
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Master’s Theses Theses and Dissertations 

Fall 11-12-2022 

The Impact of Contact Geometry on Sea Ice Stress and Fracture The Impact of Contact Geometry on Sea Ice Stress and Fracture 

at the Scale of Ice Floes at the Scale of Ice Floes 

Michael J. May 
Dartmouth College, michael.j.may.th@dartmouth.edu 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses 

 Part of the Geophysics and Seismology Commons, and the Materials Science and Engineering 

Commons 

Recommended Citation Recommended Citation 
May, Michael J., "The Impact of Contact Geometry on Sea Ice Stress and Fracture at the Scale of Ice 
Floes" (2022). Dartmouth College Master’s Theses. 61. 
https://digitalcommons.dartmouth.edu/masters_theses/61 

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth 
Digital Commons. It has been accepted for inclusion in Dartmouth College Master’s Theses by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/158?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/61?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


 

  

The Impact of Contact Geometry on Sea Ice Stress and Fracture at the Scale of Ice 
Floes 

 
A Thesis 

Submitted to the Faculty 
in partial fulfillment of the requirements for the 

degree of 
 

Master of Science 
 

in 
 

Engineering Sciences 
 

by Michael J. May 
 

Thayer School of Engineering 
Guarini School of Graduate and Advanced Studies 

Dartmouth College 
Hanover, New Hampshire 

 
 

July 2022 
 

 
  Examining Committee: 
 

Chairman_______________________ 
(Christopher Polashenski, Ph.D.) 

 
Member________________________ 

(Donald Perovich, Ph.D.) 
 

Member________________________ 
(Erland Schulson, Ph.D.) 

 
 
 
 

___________________ 
F. Jon Kull, Ph.D. 
Dean of the Guarini School of Graduate and Advanced Studies 
 
 (I will obtain this signature) 



 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 

Abstract   
 

Observations of stress and strain at the scale of ice floes are necessary to fill a gap in 

our understanding of sea ice mechanical behavior. Current climate and ice dynamics 

models represent ice mechanical properties using stress-strain relationships largely 

determined at laboratory-scale (<1m) or from regional-scale (10+km) deformation 

observations. The former scale does not include all mechanisms of deformation operating 

in the ice pack; the latter aggregates multiple modes of deformation into non-physical 

fluid analogies. The Sea Ice Dynamics Experiment (SIDEx) was run in Feb-Mar 2021 to 

fill this gap, observing stress and strain at the scale of sea ice failure processes. Here we 

present stress sensor observations. Stress gages (N=31) were deployed over a 4.5km2 area 

in the southern Beaufort Sea to observe in-situ stress. These data were analyzed in the 

context of deformation observations from satellite imagery and local laser and radar 

interferometers to explain the drivers of sea ice stress variations before and after fracture. 

Three case studies between 14 March and 24 March, during which fractures propagated 

through the stress observing array, are presented here. We find that the contact geometry 

between floes, along with the regional motion that is driving the floes to interact, is 

consistent with the observed stress state, fracture, and orientation of stress post-fracture at 

local scale. When the floe is contiguous and fractures are far away, stress magnitude and 

orientation is similar across the entire domain and changes are highly correlated. As the 

floe fractures, spatial variability in stress increases and high stresses are found along the 

floe contacts. Peak stresses occur on or near contacting asperities, reaching up to 600 

kPa, and along paths connecting contact points. The interrelation between stress state and 
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geometry suggests that high fidelity models, initialized with realistic floe geometry, may 

have deterministic predictive capability for further ice fracture.  
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1. Introduction 
 
Climate change has caused rapid sea ice decline in the Arctic, resulting in a weaker 

and thinner ice cover [1]. Models of sea ice are critical to understanding, operating in, 

and predicting this changing environment. One of the most important, but challenging, 

ice processes to represent is deformation. Ice deformation is currently modeled using 

nonphysical fluid analogies [2] and/or physically based parameterizations determined 

from laboratory fracture tests [3] to relate stress and strain. Significant observational 

evidence suggests the parameterizations used in current models are non-representative in 

important ways [4]. Further observations are needed to improve these parameterizations. 

Past studies have resolved the stress-strain-fracture behavior of ice at the sub-m scale [5] 

and at scales greater than 10 km [6]. Laboratory studies have led to a prevailing 

hypothesis that internal flaws are responsible for in-situ ice having a lower observed 

compressive strength than laboratory ice [3], [7], [8]. This is hypothesized to hold at the 

meter-to-kilometer (m-km) scale based on crack geometries observed in the field [9]. No 

study to date has assessed how contact geometry affects fracture at this scale through 

contemporaneous stress-strain measurements. We hypothesize that floe contact geometry, 

and the resulting stress concentrations, are responsible for most fractures observed in 

Arctic pack ice.   

The Sea Ice Dynamics Experiment (SIDEx) was conducted in the Beaufort 

Sea from Feb-Mar 2021 to fill this knowledge gap. Using recent advances in 

satellite remote sensing, high-precision GNSS, and interferometric rangefinders, 

the project deployed a high-resolution stress and strain-observing array on a 
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mixed multi-year and first-year ice floe. The SIDEx goal is to resolve the stress-

strain-fracture of sea ice in a real heterogeneous ice floe, improving modeling 

capabilities by better constraining the drivers of fracture. The internal stress state 

and floe-floe interactions were continuously monitored over a roughly 49-day 

period between 3 March and 21 April. This paper focuses on the stress data from 

the experiment. An array of 31 in-situ stress sensors, deployed over a 4.5 km2 

area, was used to resolve the spatial and temporal variability of stress. 

We focus our analysis on explaining the transfer of stress between floes during 

kinematic interactions and the propagations of stress across a heterogeneous, multi-floe 

ice cover. Three case studies from 14 March to 20 March featuring known fracture events 

are analyzed to understand sea ice mechanical behavior. Special attention is given to how 

internal stress pathways are governed by the contact geometry between floes. Satellite 

imagery of the region gives context to the far-field stress and local deformation observed 

over a given time. Radar and laser interferometers observe fracture initiation, 

propagation, and/or displacement. This local ice movement is combined with stress data 

to determine failure modes and the general mechanical behavior of the floe.  

The overarching goal of this study is to better constrain sea ice mechanical behavior 

at the m-km scale for the purpose of improving ice dynamics models. The specific goal of 

this study is to better understand the temporal and spatial variation in stress, and how this 

is impacted by floe-floe interaction and contact geometry between floes. Details on the 

stress sensor used, deployment strategy, strain array, and satellite imagery used are 

detailed in the Methods section. The temporal variability of stress, spatial correlation of 

stress, and case study analysis of three events are presented in the Results section. Lastly, 
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we discuss stress pathways in ice, geometric stress concentrations, crack propagation, and 

failure modes in ice. 

 
2. Background 

 
Past studies have used in-situ stress sensor arrays to understand stress variability and 

how stress is transferred through the ice. Since stress cannot be measured directly, many 

studies have estimated in-situ stress by determining the strain of an elastic inclusion 

embedded in the ice. Several sensors were created in the mid-20th century to measure ice 

stress in this way. Cox and Johnson (1983) reviewed these sensors and determined two 

superior designs [10]. The first was a stiff cylindrical inclusion that would measure 

biaxial stress by determining the radial deformation of the cylinder wall in 3 directions, 

and the second was a thin, wide sensor that would have an effective modulus like that of 

ice. They then presented the theory for determining stresses from the stiff cylindrical 

sensor which prompted later studies to use that sensor type, including our own. 

These sensors were field tested in the spring of 1984, when 18 of these biaxial 

stressmeters were deployed at 6 sites near Esso’ caisson retained island in Mackenzie 

Bay, Canada [11]. Sensors were installed at 30, 80, and 130cm depths at each of the 6 

sites to assess the through-thickness variability of sea ice stress. The authors found a 

heterogeneous stress profile, with vertical and horizontal variability. Maximum peak 

stresses were observed at each level of the ice at different times, differing from the 

expectation that only the top layer of ice would experience the highest stresses. The 

authors proposed that the variability in vertical stresses suggests a bending of the ice 

sheet. Stresses also varied horizontally across the ice and were seen to increase 

directionally from west to east, which the authors speculated is due to the presence of 
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grounded MYI to the east. This study established that stresses in ice are highly variable, 

dependent on many factors such as temperature and ice thickness distribution. 

The horizontal and vertical distribution of ice stress was further explored by 

Tucker and Perovich during the Coordinated Eastern Arctic Experiment (CEAREx) in 

Fall 1988 [12]. VWSGs were installed at 2 multi-year (MY) floes. At site 1, the vertical 

distribution of stress was investigated with 3 sensors being installed at depths 0.25, 0.70, 

and 1.20m within a 1.60m thick floe. This site was approximately 200 m from the floe 

edge.  At site 2, the horizontal distribution of stress was investigated with 3 sensors (a, b, 

c) installed in a straight line at depths between 0.20 and 0.25m. The site spanned a MY 

and first-year (FY) ice boundary, with sensor A being 7m from the boundary in the FY 

zone, and sensor B and C being 2 and 15m from the boundary in the MY zone, 

respectively. The FY ice thickness at sensor A grew from 0.38 to 0.54m during the 

experiment and the MY ice thickness at sensors B and C was 2m.  

Tucker and Perovich found that the relationship between stresses observed at 

different levels of the ice varied. During one event the VWSGs installed at mid- and 

lower-depth recorded stresses near 50 kPa while the top layer VWSG recorded a 90 kPa 

stress. This finding, that the sensors at depth were experiencing only ~60% the stress of 

the top layer, was expected by previous evidence that mid-depth stress was about half 

that observed in the upper quartile depths [13]. 2 weeks later, however, the sensors 

recorded a dynamic event with a vertical stress profile of different character. Here, the 

top sensor recorded a maximum of 130 kPa while the mid-depth sensor recorded a 

maximum of 150 kPa. The authors speculated that the difference is due to contact 
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geometry, with thin FY ice loading the top of the floe during the first event and thick MY 

ice in contact with the floe at mid-depth during the second event.  

