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ABSTRACT 
 

The formation of harmful non-native protein conformers has arisen as a common thread in diseases like 
Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Atomic-level information on the dynamic alter-
ations which enable protein accumulation, and also the structural properties of large-scale organized aggre-
gation and soluble non-native oligomers, will considerably contribute to the present comprehension of 
these complicated processes and give prospective ways for limiting the development of cytotoxic species. 
Moreover, experimental restrictions frequently prevent the accumulation of high-resolution structural and 
mechanistic data for aggregating systems. Computational techniques, especially those that integrate all-
atom and coarse-grained simulations to cover a broad variety of time and length scales, have therefore 
emerged as critical tools for studying protein aggregation. Here we review the current status of computa-
tional methodology for the study of protein self-assembly, with a focus on the application of these methods 
toward an understanding of protein aggregates in human neurodegenerative disorders. 
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INTRODUCTION 

The transition of native proteins to partially unfolded 
and aggregated species has been involved in several 
human neurodegenerative disorders. In healthy peo-
ple, several quality control systems, such as endo-
plasmic reticulum-associated degradation and the ac-
tion of chaperones that process unfolded, misfolded, 
and aggregated proteins, prevent the creation of po-
tentially harmful aggregates. (1-3). In stressful situa-
tions or among elder people, insufficient capacity of 
quality control mechanisms may allow the aggregate 
formation to predominate and, eventually, to cross a 
pathogenic threshold. Furthermore, Aggregation can 
take place in the absence of significant cellular stress, 
even when a protein's native form is extremely 

thermodynamically advantageous (4). Aggregation 
preference is also determined by a protein's subcel-
lular location and accessibility to the numerous qual-
ity control mechanisms that sustain proteostasis (5). 
As a result, variations in the native structures as well 
as cellular microenvironments of intrinsically disor-
dered proteins and peptides, folded cytosolic pro-
teins, and membrane proteins account for their sig-
nificantly diverse aggregation inclinations(6). Protein 
aggregates are present in both amorphous (disor-
dered) as well as fibrillar (ordered) forms. One of the 
most common structural features found in ordered 
protein aggregates is the amyloid fold (7). Amyloid fi-
brils contain a characteristic cross-b architecture, 
which consists of b-strands running parallel to each 
other, but perpendicular to the direction of fibril ex-
tension (8). Amyloid aggregates can have a variety of 
gross morphologies, including twisted ribbons, 
sheets, tubes, and twisted ropes, depending on how 
the protofibrillar units are arranged (9). Even though 
the general tendency of numerous aggregation-prone 
proteins to establish amyloid is quite well-formed, 
there may be a growing consensus that neurotoxicity 
related to protein aggregation mainly tends to hap-
pen in lower-order disordered oligomers (soluble as-
semblies bigger than the native oligomeric state 
which might be pre-fibrillar intermediates or species 
not on the fibrillization route) examples of oligomers, 
protofibrils, and fibrils of amyloid-beta (Ab) peptide 
(10). These are some of the mechanisms proved to as-
sist initial phases of aggregation in connection with 
membranes, which can be resulting in membrane 
breakdown and consequent cell death (11). Prefibrillar 
oligomers produce non-specific ion channels at the 
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surface of a membrane during the process of protein 
misfolding (12); the resulting change in membrane 
permeability affects ion homeostasis, resulting in mi-
tochondrial dysfunction and impaired synaptic trans-
mission, between several other neurotoxic conse-
quences (13). Conformational features of disordered 
and pre-fibrillar oligomers of various neurodegener-
ation-linked proteins are discussed in more detail in 
the latter half of the review. 

Computational methods for studying protein mis-
folding and aggregation: 

Computational methods, particularly when inte-
grated with experimental methodologies, are becom-
ing more effective for characterizing changes in pro-
tein dynamics and identifying uncommon molecu-
lar processes that cause aggregation (14). In this part, 
we'll go through some of the most prevalent compu-
tational methodologies for studying protein aggrega-
tion, beginning with algorithms that predict aggrega-
tion propensity based only on amino acid series or in 
the circumstance of protein tertiary structure. Then, 
using molecular dynamics (MD) simulations, we ad-
dress methods for simulating protein aggregation 
and modeling aggregate structures, including ways 
for reducing the computational load of simulations 
including large polypeptides and long-time scales. 
Evaluation of protein aggregation sequence determi-
nants, the question is how amino acid composition in-
fluences aggregation propensity is highly relevant to 
protein design, as well as to our understanding of 
protein evolution and the pathogenicity of certain 
amino acid substitutions. Considering that hydropho-
bic interactions are a significant driving factor in pro-
tein self-assembly, it is predicted that a peptide with 
a higher hydrophobic content will lead to a higher ag-
gregation tendency, whereas a peptide with a net 
charge will prevent the aggregation. Furthermore, 
given the evidence for similar cross-b architecture in 
between amyloid fibrils of many proteins (15-20), a 
stretch of amino acids with a higher proclivity to 
adopt b-strand secondary structure would be pre-
dicted to increase fibril formation. Such physico-
chemical characteristics of amino acids constitute the 
foundation of the majority of the algorithms that pre-
dict either the rate or propensity of aggregation of dif-
ferent regions of a protein. Predictors are based on 
overall protein composition. The prediction of the ef-
fect of a point mutation on the aggregation kinetics of 
a protein was one of the earliest attempts to ration-
ally anticipate the influence of protein sequence on its 
aggregation propensity (21). Fitting the coefficients of 
an empirical formula to a collection of available data 
for the aggregation kinetics of 50-point mutations of 
human muscle acylphosphatase (ACP) in comparison 
to the wild-type protein provided the basis for this 
technique (Chiti et al., 2003). The empirical formula 
had been a linear equation that assimilate the shift in 
hydrophobicity, net charge, and an inclination for he-
lix-b-sheet transition following mutation. This is a 
simple version because it treats protein 

