = β = 1,we have,

Eθ{γ1B(X)} = R(θ, δ1B) =
1

n
(2.19)

)

Or,

γ1B(X) =
1

A− 2
(2.10)

on simplification,provided,A = n+ α + β > 2.
We,see that, in this case γ1B(X) does not depend upon X and is function of n,α and

β

Notes
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g(θ) is a monotonically increasing function of θ over the set S = (0, 1) − {0.5}.Hence,
γ1B(X) as above,presents a valid ’frequentist report’ as mentioned by Berger(1985).

The results are summerized in the following:
THEOREM.Let (δ1B, γ1B) be Bayes estimators of the unknown parameter θ of the

binomial distribution under the loss function L(θ, δ, γ) = 1
{θ(1−θ)}(θ−δ)

2γ−
1
2 +γ

1
2 and beta

prior density with known parameters α and β.Then,the frequentist risk EθL(θ, δ1B, γ1B)
is finite for all values of α and β provided 0 < θ < 1.For α = β = 0, γ1B(X) is not
conservatively biased. The estimator γ1B(X) is conservatively biased forα = β = 1 and

for α = β > 1 satisfying α ≤ 1 + 2θ(1−θ)
(2θ−1)2 ,θ 6= 0.5.However, if α = β > 1, θ = 0.5, γ1B(X)

is also conservatively biased.

When,α = β > 1, θ 6= 0.5,

Eθ{γ1B(X)} ≥ R(θ, δ1B) (2.21)

which holds if

α ≤ 1 + g(θ) (2.22)

.Where,

g(θ) =
2θ(1− θ)
(2θ − 1)2

(2.23)

When,α = β > 1, θ = 0.5,

Eθ{γ1B(X)} ≥ R(θ, δ1B) (2.20)

Notes
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