Large horizontal variations of ice stress were also found. The most frequent 

occurrence of high stress events occurred near the floe edge. The stress at the edge of the 

MY ice tended to be well correlated with the nearby FY ice stress, but poorly correlated 

with the other MY ice stress location 13m away. The sensor 15m from the floe edge had 

a correlation of 0.82 with the FY ice but experienced stresses approximately 17% of the 

FY ice values. Nevertheless, it was the 15m MY ice location that experienced the highest 

peak stress, recording a 460 kPa event. This result calls attention to the complex stress 

pathways found in sea ice. There was also evidence of stress attenuation. The stress 

sensors at site 1, 200m from the edge site, recorded consistently lower stresses than the 

sensors near the edge. This led the authors to hypothesize that stresses recorded far from 

the edge represent spatially averaged pack ice stress, which could be used in large-scale 

dynamics models, while those closer to the floe edge represented the concentration of 

stresses due to contact geometry. In both the vertical and horizontal stress profile, contact 

geometry was a primary factor in describing variability. 

The stress data attained by Tucker and Perovich were the first test data in a new 

model that began accounting for sea ice anisotropy, including ridges and leads [14]. To 

gather the necessary stress and strain data to better validate the model, the Sea Ice 

Mechanics Initiative (SIMI) had a field campaign from Fall 1993 to Summer 1994. 

Richter-Menge and Elder (1998) present the stress results from this campaign [15]. Here, 

stresses were monitored at one center site and three edge sites of a MY floe over six 

months in the Beaufort Sea. 7 VWSGs were deployed in MY ice at each edge site at an 
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average depth of 22.1cm. Sensors were installed in a line to determine attenuation from 

the edge. One sensor site remained intact for the duration of the campaign and provided 

useful data. 

The authors note that the largest difference between the stress signals came in the 

high-frequency component. Periods of high-frequency activity would peak between 50 

and 100 kPa on the floe edge. An interesting finding was that site 1, which had to be 

relocated 400m back due to large deformation events, typically peaked between 100 and 

200 kPa. In all cases, stress would attenuate towards the center of the floe. The center site 

stayed below 50 kPa for most of the campaign, experiencing primarily thermal stresses 

during the experiment. Such attenuation, however, was not found over a 13m distance, 

differing from the findings of Tucker and Perovich.  

To explain the difference, Richter-Menge and Elder compared SIMI observations 

to finite-element model results of the CEAREx campaign from Frederking and Evgin 

[16]. Richter-Menge and Elder found that the contact geometry of the SIMI floe caused 

the load to be applied over a much broader area, leading to a more homogenous near-

edge stress profile than Tucker and Perovich experienced. 

A diurnal thermal signal was present in the stress record. Thermal stresses were 

found to be isotropic and impacted stress measurements between 15-20 kPa°C-1. The 

authors note that the correlation between the secondary principal stress and the ice 

temperature was strong at every site, ranging from 0.80 to 0.86. The primary principal 

stress was less correlated with ice temperature, ranging between 0.30 and 0.72. The more 

high-frequency stresses were recorded, the less a site’s primary principal stress tended to 

be correlated with ice temperature. Since the minor principal stress maintained a high 



 

 7 

correlation irrespective of high-frequency events, the authors proposed that the dynamic 

stresses, or those caused by ice-motion, can be approximated by subtracting the minor 

principal stress from the major principal stress. 

Richter-Menge and Elder note that dynamic events appear to occur on the 

timescale of minutes instead of days. They also note that high-frequency oscillations are 

at times superimposed over an increasing signal. They argue that this behavior shows the 

continued loading and subsequent local failure of weaker ice. As weaker ice in contact 

with a loading body fails and ridges, the pack becomes stronger as thicker ice takes more 

load, and the stress progressively increases. This process of ‘strain hardening’ continues 

until little to no weak ice remains and the internal stress reaches the failure strength of 

MY ice, resulting in ridge building of the strongest ice. This theory of ice displaying a 

type of hardening behavior was expounded on in another study [17], which approximated 

ice behavior as a granular plastic by observing sea ice kinematics using drifting buoys 

and SAR imagery. A necessary step to validating this finding was to link in-situ stress 

observations to regional scale deformation to assess the correlation between the two. This 

was one of the primary objectives for the dynamics component of the Surface Heat 

Budget of the Arctic Ocean (SHEBA) experiment that ran from 1997 to 1998. 

During SHEBA, Richter-Menge, McNutt, Overland, and Kwok conducted an 

experiment relating ice stress and deformation at the regional scale [18]. They deployed 8 

VWSGs over a ~15x15km area ~500km off the Alaskan coast in the Beaufort Sea. 

Sensors were installed at an average depth of 39cm in ice with an average thickness of 

130cm. 6 sensors were installed on the main SHEBA floe, 5 of which were installed in a 

straight line spaced 1 km apart. The final SHEBA sensor was installed further towards 
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the floe center near the midpoint of the sensor line. The other two sensors were installed 

on individual floes approximately 15 km from the SHEBA station. The sensors were 

operational from 15 October 1997 through 1 April 1998. Ice motion products from 

satellite imagery tracked regional deformation and were used in qualitative assessments 

of specific events. The authors used 4 unique case studies to describe the interrelation 

between regional deformation and internal ice stress. 

To assess the dynamic response of the ice, the authors employed the technique 

used to analyze the SIMI data [15] and approximated the ice-motion-driven stress by 

subtracting the secondary principal stress from the primary principal stress. A correlation 

analysis was run for the array to determine the spatial relationship between sensors. 

Correlation between sites ranged from 0.07 to 0.67, with an average value of 0.36 +/- 

0.15. The correlation between each site and the stress average across all sensors was 

higher, being an average 0.65 +/- 0.14. The authors concluded, therefore, that the all-

sensor stress average was the best representation of regional-scale ice stress. 

The authors analyzed stresses during times of regional ice convergence, 

divergence, and granular behavior over the course of SHEBA. They conclude that 

internal ice stress is related to regional ice deformation. The hardening theory posed by 

Richter-Menge and Elder, that progressive ice strengthening occurs through the 

elimination of weaker ice through compression events, was advanced in this study. A 

progressively increasing, quickly fluctuating stress signal was seen during times where 

southernly winds were compacting the ice up against the coast. These would last until the 

westerly winds returned and the ice resumed its westward drift, nearly eliminating the 

internal ice stress. Ice stress was also dependent on location. Southward winds would 
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increase ice stress if the Alaskan coast was to the south. Once the westward drift pushed 

the SHEBA camp beyond Point Barrow, no compaction happened; the Chukchi ice 

remained unconsolidated on shore. Thus, no stress built up. The authors pose 3 general 

rules for ice stress to build up in the Beaufort Sea during winter. First, there must be a 

fully formed ice cover connecting MY ice to the Alaskan coast. Second, there must be 

sufficient wind. Third, this wind must be pushing ice towards the coast [18]. The stress 

increase continues until the FY ice is eliminated and the thick MY ice eventually fails. 

This linking of stress to the regional context in a detailed, qualitative way was the first of 

its kind. The data was used to further develop a seminal discrete-element model [19] that 

better enabled modelling of heterogenous Arctic pack ice.  

 Each of these studies shed new light on the mechanical behavior of sea ice, and 

how stress builds up and propagates through pack ice. Stress variability observed in early 

studies led researchers to install in-situ sensors at various depths and horizontal spatial 

resolutions, culminating in the SHEBA effort to link stress to regional-scale deformation. 

The next relationship that must be defined is how stress observations are linked to local 

deformation. In each study, an analysis of local deformation is either omitted, treated as 

an aggregated feature of larger-scale deformation, or is inferred based on stress behavior. 

Our study offers the first comprehensive view of local stress-strain-fracture, continuing to 

build an observational understanding of sea ice mechanical behavior. 

 

3. Methods 

Observations were collected at the Sea Ice Dynamics Experiment (SIDEx) 

drifting ice camp, situated on a mixed multi-year (MY) and first-year (FY) ice floe in the 
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Southern Beaufort Sea during late winter and early spring 2021. The camp itself was 

established near a large MY pressure ridge on a small (~100m diameter) fragment of 

heavy (5m+ thick) MY ice in a region of mixed MY and FY ice. Camp center was 

located at 71.021°N, 143.905°W at 18:15 UTC, 3 March and drifted approximately 260 

km to 71.803°N, 150.737°W by time 15:00, 23 April, when most observations were 

discontinued (Figure 1).  

 

Figure 1. SIDEx camp drift from 7 March 2021 to 19 April 2021. 

 On-ice personnel occupied the camp from 3 March 2021 through 19 March 2021 

and installed an instrument array designed to observe stress, strain, and fracture in the sea 

ice at meter-to-kilometer (m-km) scale. Installation of the array was generally complete 
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on 13 March. Multiple sensor types were deployed, including in situ stress gauges, laser 

and radar strain observing systems, a seismo-acoustic fracture detection system, single 

and dual frequency GNSS buoys, and a meteorological station. This paper focuses on 

results from the stress gauges. To aid in interpretation of the results, surveys of ice and 

snow thickness were also made and multiple types of aerial imagery and tasked satellite 

remote sensing imagery were collected. These included sub-meter resolution optical 

imagery (airborne imagery, Maxar-Worldview (WV) and Planet-SkySat (PSS)) and 

synthetic aperture radar (RADARSAT Constellation Mission (RCM), TerraSAR-X, and 

COSMO-SkyMed). These provide additional context for the large-scale ice movements 

that are used with the stress-strain sensor arrays to draw failure hypotheses in this study. 

