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ABSTRACT 

 
A robust output feedback controller is synthesized for minimum phase multivariable nonlinear systems based on the 

differential geometry approach. Using the internal model control structure within the input-output (I/O) linearization 

framework, the controller is combined with a closed-loop observer to estimate transformed states in the outer-loop. It is 

shown that the controller-observer combination achieves robust tracking and estimation using simple tuning 

parameters. The effectiveness of the proposed system is illustrated by a simulation example for control of concentration 

in a chemical reactor. 

 

Key words: Nonlinear control, input-output linearization, output feedback, robust control, chemical processes, 
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INTRODUCTION 
Many physical systems of engineering importance 
like, chemical and bio-reactors, robotic 
manipulators, and polymerization processes are 
characterized with complex nonlinearities in their 
models which pose a challenge to control. During 
the 1980s and 1990s, the nonlinear differential 
geometric control (Baquette, 1991; Isidori, 1995) 
has been an area of active research as a promising 
tool for nonlinear controller design. It involves a 
coordinate transformation and state-feedback, which 
transform the nonlinear system to a linear one in the 
input-output (I/O) sense. The I/O linearization 
design framework is usually implemented in a two-
loop configuration, where in the inner-loop a state 
feedback controller is used to cancel the 
nonlinearities and the outer-loop with new states is 
tuned for off-set free tracking and disturbance 
rejection. 
 
The I/O linearization app.roach requires accurate 
mathematical models in order to achieve exact 
cancellation of nonlinear terms. In many systems 
however, the physical model may be poorly 
understood or model parameters such as the heat 
transfer coefficient, reaction rate constants or 
damping constants may be inaccurate. This leads to 
inexact cancellation of non-linearities which may 
cause ineffective control or even instability. Hence 
the subject of designing feedback linearizable 
controllers for nonlinear systems with uncertainty is 
an important challenge and has gained considerable 
attention (Calvet and Arkun, 1992; Christofides, 
2000; Mahmoud and Khalil, 2002). In order to  

ensure robust output tracking and preserve closed-
loop stability, the I/O framework controller design 
must explicitly account for uncertainty in a non-
conservative manner. Recently, Kolavennu et al. 
(2000) app.lied the I/O app.roach to design a 

∞/HH2  robust controller in the outer loop for 
systems with parametric uncertainty. Christofides et 
al. (1996) designed a robust state feedback 
controller for nonlinear singularly perturbed system 
with time-varying variables. 
 
Hitherto, the I/O robust controller design methods 
require the uncertainty to satisfy some matching 
conditions (Calvet and Arkun, 1989) and for the 
case of H� based control frame-work no systematic 
procedure exists to map perturbations from the 
nonlinear model to the outer linear plant. 
Furthermore, the I/O methods assume that the 
transformed states in the outer plant are available 
(Wu and Chou, 1999) or can be estimated by open-
loop estimators (Hu and Rangaiah, 1999) for open-
loop stable systems. In this work, a parameterized 
controller is proposed in the outer-loop. It employs a 
simple robustness tuning parameter that arises 
naturally from perturbations in the nonlinear system. 
The problem is formulated for fully linearizable 
multi-input multi-output (MIMO) system which, 
encompass a wide range of chemical processes and 
we app.ly the controller-observer combination to an 
isothermal chemical reactor. 
 
A nonlinear system can be described by a 
continuous state-space model of the form: 

h(x)y

g(x)u(t)�f(x)f(x)x
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   (1) 
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where 1nx ×ℜ∈  denotes a state vector, 
1nT

nn2211 ]f�f�f[��f(x) ×ℜ∈= � is a perturbed 

function vector, mn
m21 ]gg[gg ×ℜ∈= � and 

1
i� ℜ=  are real scalar perturbations. The uncertain 

vector functions are expressed as jjjj f�ff += so the 

Lie algebra (Isidori, 1995) can be written as: 
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Assumption 1. For a well posed system, a bound 

1� <  exists for a perturbation set 

�}||�||:{��(�) 1 ≤ℜ∈=  for all time t  such that 

�'s are real and bounded { }�(�)(t)�i ∈ . Assume 

that a single worst-case perturbation ��i ≈  exists 

for all { }ni ,,1 �=  then the Lie algebra can be 
further simplified to: 
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Assumption 2. The nonlinear system Eq. (1) is 

minimum phase and I/O linearizable with well-

defined relative degree sri '  that do not change with 

uncertainty. This assumption allows us to write I/O 
equations for the uncertain system as follows: 
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where { }mi ,,1�= , �
�
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�
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					 ���=  is a complete states 

vector, and [ ]Trn1 


 −= �  represents zero-

dynamics. The terms (x)hLa i

r

f
i=  and 

(x)hLLb i

r

fg
i 1−=  are elements of the characteristic 

matrix. If the following nominal transformation is 
app.lied to cancel out nominal nonlinearities 

[ ]),�a(	v
),�b(	

u ii

iiii −=
1

    (5) 

the following uncertain MIMO Brunovsky 
Canonical Form (BCF) (Arkun and Calvet, 1992) is 
obtained 

( ) ( )
C	y

�(�)vBA	

=

++= δξδ�
   (6) 

where A(�)= diag{ }m1 A,,A �  and 

[ ]TmBBB �1)( =δ  are uncertain state-space 

matrices, =C diag{ },,,1 mCC �  and 

[ ] .1
T

m∆∆=∆ � Equation (6) is a perturbed quasi-

linear system because the uncertainties �'s induce 
state dependent disturbance term 	)�(�,  and 
perturbations on the integrators as well as on the 
input v . Therefore the individual state-space 
matrices of the MIMO plant are given for each 
output as: 
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where 1r-ii
g )�(1� +=  and )
,a(	�)(1�� ii

1r-ii
� +=  

are perturbations that arise from variable 
transformation. 
 