characteristics as a simple sum without taking the po-
sition of the mutation in the structure into considera-
tion. Furthermore, two of the three components of 
the equation, hydrophobicity and net charge, are 
strongly reliant on one another. Despite these limita-
tions, projections of aggregation rate alterations as-
sociated with 27 mutations in a range of disease-re-
lated and model proteins produced using this model 
have a statistically important association with exper-
imental results. This work emphasizes the im-
portance of amino acid physicochemical qualities in 
determining, to a significant extent, changes in aggre-
gation rate. The two constraints of this model, inter-
dependent terms and free parameter fitting, were 
solved in a more complex model developed by the 
Caflisch group (22). The components of their equation 
included changes in aromaticity, dipole moment, the 
ratio of accessible surface area, and b-sheet propen-
sity depending on the kind of mutation (e.g., polar to 
apolar or apolar to polar). This equation is more so-
phisticated than the basic linear relationship of chiti 
et al, but it lacks redundant terms and, more crucially, 
it lacks free parameters that must be determined by 
fitting the equation to a training set. Chiti et al 
model was expanded to estimate the absolute aggre-
gation rate by including external parameters such as 
ionic strength and pH at which aggregation occurs in 
vitro (23).  

Predictors of peptides in amyloidogenic proteins: 

These predictors are found on the conjecture of a 
well-folded beginning state and the amyloidogenic 
potential of a peptide inside a protein rather than 
simply across the complete protein. TANGO (24) is 
among the models that incorporate these require-
ments. Rather than a basic linear equation for the 
whole protein, the TANGO algorithm assumes that a 
specific amino acid location in a protein can pre-
sume four probable states: unfolded, turn, helix, or b-
aggregated. The probability of a specific residue ex-
isting within every state is determined by its second-
ary structure propensity, charge-charge interactions, 
and solvation penalty. TANGO deliberates the divi-
sion function of these various states to every residue, 
presuming that the likelihood of a polypeptide chain 
containing more than two amyloidogenic areas is in-
significant. This presumption restricts TANGO's ca-
pacity to predict the aggregation propensities of pro-
teins with more than 50 amino acids. To point out the 
reality that perhaps the folded state represents the 
beginning point of aggregation, the stability of the 
folded state is occupied into deliberation 
within the TANGO algorithm through Fold-X (25-28) 
computations. In practice, TANGO is extra effective 
for determining if a protein is going to aggregate than 
it is for estimating exact aggregation rates. Despite 
these limitations, TANGO proved successful in esti-
mating the expanse of these proteins that were ex-
perimentally known to be liable to aggregate in 
benchmark testing of disease-associated proteins 
and their variants. 
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Recent trends in computational approaches 

The latest extension of this approach is WALTZ (29), 
which, among other developments, significantly ex-
panded the peptide training set in order to reduce bi-
ases in the original algorithm that were attributed to 
the smaller training set. There are numerous other al-
gorithms in the same group of predictors of aggrega-
tion-prone stretches of amino acids in a protein, 
along with an extension of the indigenous technique. 
There is even a server that incorporates the results of 
multiple algorithms and provides a consent predic-
tion (30). An MD analysis of aggregation kinetics (31-34) 
reveals a two-phase procedure of fibril development, 
with largely disordered chains forming the contact 
interface, accompanied by structural transition and 
aggregation of b-sheet content. It also suggests a crit-
ical role of protein–solvent interactions in a-synu-
clein aggregation. Structures of fibrils have also been 
a focus of computer-assisted studies. Fibril rupture 
simulations accept AFM experimentations and sug-
gest the existence of extremely mechanically stable 
structures in a-synuclein fibrils with higher b-sheet 
content (34-39). 

CONCLUSION 

Protein aggregation was already associated with a 
number of neurodegenerative conditions, the causes 
of which are undefined, and there are no effective 
therapies for these disorders. In specific, the initial 
stage soluble oligomers are assumed to be more 
harmful, although their heterogeneity and transience 
frequently prevent experimental characterization, 
which might lead to the development of techniques to 
stop their gathering or toxicity. As a result, the high-
resolution structural, dynamic, and mechanistic in-
sights provided by computational studies of protein 
aggregation hold the special potential to allow the ra-
tional modulation of oligomer formation. This capac-
ity will allow for more direct verification of the 'cyto-
toxic oligomer hypothesis,' as well as the identifica-
tion of possible techniques for limiting the develop-
ment of toxic oligomers in neurodegenerative dis-
eases. 
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