 The time history of the ice floe was fortuitous for the purposes of this experiment: 

Prior to our arrival, ice movement in the Beaufort Sea all but ceased for ~2 weeks under 

weather conditions of calm winds and cold temperatures (-50 to -30C). Though the ice 

floe selected had certainly experienced many prior deformation events, leaving it 

fractured and ridged, this meant that the ice floe was substantially re-bonded and 

contiguous at the start of our observations, containing no visible open fractures and no 

apparent recently worked ridges. All cracks or leads examined had refrozen to a thickness 

exceeding 90cm, suggesting they were about a month old. Ice motion resumed on 4 

March. The first local lead or ridge formation was observed on 14 March and progressive 

failure of the ice floe fragmented it into a large number of pieces by late on 19 March 

(Figure 2), to a point which necessitated removing personnel from the floe. Hence our 

experiment observes the progressive fragmentation of an initially contiguous (though 
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certainly heterogeneous) ice floe under stress: potentially an ideal experiment for 

understanding the mechanics of ice failure. 

 
Figure 2. Floe map of the region surrounding the SIDEx Main Camp on 20 March. The 

map background is an Airborne Structure-from-Motion image, acquired by Matt Nolan. 

 

3.1. Stress Sensor Overview 

In-situ sea ice stress was observed using an array of 31 Geokon Model 4350 

Biaxial Stressmeters [20]. The installation was configured to observe the spatial 

variability in ice stress across ice of heterogeneous character. The type of instruments 

used, commonly referred to as Vibrating Wire Stress Gages (VWSG), have been a 

primary instrument for assessing sea ice stress in Arctic sea ice over the last four decades 

[12], [15], [21], [22]. The Geokon Model 4350 VWSGs used are hollow steel cylinders 

measuring 31.75 cm long and 6cm in diameter. The VWSGs determine point stress by 
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recording strain on the steel cylinder. Cylinder deformation is determined based on 

changes in the resonant frequency of three steel wires strung in tension across the hollow 

center of the cylinder, and arranged in the horizontal plane at 120° to each other. The 

wires are magnetically ‘plucked’ once per minute and their resonant frequencies are 

recorded using Campbell CRVW3 dataloggers [23].   

Gages are installed with the cylinder long axis situated vertically, such that the 

sensors measure stresses only in the horizontal plane. We deployed all gages with their 

sensing plane at approximately 25 cm beneath the ice surface. The choice of a uniform 

deployment depth uses our limited number of sensors to assess horizontal stress 

variability, as opposed to vertical stress variability. Prior experiments have investigated 

vertical profiles of stress by deploying sensors in different horizontal planes. These have 

generally found high coherence between the stress changes seen at different levels of a 

single site, with the largest stresses seen near the surface [12]. Since the surface ice is 

also the coldest part of the ice at this time of year, it is likely also the stiffest and most 

brittle. We therefore presume that failure initiates in the high stress, brittle near-surface 

and observing there will provide the most accurate assessment of the stress conditions at 

failure, as well as the best signal to noise ratio. 

 Stress is calculated from the observed wire resonant frequencies using the method 

of Cox and Johnson [10]. This method converts changes in wire resonant frequency to 

wire displacement (eq. 1), then resolves the wire displacements into primary [p] and 

secondary [q] principal stresses (eq. 2 and 3). An angle is then calculated from the 

primary principal stress direction to the center wire Vr1 (eq. 4). These are accomplished 

by relating current frequency measurements to a calibration curve determined from pre-
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deployment tests, which determined the response of each sensor to pressure. Since 

temperature changes of the sensor also induce thermal expansion or contraction of the 

wires and the gage, displacements are corrected for temperature, observed within the 

gage, prior to applying these calculations (eq. 5). 

𝑉𝑉𝑟𝑟,𝑖𝑖 =  𝐺𝐺𝑖𝑖�𝑓𝑓0,𝑖𝑖 − 𝑓𝑓𝑇𝑇,𝑖𝑖� ∗  1
39

;  𝑖𝑖 = 1, 2, 3                                                                              (1) 

𝑝𝑝 =  1
2
� 1
3𝐵𝐵

((2𝑉𝑉𝑟𝑟1 − 𝑉𝑉𝑟𝑟2 − 𝑉𝑉𝑟𝑟3)2 + 3(𝑉𝑉𝑟𝑟2 − 𝑉𝑉𝑟𝑟3)2)1/2 +  1
3𝐴𝐴

(𝑉𝑉𝑟𝑟1 + 𝑉𝑉𝑟𝑟2 + 𝑉𝑉𝑟𝑟3)�         (2)  

𝑞𝑞 =  � 1
3𝐴𝐴

(𝑉𝑉𝑟𝑟1 + 𝑉𝑉𝑟𝑟2 + 𝑉𝑉𝑟𝑟3) − 𝑝𝑝�                                                                                       (3) 

𝜃𝜃 =  1
2

cos−1 �𝑉𝑉𝑟𝑟1−𝐴𝐴(𝑝𝑝+𝑞𝑞)
𝐵𝐵(𝑝𝑝−𝑞𝑞)

�                                                                                                   (4) 

𝜀𝜀ℓ(𝑇𝑇𝑇𝑇,𝑅𝑅𝑇𝑇) =  [(𝑅𝑅0 − 𝑅𝑅𝑇𝑇) + 𝐾𝐾(𝑇𝑇𝑇𝑇 − 𝑇𝑇0)]𝐺𝐺                                                                     (5) 

 Here 𝑉𝑉𝑟𝑟1, 𝑉𝑉𝑟𝑟2, and 𝑉𝑉𝑟𝑟3 are the wire displacements in 𝜇𝜇m, with 𝑉𝑉𝑟𝑟1 being the center 

wire displacement. A and B are inclusion factors for the steel sensor embedded in the ice. 

𝑓𝑓0 and 𝑓𝑓𝑇𝑇 are the wire frequencies at installation and at the new temperature, respectively, 

in s-1,  𝑇𝑇𝑇𝑇 is current temperature, and 𝑇𝑇0 is the temperature at installation in Celsius. 𝑅𝑅0 

and 𝑅𝑅𝑇𝑇 are the wire frequency readings at the initial and current times, respectively. 𝜀𝜀ℓ is 

the radial wire displacement due to temperature, with 𝜀𝜀 being wire strain and ℓ being wire 

length. K is the thermal gage factor that denotes the resonant frequency change at each 

wire per degree Celsius temperature change, and G is the radial gauge factor that denotes 

the change in length per change in resonant frequency at each wire. Each is determined 

by calibration tests in a controlled pressure chamber prior to deployment. The inclusion 

factors account for the difference in elastic modulus between the stiff sensor and the 

surrounding ice; they are experimentally determined ratios of the undisturbed ice pressure 

to the pressure felt by the sensor, which necessarily creates some local stress 
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concentration [10]. The stress orientation relative to the center wire strain is calculated as 

the clockwise angle from the primary principal stress to the direction of the center wire in 

Eqn. 3. This is required for a spatial analysis of stress and is used throughout our results 

and discussion to show direction of stress alignment. While the sensors are nominally 

rated by Geokon to have a maximum resolution of 14 kPa [20], the utilization of a 

superior data-logging system, such as our use of the Campbell CRVW3 dataloggers, has 

been shown to increase resolution to around 5 kPa for loads between 0 and 2 MPa [12], 

[21].  

The VWSGs were calibrated for absolute readings using the method described in 

Cox and Johnson. A range of radial loads were applied to each gauge at several 

temperatures and the wire resonant frequencies were recorded under these loads. The 

observed readings were used to determine a sensor-specific calibration curve that was 

used to determine stresses from the wire strains. This calibration was completed prior to 

the field experiment by Geokon. 

 

3.2 SIDEx Sensor Deployment 

Each of the 31 VWSGs were deployed at the SIDEx field site using a method 

similar to that presented in Richter-Menge and Elder [15]. An ice auger was used to drill 

8 cm diameter holes in the ice to a depth of ~50cm. The VWSG was oriented 

perpendicular to the surface within the hole and frozen into place at the depth such that 

the sensing rosette was 25+-2 cm beneath the ice surface. In the case of this experiment, 

holes were not drilled through the ice entirely and fresh water was used to fill the hole 

and freeze the sensors into place. We have found that the use of sea water in non-
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through-thickness holes frequently leaves large brine pockets near sensors, impacting ice 

coupling and the integrity of readings. Temperatures were sufficiently cold that we were 

able to manually hold the gages at the desired depth and orientation for a few minutes 

until they froze into place, avoiding the use of the PVC pipe and crossbar system used in 

prior experiments [3]. We have found the PVC pipe mounted to the stress gage and 

protruding up into the air wobbles on windy days and adds noise to stress readings and 

recommend against this particular prior deployment method. Each sensor was connected 

to a logger box by a cable, and the box was left on the ice surface and buried in snow to 

restore the original snow depth. The installation process was repeated for all 31 VWSGs. 

The sensors were located within a roughly 4.5 km2 area around the SIDEx camp, 

hereafter referred to as the Main Camp, deployed in a manner to sample spatial 

variability in stress state spanning a FYI-MYI boundary. Deployment sites were selected 

to be in areas where ice conditions were largely undeformed and uniform for at least a 

10m radius around the installation site. No gages were deployed in deformed ice or 

unconsolidated blocks. Ice characteristics otherwise varied across deployment sites. Ice 

thickness was highly variable, ranging from 103 to 362 cm in the deployment sites. The 

VWSGs were installed with Vr1 oriented towards magnetic North using a compass, or 

toward the GPRI at camp center visually, with their orientation recorded. Orientation was 

accurate to ~+/- 5 degrees. The output data was transformed to be relative to true north 

for all sensors, to facilitate inter-comparison between gages and other data sources. 30 of 

the 31 VWSGs successfully collected data over the course of the fracture events 

discussed in this paper, with V1981 being the lone defective sensor. 

Sensor ID Lat Lon Time Install Direction 
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1946 71.02088 -143.901675 2021-03-03T12:18 Magnetic North 

1988 71.01936 -143.896577 2021-03-03T12:25 Magnetic North 

1957 71.017585 -143.89211 2021-03-03T12:47 Magnetic North 

1980 71.018907 -143.887215 2021-03-03T12:59 Magnetic North 

2516 71.019692 -143.91061 2021-03-03T15:20 Magnetic North 

2512 71.022828 -143.909512 2021-03-03T15:52 Magnetic North 

1974 71.023443 -143.900956 2021-03-03T16:05 Magnetic North 

2517 71.021996 -143.895831 2021-03-03T16:26 Magnetic North 

1951 71.020087 -143.877195 2021-03-03T18:23 Magnetic North 

2483 71.0233 -143.87808 2021-03-03T17:43 Magnetic North 

1985 71.0218 -143.888955 2021-03-03T18:01 Magnetic North 

2510 71.01762 -143.878573 2021-03-03T18:38 Magnetic North 

1983 71.018632 -143.904915 2021-03-04T10:09 Magnetic North 

1987 71.015455 -143.911289 2021-03-04T10:31 Magnetic North 

1984 71.020264 -143.922096 2021-03-04T10:57 Magnetic North 

1952 71.024123 -143.928814 2021-03-04T11:10 Magnetic North 

1976 71.027103 -143.92396 2021-03-04T11:24 Magnetic North 

2518 71.031211 -143.913489 2021-03-04T11:44 Magnetic North 

2513 71.031032 -143.903742 2021-03-04T12:06 Magnetic North 

1982 71.036975 -143.943072 2021-03-04T15:02 Magnetic North 

2511 71.040332 -143.935101 2021-03-04T15:25 Magnetic North 

1947 71.03873 -143.932602 2021-03-04T15:48 Magnetic North 

1977 71.034863 -143.949588 2021-03-04T16:20 Magnetic North 
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2515 71.03285 -143.9896 2021-03-04T16:38 Magnetic North 

2514 71.035961 -143.987321 2021-03-04T17:04 Magnetic North 

1989 71.473684 -146.22745 2021-03-09T17:20 GPRI 

1975 71.481842 -146.221138 2021-03-09T14:40 GPRI 

1981 71.486102 -146.218847 2021-03-09T17:54 GPRI 

1956 71.487393 -146.229474 2021-03-09T18:09 GPRI 

1945 71.489732 -146.361792 2021-03-10T11:25 GPRI 

1948 71.497377 -146.367242 2021-03-10T11:47 GPRI 

Table 1. VWSG deployment dates, positions, and installation orientation. 

 Post-processing the VWSG data requires assumptions to be made regarding what 

is considered zero dynamic stress. While it is readily apparent from the calibration when 

the steel cylinder is experiencing no stress, this is likely not equivalent to the surrounding 

ice experiencing no dynamic stress. The principal challenges are accounting for the stress 

already in the ice at the time of deployment, particularly thermal stress, which is relieved 

immediately around the sensor by the drilling/installation, and the stress created locally 

during sensor freeze-in as expansion of water during solidification results in high stress 

immediately around the sensor. The installation process, therefore, creates sensor 

readings not reflective of the surrounding ice state until several days or weeks later when 

creep relieves the local stress gradients. It is necessary to adopt a method to correct the 

data to a uniform baseline stress. If the ice were under no stress, it would be simple to 

wait until the observed stress had approached zero before considering measurements 

usable. Unfortunately, thermal and dynamic stresses were already in place and continue 

to evolve across the time period that freeze-in and pre-existing stresses relax. All methods 
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we are aware of for implementing the re-zeroing correction are imperfect and we have 

lower confidence in the absolute stress than in the relative stress changes from one time 

to the next, which are resolved with high accuracy. 

 

Figure 3. Stress vs. time without residual stress correction.  

A common approach used by prior authors to re-zero sensors has been to visually 

select two “zero stress” times at the beginning and end of an experiment to calculate a 

linear fit and remove this from the stress record[12], [21]. Richter-Menge and Elder 

chose to use the wire readings at 0 kPa, 0°C at the beginning and end of the field 

experiment and apply a linear fit to that data, defining the time of 0 kPa readings as a 

period with no ice motion and no significant temperature change. We employ a slightly 

more sophisticated method, which reduces the absolute stress dependence on the 

particular zero-stress points selected. Instead of two points, it relies on the presumption 

that sensors return to a state of zero dynamic stress many times across the record and 

spends a significant percentage of time at this modal stress state. Here we use the 20th 
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percentile stress, effectively assuming the ice spends 20% of time at stresses below this 

(i.e. in tension). Sites will likely spend more or less time in a state of tension, but since a 

significant amount of time is spent at the modal stress, the determined modal zero point is 

not particularly sensitive to the threshold chosen. Visual analysis of the data confirms that 

our chosen percentile approximates the line of most frequent stress. 

 

Figure 4. SIDEx data corrected assuming each wire spends 5% of time in tension 
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Figure 5. SIDEx data corrected assuming each wire spends 12.5% of time in tension 

 

Figure 6. SIDEx data corrected assuming each wire spends 20% of time in tension 

A Mohr-Coulomb failure envelope was generated using the VWSG stress 

measurements. This was done to test whether observed stresses are consistent with the 

hypothesis that compressive shear faulting operating at low confinement biaxial 

compression is the dominant failure mode of sea ice, [9]. We follow the same method as 

Weiss et. al 2007 [3], apart from our data convention setting compressive stress be 

positive and tensile stress be negative. We plot the failure envelope using 2 different 

methods. For the first, the primary and principal stress are plotted against each other (p 

vs. q), and then plotted again inverted (q vs. p) (Figure 7). The upper and lower 

Coulombic boundaries drawn on the figure are:  

𝐵𝐵𝑈𝑈1 =  𝜎𝜎𝑐𝑐 + 𝑚𝑚𝑚𝑚                                                                                                                (6) 

𝐵𝐵𝐿𝐿1 =  (𝑝𝑝− 𝜎𝜎𝑐𝑐)
𝑚𝑚

                                                                                                                     (7) 

Where 𝐵𝐵𝑈𝑈1 and 𝐵𝐵𝐿𝐿1 denote the upper and lower boundaries, respectively, of the 

Coulombic failure envelope in principal stress space. Any point outside of these bounds 
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implies mechanical failure of the ice. p is the primary principal stress, q is the secondary 

principal stress, 𝜎𝜎𝑐𝑐 is the uniaxial compressive strength of ice, and m is the 

experimentally determined slope of the low-confinement segment of the failure envelope 

as calculated by Schulson et. al, 2006 [24]. 𝜎𝜎𝑐𝑐 was held at 250 kPa as in Weiss et. al, and 

m was set to be 5.2. 

The second method was to plot the pressure (eq, 8) vs. the maximum shear stress 

(eq. 9) (Figure 8).  

𝜎𝜎𝑁𝑁 = (𝑝𝑝+𝑞𝑞)
2

                                                                                                                         (8) 

𝜏𝜏   = (𝑝𝑝−𝑞𝑞)
2

                                                                                                                         (9) 

Here, the Coulombic boundaries are: 

𝐵𝐵𝑈𝑈2 = 𝜏𝜏0 − 𝜇𝜇𝜎𝜎𝑁𝑁                                                                                                              (10)  

𝐵𝐵𝐿𝐿2 = −𝜏𝜏0 + 𝜇𝜇𝜎𝜎𝑁𝑁                                                                                                            (11) 

Where 𝐵𝐵𝑈𝑈2 and 𝐵𝐵𝐿𝐿2 denote the upper and lower boundaries, respectively, of the 

Coulombic failure envelope, under normal stress and shear stress. Here,  𝜏𝜏0 is the 

cohesion of the material and 𝜇𝜇 is a friction coefficient. These were set to be 40 kPa and 

0.7, respectively, in accordance with Weiss et. al. 
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Figure 7 (top). Mohr-Coulombic failure envelope plotted as p vs. q. 
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Figure 8 (bottom). Mohr-Coulombic failure envelope plotted as 𝜎𝜎𝑁𝑁 vs. 𝜏𝜏. 

 

3.3  Strain Measurements 

Sensors of multiple types were deployed at SIDEx to characterize strain. These 

sensors had varying spatial and temporal resolutions and provide unique accounts of pre-

fracture and post-fracture deformation. Strain measurements were obtained by two Leica 

Nova TM50 high precision automated total stations [25], a GAMMA Portable Radar 

Interferometer II (GPRI) [26], and 12 SATICE GNSS Buoys [27]. The Leica TM50 

along with an array of retroreflectors installed on steel posts provided laser strain 

observations and is commonly referred to as the Laser Strain Observing system (LSO). 

The LSO measures sub-mm scale deformation on prismatic reflectors spaced in an array 

around a central scanner. 2 LSO stations were deployed, one at the Main Camp and the 

other at the SIDEx backup tent area, hereafter referred to as East Camp, with 64 

reflectors spread throughout a roughly 6km2 area. Some reflectors were targeted by both 

scanners so that results are collocated and merged into a single dataset. The GPRI is 

another instrument capable of measuring small-scale deformation, as it can resolve shifts 

on the order of 0.1mm at 1 km [26]. The GPRI is a Ku-band (17.2 GHz, 1.74cm 

wavelength) radar that scans and measures backscatter from geographical features within 

a set radius. These scans are analyzed to determine phase changes in backscatter from 

one time to the next over a roughly 5-minute cycle. The observation radius was initially 

8.4km from March 5th to March 14th but was adjusted to 4.2km on March 14th at 19:20 

UTC. 12 geodetic-quality GNSS buoys offered a larger-scale view of deformation with 

the best temporal resolution available. These buoys recorded one GPS measurement per 
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second and provide valuable information during the periods when the LSO and GPRI are 

scanning. 

 

 

Figure 8. Map of the LSO reflectors with the Main Camp (MC) and East Camp (EC) LSO 

scanners marked in red. 

 

3.4 Satellite Imagery 

The three primary satellite imagery sources used in this report are Maxar-Digital 

Globe Worldview (WV), RADARSAT Constellation Mission (RCM), and COSMO-

SkyMed imagery. WV imagery constitutes the baselayer of most LSO and VWSG plots 

showing the spatial distribution of data. RCM is comprised of 3 satellites that used C-

band SAR (5.405 GHz) to capture large scale images with a resolution between 3 and 
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100m depending on the mode used. RCM is used to analyze ice motion at the multi-floe 

scale, providing insight into the floe-floe interactions between the Camp, East, North, and 

West Floes, along with their respective sub-floes. TerraSAR-X and COSMO-SkyMed 

satellites were used to obtain high spatial resolution images multiple times per day. The 

TerraSAR-X satellite provided a stripmap mode SAR over camp, generating twice daily 

images at 3m resolution. COSMO-SkyMed provided twice daily spotlight mode imagery 

at a 1m resolution. Stripmap mode provides an uninterrupted image over a fixed swath of 

terrain as the antenna maintains a fixed angle and position over its track. Here some of 

the smaller cracks cannot be observed, but the geographical context is much better 

preserved. Spotlight mode provides a higher resolution view of a specific area as the 

antenna changes angle to increase the effective synthetic aperture length, while 

sacrificing the overall image size, and precluding continuous imaging along a track. 

Stripmap was more likely to capture the camp location and context around it reliably. 

Spotlight mode provided better detail, but with high risk of missing the camp altogether if 

drift forecasts were incorrect, resulting in tasking the wrong area. Each mode is used in 

tandem with the others to best explain SIDEx fracture events. SAR images were 

combined in this report with GPRI annotated fractures and VWSG stress data to provide 

visualizations of ice stress-strain during fracture. 

 

4. Results 

4.1. Temporal Variability of Stress 

The SIDEx data shows high temporal variability. Periods of elevated, highly variable 

stress commonly lasted several days. As Richter Menge et al. found for similar periods of 
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high frequency activity, these periods are likely primarily driven by ice dynamics. The 

dynamically active periods (DP) are separated by low activity periods (LP), during which 

smaller, smoother, and often diurnally cycling stress signals are observed. The smooth 

signal is likely associated with only thermal expansion or contraction stress. DPs 

generally occurred around times when SIDEx strain sensors detected a fracture on or near 

the floe. We identify a DP as a range of time where two or more ‘stress events’ occurred 

within 30 minutes of each other, without a 30-minute calm period on either side. ‘Stress 

events’ occur when any sensor experienced a stress change of 15 kPa in one minute. DP 

status was calculated for each minute between 14 March and 24 March. The average 

duration of a DP was 1.73 +/- 2.56 hours, with a maximum of 9.45 hours. LPs lasted an 

average 3.20 +/- 9.11 hours, with a maximum of 59.48 hours. 

Three periods that included known fractures around stress DPs are analyzed in this 

paper. These are: 

1. 14:30 – 17:30 UTC, 14 March 2021 

2. 12:00 UTC, 15 March 2021 – 01:00 UTC, 16 March 2021:  

3. 01:30 UTC, 19 March 2021 – 06:00 UTC, 20 March 2021: 

These will henceforth be referred to as Fracture Period 1 (FP 1), Fracture Period 2 

(FP 2), and Fracture Period 3 (FP 3). The temporal heterogeneity of stress can be seen 

through the variability of stress events that occur in each period. For each stress event, a 

power index (PI) accounting for both the number of sensors surpassing the +/- 15 kPa 

threshold and the total magnitude of stress change was calculated according to (eq. 12). 

𝑃𝑃𝑃𝑃 =  ∑ (𝑑𝑑𝑑𝑑𝑖𝑖)1.5

100
𝑛𝑛
𝑖𝑖                                                                                                                (12) 
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Here n is the total number of sensors that recorded a >15 kPa change and 𝑑𝑑𝑑𝑑𝑖𝑖 is the stress 

change of the ith sensor within that group. During FP1 there were 19 stress events. An 

average of 3.00±1.11 sensors crossed the event threshold with an average PI of 

5.90±6.93. The maximum PI for FP1 was 32.02. There were 148 stress events for FP2, 

with an average sensor count of 2.03±1.53 and an average PI of 5.38±9.56. The 

maximum PI for FP2 was 68.30. FP3 saw 327 stress events, with an average sensor count 

of 3.04±3.45 and an average PI of 4.67±8.13. The maximum PI of FP3 was 81.32. 

The degree of correlation between consecutive measurements in our stress record 

is important to understanding which process dominates the overall signal. Thermal 

stresses tend to be well correlated because they typically consist of a smooth diurnal 

signal (Figure 13). Dynamic stresses tend to have sharp temporal deviations and exhibit 

lower correlation (Figure 12). Temporal autocorrelation analysis was used to determine 

the predictive power one measurement has over consecutive measurements (eq. 13). 

Across the 10-day record we find the signal correlated to 0.92 after 3 hours, 0.87 after 6 

hours, 0.80 after 9 hours, and 0.76 after 12 hours.  
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Figure 10. Temporal autocorrelation from 14 March to 24 March. 

Over periods which included DPs and LPs, the overall correlation maintains a higher 

correlation like that of a LP. Such a trend can be seen in a 3-day period from 12:00, 15 

March to 12:00, 18 March, which included both FP 2 and the proceeding low-dynamic 

activity period (Table 2). While the 3-day correlation maintains a similar value to the 

correlation during the LP, the correlation during FP 2 dips sharply. This is due to the 

higher prevalence of high-frequency events over that period. Since the 10-day period 

maintains a correlation similar to that of a period with minimal dynamic activity, we 

believe thermal stresses dominate the overall stress signal from 14 March to 24 March. 
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 3-hour 6-hour 9-hour 12-hour 

10-day period (03/14 – 
03/24) 

0.92 0.87 0.80 0.76 

3-day case study (12:00 
03/15 – 12:00 03/18) 

0.92 0.88 0.82 0.78 

Fracture Period 2 (12:00 
03/15 – 01:00 03/16) 

0.73 0.61 0.58 0.53 

Intra-FP2 LP segment 
(06:00 03/17 – 12:00 
03/18) 

0.95 0.89 0.84 0.79 

 
Table 2. Temporal autocorrelation values for 10-day duration, with a case-study of a 3-

day period from 12:00, 15 March to 12:00, 18 March. 

 

 

Figure 11 (top). Temporal autocorrelation from 12:00, 15 March to 12:00, 18 March 

Figure 12 (middle). Temporal autocorrelation during FP 2 
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Figure 13 (bottom). Temporal autocorrelation during Inter-FP2, from 06:00, 17 March 

to 12:00, 18 March 

 

4.2. Spatial Correlation 

A spatial correlation analysis was used to assess the degree of spatial coherence in the 

primary principal stress magnitude and test the influence of floe integrity and ice 

thickness on stress coherence. Pairwise correlation coefficients were calculated between 

each VWSG pair and then for each VWSG and the average stress from 14 March to 24 

March. The average correlation between sensors was 0.408 with a standard deviation of 

0.258 (Table 3). The maximum correlation was 0.958 and the minimum was -0.316. 

Unsurprisingly, we find that the degree of correlation was affected by the ice integrity 

between pair members. Sensors on the Camp North floe (1956, 1975, 2511, and 2513), 

for example, were separated from the sensors on the Camp East, Central, and West 

(Camp ECW) floes by an WNW-ESE fault located ~1km to the North of camp after 14 

March. The 10-day average correlation between North Floe sensors was 0.933 (Table 4), 

and the correlation between Camp ECW sensors was 0.435. The correlation between 

sensors on Camp North with the sensors on Camp ECW was only 0.293. The lower 

correlation on Camp ECW compared to Camp North is likely due to the difference in 

fracture activity within the two floes. Camp ECW experienced many fractures over this 

period, whereas Camp North experienced no fractures through the sensor array until 19 

March, none of which separated the sensors on this floe (Figure 2). The low correlation 

between the sensors on the two floes is expected; the fracture separated the two for 

almost the entire experiment duration. 
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Type Avg. Correlation Standard 

Deviation 

Maximum Minimum 

Sensor to Sensor 0.408 0.258 0.958 -0.316 

Sensor to Stress 

Average 

0.635 0.179 0.842 -0.848 

 

Table 3. Correlation coefficients between sensors and between each sensor and the stress 

average. 

 
Table 4. Average correlation coefficients for sensors on Camp ECW and Camp North. 

The correlation between sensors on Camp ECW also changes with respect to time as 

the floe breaks up. During DP 1 Camp ECW was a contiguous floe. The sensors on it had 

an average correlation of 0.675, compared to 0.309 during DP 2 and 0.334 during DP 3, 

when fractures had broken up Camp ECW. We also see inverse correlations between 

sensors on adjacent floes during some events. This is consistent with fracture relieving 

stress on one floe while transferring it to another; we hypothesized that we would see this 

behavior of changing floe geometry and contact adjusting stress pathways through the 

ice. This can be seen both during DP 1 and over the full 10-day period between V1988 

and the other sensors. For DP 1, sensors on Camp North had an average correlation with 

each other of 0.982 and an average correlation with Camp ECW sensors of -0.571. We 

Location Sensor 
Quantity 

Sensor-
Sensor Corr. 

Corr. w/ 
Average Stress 

Corr. w/ 
Camp 
sensors 

Corr. w/ 
North 
sensors 

Camp 
ECW 

26 0.416 0.626 0.435 0.293 

Camp 
North 

4 0.379 0.694 0.933 0.293 
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hypothesize that this occurred because the far field stress that was transmitted through the 

ice moved through a chain of contacts that included Camp North but not Camp ECW. 

While Camp North experienced primarily dynamic stresses during this time, Camp ECW 

experienced primarily thermal stresses, appearing to be temporarily uninvolved in far 

field stress transfer. The stress at sensor 1988 had an average correlation with all other 

sensors of -0.152 over the 10-day period with a maximum of 0.076 and a minimum of -

0.316. This unique behavior appears to be due to contact geometry. 1988 was located at a 

contact point between the Camp Central 1 and Camp Central 6, on an asperity that also 

extended below Camp Central 5 and above Camp Central 7. 

We find that the average correlation of each site to the average stress (0.635 +/- 

0.179) is stronger than the correlation between sensors. This is similar to the correlation 

found by Richter Menge et. al [18] (0.65 +/- 0.14) during the SHEBA field experiment 

and supports their hypothesis that the average stress is a better representation of regional 

stress than any individual sensor. The high degree of variation between our sensor 

observations and the spatial correlation of those on the same floe, however, suggests that 

determining a representative regional stress may require sampling on multiple floes over 

a larger area than this, or other prior studies, have executed. 

Camp ECW, which exhibited lower stress correlation even prior to fracture, had 

higher thickness variability. Because of this, we tested the relation between average stress 

and ice thickness at each site (Figure 14). The correlation was found to not be statistically 

significant with a p-value of 0.103. 
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Figure 14. Correlation between the ice thickness and average stress at each site. 

 

4.3. Fracture Period Analysis 

4.3.1. Pre-Fracture Period History 

Prior to the events we observed and discuss below, the ice floe had undergone 

considerable prior deformation. Immediately preceding the experiment, however, the ice 

had an opportunity to bond back into a contiguous, if flawed, sheet. During the 9-day 

period from 22 February to 3 March ice motion in the Beaufort Sea all but ceased in this 

area under cold, nearly windless conditions. There were no open leads and few recently 

fractured leads visible in the ~100km scale region during our scouting missions to locate 

a suitable floe for the experiment (28 February - 4 March). GPS data from our floe 

indicated that ice motion resumed on 4 March, beginning a westward drift that continued 
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until 9 March. During this time fast ice detached from shore along the entire southern and 

eastern Beaufort coastline all the way from Point Barrow to to Banks Island. This motion 

caused many parallel large scale leads/shear lines, here referred to collectively as Linear 

Kinematic Features (LKF), to form between 3 March and 5 March. These were oriented 

from SSW to NNE, and individual members of the LKF set were situated several km both 

east and west of the camp. Southward drift followed from 10 March to 12 March 

compacting the ice against the coast. At this time the East and West Floes were separated 

by leads on either side of the Camp Floe (Figure 15). On 13 March westerlies resumed, 

continuing through the start of the first observed fracture period, when fractures began 

passing through the camp floe. 

 

4.3.2. Fracture Period 1: 14:30 – 17:30, 14 March 

Fracture Period 1 (FP 1) consists of a dynamic period during which a fracture 

starts WNW of camp and propagates ESE across the Camp + Camp North Floe, 

separating the two (see Figure 2 in Methods section for floe naming). The fracture 

occurred during a period of larger scale motion in the Beaufort Sea, which exerted shear 

in the floe area. The stress observations, together with remote sensing imagery, appear to 

indicate that large scale shear brought the Camp + Camp North Floe into contact with its 

neighbors at a small portion of its perimeter. This local contact concentrated far field 

stress across only a portion the floe, resulting in fracture and subsequent deformation.  

RadarSAT and Cosmo SkyMed imagery show the context of the floe and its 

neighbors. The ice west of camp moves NE between 13 March (Figure 15) and 16 March 

(Figure 16), resulting in a right lateral shearing along the western LKF. Meanwhile, the 
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LKF east of the camp also exhibits right lateral shear as ice to the east moves south, 

closing a previously open lead. Total shear over the three da period on the western LKF 

is approximately 3km, while total shear on the eastern LKF is approximately 1km. 

 

Figure 15 (top). RadarSAT image taken on 15:50, 13 March with features highlighted. 

Motion arrows indicate motion relative to the camp center point, the entire field of view 

is also moving WNW. Shear can be seen by relative displacement of components of the 

three zones. 
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Figure 16 (bottom). Cosmo-SkyMed image taken on 14:49, 14 March. Ice movement is 

noted by blue arrows. The green lines denote leads. 

The sides of the lead come into compressive contact on 13 March along a section 

about 2km in length approximately 6.5 km to the east of camp, and ridge building was 

noted at this location during reconnaissance flights (Figures 15, 19). The closure of the 

west LKF also occurs sometime late on 13 March or early on 14 March to the NNW of 

camp. Compression between these points, coupled with ongoing shear appears to be the 

cause of a fracture forming from just south of the west contact point to the east contact 

point; a zone we would expect to be experiencing tensile stress.  
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Figure 17 (top). Regional context around the Camp Floe at 22:38, 13 March. 
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Figure 18 (middle). East and west contact points at 14:49, 14 March. 
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Figure 19 (bottom). East contact point at 14:49, 14 March 

This hypothesized mode of fracture, and propagation from a high tensile stress 

area in the west toward the east is supported by the morphology of the crack; it was 

observed to open more widely to the west. GPS buoys indicate a clockwise rotation of the 

North Floe occurred post-fracture (relative to Camp Floe) with the crack widening to the 

west (Figure 20).  The fracture initiation and propagation were also further captured by 

the GPRI. An interferogram calculated between 15:15 and 15:30, 14 March first shows a 

discontinuity in the fringe pattern associated with a fracture entering the field of view 

from the west (Figure 21). The discontinuity then propagated WNW-ESE through the 

array sometime during the interferogram calculated 15:30 and 16:00, 14 March (Figure 

22).  
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Figure 20. Crack displacement visualized in Cosmo-SkyMed SAR imagery on 04:21, 15 

March. 

 

 

Figure 21 (left). GPRI interferograms calculated between 15:15 and 15:30. 

Figure 22 (right). GPRI interferograms calculated between 15:30 and 16:00 

We are interested in examining the stress state in the ice at the time of this failure. 

Based on our understanding of the geometry of the event, sensors to the north of the 

crack were in a stress transfer pathway between the two contact points that were in 

compressive shear. We see relatively little stress in the Camp ECF or Camp North Floes, 

and very little change in stress (<10kPa) during the time that the fracture first began 

propagating in the GPRI data; however, this early fracture propagation was well outside 

the stress observing array. Beginning on 15:58, 14 March we see an abrupt change in 

stress state within our sensing array. Sensors to the north of the fracture on Camp North 

experience large increases in compressive stress, and those south of the fracture on Camp 

ECF experience a modest decrease in compressive stress.  Stress increased observed at 
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sensors 1956, 1975, 2511, and 2513 in Camp North were oriented at a 16° incline to the 

crack (Figure 23).  

 

Figure 23. Stress change from 15:58 to 15:59, 14 March. 

 To assess if this incline is reasonable, we transformed the stress into a coordinate 

system parallel to the crack, using planar stress transformation equations. 

𝜎𝜎|| =  𝑝𝑝+𝑞𝑞
2

+  𝑝𝑝−𝑞𝑞
2
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 +  𝜏𝜏𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃                             (13) 

𝜎𝜎⊥ =  𝑝𝑝+𝑞𝑞
2
−  𝑝𝑝−𝑞𝑞

2
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 −  𝜏𝜏𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃            (14) 

𝜏𝜏𝑥𝑥′𝑦𝑦′ =  −  𝑝𝑝−𝑞𝑞
2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 + 𝜏𝜏𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃             (15) 

Where 𝜎𝜎|| is the normal stress parallel to the crack, 𝜎𝜎⊥ is the normal stress perpendicular 

to the crack, and 𝜏𝜏𝑥𝑥′𝑦𝑦′ is the shear stress along the ice boundary. 𝜃𝜃 is considered positive 

counterclockwise relative to the original p-stress orientation. Averaging the Camp North 
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sensors together, p was 78 kPa, q was 29 kPa, and 𝜃𝜃 was 16°. This yields a 𝜎𝜎|| of 75 kPa 

and a 𝜏𝜏𝑥𝑥′𝑦𝑦′ of 13 kPa. Since both the west and east LKF were experiencing right lateral 

shear, this stress state is reasonable and agrees with regional-scale ice movement. 

The stress orientation in the Camp North Floe remained constant for the duration 

of FP 1, indicating that the WNW-ESE compressive shear persisted between the contact 

points. While the Camp North Floe experienced large and variable dynamic stresses from 

15:58 to 17:30 (the duration of FP 1), the Camp Floe experienced very little stress. The 

Camp Floe was not in contact with the either the West or East Floe at this time, resulting 

in the Camp North Floe taking the full load. Concentration of stress between geometric 

contact points is clearly loading the ice heterogeneously, resulting in a deviation from 

continuum behavior at this scale.  

The stress signal from the North Floe sensors indicate that hardening was 

occurring at one or both contact points while undergoing compressive shear. The signal 

displays a quickly fluctuating stress superimposed over an increasing stress (Figure 24), 

angled slightly to the crack. The period is highly active; 18 stress events occurred during 

this time compared to only 3 events in the 16 prior hours. This indicates that ice was 

failing at the contact points since no other fractures were seen in this pathway, likely due 

the contact geometry between floes. As the ice continued to rotate, narrow regions of the 

floe were in contact with other bodies (Figures 18, 19). We speculate that this caused the 

ice in contact with the loading body to fail, resulting in a partial unloading of stress 

throughout the floe. The average stress magnitude also increased, indicating the pack was 

strengthening (the weaker ice was being removed, leaving behind stronger ice). Stress in 

the North Floe increased from an average 44 +/- 4 kPa to 108 +/- 13 kPa over the 92 
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minutes, reaching a peak stress of 182 kPa at 17:15. This coincided with a 1.8° clockwise 

rotation of the North Floe, calculated from GPS buoys. We speculate that as one layer of 

ice failed, the continued rotation caused the next layer of ice to have a broader contact 

geometry. As the contact geometry broadened, stress was distributed over a larger area, 

permitting a larger overall load to be seen throughout the North Floe. This pattern 

continued from the fracture propagation through the end of FP 1. 

 

Figure 24. Stress vs. time during FP 1. 

 

4.3.3. Inter-FP 1: 17:30, 14 March to 12:00, 15 March 

The time between Fracture Periods, referred to as Inter-FPs, are discussed to provide 

context to each period, although no fractures occurred within the sensor array during 

either Inter-FP 1 or Inter-FP 2. The behavior of Inter-FP 1 is largely similar to the final 

hour of FP 1. Stress events continued to occur in the North Floe until around 09:00, 15 

March. This intermittent period was omitted from the FP 1 because no new fractures 
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were observed in the local area. Instead, Camp North continued to experience high-

frequency stress events from the progressive failure at the west and east contact points 

between Camp North and the East Floe and West Floe. The lead separating the Camp 

Floe from the North Floe does not close until the beginning of FP 2, meaning no floe-floe 

interaction occurred between these floes within the array. The Camp Floe sensors record 

primarily thermal stress for the duration of this period, and do not observe stress events 

until FP 2 begins. 

 

 

Figure 25. Stress vs. time during Inter-FP 1. 

 

4.3.4. Fracture Period 2: 12:00, 15 March to 01:00. 16 March 

Fracture Period 2 (FP 2) occurs around a time when extensive breakup and shear had 

occurred throughout Camp South and Camp West floes. The ice had resumed a westward 

drift and there was little differential movement of the West and East Floes relative to the 

Camp Floe. During this time a fracture propagated S-N through the sensor array, 
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separating Main Camp from the Camp East and the Camp West and Camp Central floes 

from Camp East. Camp Central was broken into 5 smaller floes at this time. Sensors 

1976, 1988, and 2518 were located near asperities along the fracture and recorded high-

frequency, high-magnitude stresses as the Camp Central floes collided with each other 

and Camp East. Stress pathways in this environment are seen to be localized and can 

change rapidly, alternating high loads at different asperities on the order of minutes. 

The Cosmo-SkyMed image taken on 14:49, 14 March (Figure 16) shows a 

regional context similar to 21:46, 16 March. Features on each floe appear to be in the 

same position, indicating large-scale sliding had stopped near the start of FP 1.  

Many new cracks propagated through the Camp Floe from the end of FP 1 to the 

end of FP 2. Most of these cracks were kilometers from the sensing array, with the largest 

cracks propagating N-S from the south tip of Camp South, through Camp West, and into 

the West Floe (Figure 26). Camp Central and Camp East saw cracks propagate NE from 

Camp South and NW from the East Floe-Camp East contact zone. Evidence of shear can 

be seen throughout Camp East. This period precedes a majority of Camp East being 

sheared off the Camp Floe during FP 3, resulting from a continued left lateral shearing 

along the Camp East-East Floe boundary. 
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Figure 26. Crack positions in the Camp Central and Camp East floes from a 21:47, 16 

March WV image. 

During FP 2 multiple fractures propagated through the stress array. The GPRI 

records the first crack propagation between 16:52 and 17:04, while the LSO records cm-

scale displacement at reflectors on or near Camp East, Camp Central 7, 8, and 9. 
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Figure 27 (left). GRPI interferogram calculated from 16:52 to 17:04, 15 March. 

Figure 28 (right). LSO reflector movement from 16:55 to 17:06, 15 March.  

Little dynamic stress change occurred at the time when the GPRI and LSO 

observed the fracture. There were multiple stress events preceding the crack propagation. 

The VWSG array records a decrease in stress in Camp East and Camp Central 1 at 16:45 

and continues decreasing until 17:11, including a sharp decrease at 16:49.  

 



 

 49 

 

Figure 29. Stress change from 16:43 to 16:50, 15 March. 
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Figure 30. Timeseries stress record of FP 2 with an inset of the FP 2 initial fracture 

Stress is largely unchanged after this event until 17:16 when the southern region 

of the stress array is reloaded. This is followed by a period where we see high-magnitude, 

high-frequency stress events alternating between sensors 1976, 1988, and 2518 along the 

N-S fault separating the Main Camp from the East Camp. Each of these sensors were 

located on or near asperities that were contact points between local floes. The behavior is 

particularly notable in a large loading and subsequent unloading of the 1988 sensor over a 

10-minute period starting at 22:33 seen in the inset plot of figure 32. Starting at 22:31, 

stress increased to ~600 kPa over a 4-minute period. During this time the stress is 

oriented nearly parallel to the crack and towards Camp Central 7, which we believe to 

have caused this load pattern. Local movement between floes was recorded by the LSO 

during this time (Figure 33). We speculate that Camp Central 8 collided with Camp 

Central 7 to the south, causing a compressive stress pathway running parallel to the crack. 

The LKF separating Camp North from Camp ECF had closed at this time, creating a 

boundary for compression to occur. During this time the secondary principal stress a 

mere 3.1 kPa, indicating that minimal stresses were propagating orthogonal to the crack. 
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Figure 31. Stress change from 22:33 to 22:37, 15 March. 

Over the next hour we saw the rapid unloading of one of the three asperity 

sensors, followed by the loading of another, maintaining at least one sensor above 150 

kPa for 50 minutes.  
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Figure 32. Stress vs. time of FP 2 with an inset of the 22:34-23:40 series of stress events 

 

Strain observations from the LSO help explain what occurred during this period 

(Figure 33). A line of reflectors running N-S along the fracture experience displacement. 

Each of these reflectors were located west of the N-S running crack and show that Camp 

Central 6 moved eastward while Camp Central 7 moved northward.  
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Figure 33. LSO reflector movement from 22:13 to 22:54, 15 March. 

This movement appeared to induce shear stress along the eastern Camp Central 1-

Camp Central 6 boundary. Following the 22:33-22:43 stress events, the contact geometry 

shifts at 22:55 to sensor 1974, recording a 174 kPa stress increase over a 4-minute period 

(Figure 34). Transforming the stress into a coordinate system relative to the crack, we 

find that the normal stress orthogonal to the crack was 70.6 kPa and the shear stress was 

93.6 kPa, indicating a right-lateral compressive shear. 
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Figure 34. Stress change from 22:55 to 22:59, 15 March 

Immediately following this, 1974 unloads and 1988 increases in stress by 182 kPa 

from 22:59 to 13:05 (Figure 35). The orientation changes at this time to a left-lateral 

compressive shearing at the 1988 asperity, showing a quickly evolving environment as 

larger floes reorient the smaller Camp Central 6 and Camp Central 7 floes. The normal 

stress orthogonal to the crack was found to be 208 kPa, with a corresponding shear stress 

of -58 kPa. The ice then begins unloading until 16 March when the asperities once again 

experience alternating high loads through the end of FP 2 at 01:30, 16 March. 
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Figure 35. Stress change from 22:59 to 23:03, 15 March 

 

4.3.5. Inter-FP 2: 01:00, 16 March to 01:30, 19 March 

Inter-FP 2 takes place during a time of southwestward drift that is pushing the ice 

against the coast. During this time the ice experiences minimal dynamic stress, containing 

a 56.52-hour LP. Stress events were mostly isolated to V1988, where the dynamic stress 

remains active until 04:00, 17 March. Stress fluctuations observed by the array are mostly 

smooth and gradual, with a diurnal periodicity consistent with thermal stresses until the 

beginning of DP 3. No fractures were observed within the sensor array during this time. 
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Figure 36. Stress vs. time during Inter-FP 2. 

 

4.3.6. Fracture Period 3: 01:30, 19 March to 06:00, 20 March 

Fracture Period 3 consisted of a sustained southwestward drift, resulting in the 

compaction of the Camp Floe. During this time the Camp East 2-East Floe boundary 

underwent left-lateral shear, progressively removing the highly fractured ice to the east 

while placing Camp Central in contact with the broken up Camp South. This resulted in 

S-N fracture propagation through the array, causing Camp Central to be comprised of 10 

individual floes. The stress array observed a S-N dominant stress orientation until the floe 

broke up around 02:00. Stress decreases and increases occurred uniformly at times, with 

the largest stress event by power index resulting from a floe-wide decompression event at 

17:35, 19 March.  The second largest stress event loaded Camp West while relieving 

Camp Central, East, and North. We observe the contact chain of ice changes rapidly as 
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the fraction of load-bearing ice changed quickly, sometimes on the order of minutes, 

during this time. 

MODIS imagery captures the southward drift and subsequent deformation of the 

Beaufort Sea ice cover. Large LKFs can be seen to propagate through the pack between 

14 March (Figure 37) and 18 March (Figure 38). 

 

Figure 37 (top). MODIS image of Southern Beaufort Sea on 21:55, 14 March. 

 



 

 58 

 

 

Figure 38 (bottom). MODIS image of Southern Beaufort Sea on 06:30, 18 March. 

 

One of these LKFs appears to extend through the Camp Floe, creating a ~2km-wide 

shear band to the SE of the stress array. This results in Camp East 2 being broken into 

smaller floes that connect the East Floe with Camp Central and Camp East at narrow 

contact points. 
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Figure 39. Aerial structure-from-motion image of floe deformation and cracks on 20 

March. 

The first fracture to propagate through the sensor array during FP3 occurred 

between 04:08 and 04:14, 19 March (Figure 40). The GPRI recorded this fracture 

propagating from Camp South through Camp North over a 4-minute period, partially 

reusing the LKF from FP 2 that separated Main Camp from East Camp. The stress 

change seen during this period was relatively small as the ice retained much of its load, 

oriented in the N-S direction. 
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Figure 40. GPRI interferogram calculated from 04:08 to 04:14, 19 March. 

 

Figure 41. Stress change from 04:09 to 04:10, 19 March 



 

 61 

Following this initial fracture, many additional cracks were recorded through the 

sensor array as the East Floe continues to contact Camp East and Camp South. This 

culminates in fractures later in the day which were recorded by the SIDEx strain arrays. 

SIDEx GNSS stations show differential movement beginning around 18:30 (Figure 42). 
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Figure 42. GNSS record of buoy position change during FP 3. 

The VWSG array observes decreases in stress that preceded the larger ice 

movement. At 17:35 a stress event occurred with the highest power index seen across FP 

1, FP 2, and FP 3. The event consisted of 23 sensors recording a stress change of over 15 



 

 63 

kPa, with a peak drop of 103.14 kPa across the minute. This results in a power index of 

81.3, considerably higher than the 4.8 power index of the FP 3 initial fracture. The stress 

change was mostly oriented in the N-S direction and was seen strongest to the north and 

east of camp. 

 

 

Figure 43. Stress release between 17:35 and 17:36, 19 March. 
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Figure 44. Stress vs. time of FP 3 with an inset around the 17:35 stress event. 

The second strongest stress event by power index during FP 3 came at 20:48. 

Here, Camp Central 6 and 7, Camp East 1, and Camp North 3 decreased in stress, while 

the rest of Camp Central and Camp West increased in stress. 16 sensors changed by more 

than 15 kPa, with a peak drop of 113.28 kPa. 
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Figure 45. Stress change from 20:48 to 20:49, 19 March 

Camp West records a stress increase, Camp Central mostly records a stress increase, 

and Camp East records a stress decrease during this time. Following the 20:48 stress 

event, the VWSG array saw a period of low dynamic stresses from 20:50 to 21:39. These 

events led to the breakup of the Camp Floe and the end of the manned SIDEx operation. 

The stress sensors were set up to operate remotely until an equipment recovery operation 

was launched later in April. 

 

4.3.7. Post-FP 3: 06:00, 20 March thru 00:00, 21 April 

After FP 3 the ice experienced many stress events and subsequent fractures. This period 

offers strong candidates for further exploration and should be the subject of future 

analysis. We have chosen to omit this from our discussion for brevity, and since the ice at 
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this time was fractured to the point that resolving the local deformation will require more 

time than is available for this thesis. 

In summation, the ice post-FP 3 continued its trend of dynamic activity being 

particularly strong for a couple of days, followed by thermally driven periods where the 

ice sees minimal dynamic stress. From 06:00, 20 March to around 12:00, 23 March 

sensor 1988 continues recording a high frequency of stress events relative to the other 

sensors. The rest of the ice maintains a mostly thermal signal up until 00:00, 22 March 

when ice-motion driven stresses appear to increase.  

 

Figure 46. Stress vs. time from the end of FP 3 to the conclusion of the experiment on 21 

April. 

 A particularly strong DP occurs from 10:00, 05 April to 03:00, 08 April (Figure 

46). Here, we observe that the range of stress during the 08 April LP (225 kPa) more than 

doubles from the 05 April LP (105 kPa), indicating an increase in residual stresses. This 

spread continues to widen through the rest of the campaign to over 300 kPa on 18 April. 

In future studies of this period, it will be important to resolve if this is an artificial result 
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of sensor drift or if it is reflective of the ice environment, which is not undertaken in this 

thesis. 

 

5. Discussion 

 

The three fracture periods analyzed in this study provide unique case studies of 

how contact geometry between floes is consistent with the stress state of ice. An 

important finding is that the fraction of sea ice loaded during any given time is highly 

variable and can rapidly alternate between contact points. We suggest that this result can 

be used to improve the current model representation of sea ice dynamics through refining 

how ice strength is parameterized. Continuum models seek to represent regional-scale ice 

deformation and stress as a bulk process, representing brittle failure and relative floe 

movement as aggregated nonphysical abstractions [2], [28]. These models are explicitly 

noted by the authors to not represent the scale of our study; they are designed to model 

processes much larger than our own. Additionally, new continuum models have been 

created that provide different parameterizations of ice failure and strength [29]–[32], 

seeking to better conform models to observations. We seek to contribute to these sea ice 

modeling efforts through our analysis of contact geometry-dependent sea ice stress and 

failure. 

 Models typically account for the observed difference in failure strength between 

ice in the field and in the laboratory by assigning a lower ice strength to the modeled 

environment. We observe that our SIDEx floe did not always behave as a continuum, 

often loading only a fraction of the floe. FP 3 shows this explicitly. During the 17:35, 19 
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March stress event the entire floe experienced a ~N-S decompression in stress, displaying 

uniform behavior over the 4.5km2 area. Later, during the 20:48 stress event, ice to the 

west of a fracture experienced compression while ice to the east decompressed, both of 

which were approximately oriented N-S. It appears that the strength of an ice floe is 

related to the proportion of its area that is in contact with another body and what the 

movement between those two are, which might be leveraged for refining 

parameterization. 

We also present further evidence of a “hardening” process occurring during FP 1, 

similar to findings at the regional scale [15], [18]. While consisting of a different 

mechanism than regional-scale hardening, where ice contact between ice floes is treated 

as an overall hardening of the abstracted pack, the “strain hardening” of a single floe 

displays similar behavior. A quickly fluctuating signal superimposed over an increasing 

signal reveals weak ice is being removed and stronger ice is taking the load. Such 

behavior has never been reported and linked to local deformation on the scale of ice floes. 

During FP 1 the Camp North floe rotated, forcing a narrow contact point to collide with 

the East Floe. The “weak ice” in our case was not FYI, as has been speculated in past 

studies. Rather, both MYI and FYI ice fractured at the narrow point (flyover by 

Polashenski and Mahoney). We recall that any material loaded beyond its yield strength 

will fail. During the floe rotation, even thick MYI experienced failure because a high load 

was applied to the entire first layer of ice. The failure of this layer of ice, and subsequent 

layers later, comprised the high-frequency component of the stress signal. The next layer 

of ice loaded was broader and could sustain a higher force as it provided a larger area. 
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This permitted the floe to increase in stress, resulting in the progressively increasing 

stress signal. 

Rapid stress attenuation, similar to the results found at CEAREx [12], was observed 

during SIDEx, particularly during FP 2. Our data appear to support the hypothesis that 

the difference between SIMI and CEAREx stress attenuation results was contact 

geometry [15]. At SIDEx the highest magnitude stresses came along the fracture 

separating Camp Central 1 from Camp Central 5 and 6. We observe that sensors 

experiencing the high-magnitude events are located at asperities along the boundary, 

creating a narrow contact geometry between floes that results in a highly localized load. 

None of the floe-floe interactions at camp were seen to cause stress propagation past the 

first layer of sensors. We speculate that this could be due to a lack of force by the 

colliding floe. During FP 1 and FP 3, far field stresses propagate through the sensing 

array due to large scale ice motion that caused extensive fracturing elsewhere in the 

region. During FP 2, the primary stress events analyzed were from local floe interaction. 

Our data support the hypothesis that contact geometry influences the degree of stress 

attenuation from a floe edge in sea ice. 

 

6. Conclusion  

Through this study we seek to fill a knowledge gap in the mechanical behavior of sea 

ice at the meter-to-kilometer (m-km) scale; the scale of ice floes. Technological 

limitations have inhibited contemporaneous stress-strain-fracture observations at this 

scale in the past. Models must currently use the fracture mechanics derived from 
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experiments at different scales to approximate kinematic interactions since observations 

are lacking. 

The Sea Ice Dynamics Experiment (SIDEx) was run from February 2022 to April 

2022 to collect these data using stress sensors, radar and laser interferometers, and 

satellite imagery of various spatial and temporal resolutions. We use the stress data from 

the experiment, collected using 31 Vibrating Wire Stress Gages (VWSG) installed over a 

4.5 km2 area, to describe the stress state before and after known fractures. 3 case studies 

of fracture events between 14 March 2021 and 24 March 2021 are presented. 

We find that contact geometry and floe-floe interactions drive ice fracture during 

each of the 3 fracture periods (FP) presented. During FP 1 and FP 3, far-field stresses are 

exerted on the Camp floe from contact points many kilometers away. The orientation of 

these stresses match known contact points between the Camp Floe and surrounding 

neighbors, and regional deformation can be used to explain the stress state. For FP 2, local 

deformation measurements are used to explain the high-frequency, high-magnitude 

stresses that occur near a crack that propagated through the array on 15 March. Stresses 

are shown to be highly localized in this environment and rapidly attenuate from the floe 

edges. We observe shear occurring on a local scale, following a peak compressive stress 

of over 600 kPa at a different location along the fracture, showing how local ice 

movement creates various loading conditions within minutes. In all cases, we observe 

contact geometry to be a critical component of ice failure and mechanical behavior at the 

scale of ice floes. 
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