Assumption 3. Assume that (A,B) a is controllable 

matrix pair and the state dependent perturbation 

	)�(�,  is bounded in a non-conservative manner as 

a function of time with an upp.er bound �  so that 

�}||�||:{��(t) 1 ≤ℜ∈= . Since the nonlinear 
system is assumed to be minimum phase with stable 
zero-dynamics, Assumption 3 allows us to bound 
the state dependent disturbances in Eq. (6) and thus 
find linear controllers that meet stability and 
performance objectives for both the I/O quasi-linear 
sub-system and the original nonlinear plant. 

ROBUST CONTROLLER DESIGN 
For a nominal system, there is no uncertainty hence 

0�i = , and the desired performance can be 
specified through tuning parameters via a state 

feedback law �−= ir

1 iii 	�v  where '�i s are chosen 

such that the closed-loop polynomial: 

0�s�s�s 12
1r

r
r =++++ −

�     (8) 
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is Hurwitz for all { }m,1,�=i  where s  is the 
Laplace operator. The presence of uncertainty 
renders the nominal state feedback law ineffective 
and controller de-tuning is necessary to maintain 
robust stability and performance. For instance, if the 
relative degree 2=ir , evaluation of the closed-loop 

eigen values show that the system is unstable if 

( ) 2i1
2
i ��4��Re >− . Since a-priori knowledge 

of uncertainty magnitudes is seldom available, it is 
difficult to design a controller that ensures exact  

cancellation of uncertainties. To overcome this 
problem, several parameter adaptation schemes and 
uncertainty estimators have been attempted via the 
I/O framework as shown in (Jose et al., 1997; Hu 
and Rangaiah, 1999). In this work the effect of 
uncertainties is reduced by parameterizing the state 
feedback controller as outlined in Theorem 1 below. 
 
Theorem 1. Assume that �)(1� +=  and that the 

nonlinear system represented by Eq. (1) has a well 

defined relative degree r, then the following 

parameterized state feedback law: 
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     (9) 
will cancel uncertainties in the BCF system Eq. (6) 

and yield a Hurwitz characteristic  polynomial for 

the closed-loop system. The denominator terms can 

be denoted as given in decreasing order as 

[ ]pr1)(r6r33r21r ����� −−−−−= � , where the 

second number of the powers raised to ε  follow a 

sequence 1i1i +=+ ϑϑ  whose last element p is 

obtained from p][ �1510631=ϑ . The proof 
of this theorem is given in the App.endix. 
 
 

 

 

 

Remark 1. If perturbations are zero 0� =  then 

1=ε  and nominal pole-placement will occur. For 

�)(1� +≠  partial cancellation of uncertainty will 

occur but ε  can effectively be used as a robustness 

tuning factor since it affects the closed-loop poles. 

The parameterized state-feedback controller 
ξε )(Kv =  in Eq. (9) may be difficult to implement 

because: (i) in case of model mismatch a steady-
state off-set will occur; and (ii) the states 'ξ s consist 
of the output and its higher derivatives which cannot 
be measured. 
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Figure 1: IMC based observer structure 
 
In order to obtain off-set free response and preserve 
the possibility of using exogenous inputs, the state 
feedback is modified using output feed-back 
through the Internal Model Control (IMC) structure 
as shown in Figure 1 and the controller takes the 
following form: 

(t)r(�)	(t)K(�(v +=   (10) 

where y~yrr +−=  and 11/�� = . The states are 
estimated by a dynamic closed-loop observer as 
outlined in the next section. Substituting Eq. (10) 
into (6) gives 

�(�)rB	A	 ic ++=�    (11) 

Where B  and �(�) are as defined earlier and  
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From Theorem 1 the matrix 

icA is Hurwitz hence we 

can find a symmetric positive definite matrix P that 
satisfies the following Lyapunov equation 

IPAPA
ii c

T

c −=+     (13) 

where I is the identity matrix. 
 

Remark 2. Since it is assumed that the zero-

dynamics are stable and the state dependent 

disturbances ),( ξδ∆ are bounded, then if the 

controller Eq. (11) stabilizes (12), then it stabilizes 

the nonlinear system. For closed-loop stability, 
consider the following Lyapunov function 

P		V T
� = whose time derivative in the direction of 

ξ  is given as 

P	�(�)2P	Br2		V TTT
� ++−=�  (14) 

Setting )�(�Br T +=ϕ  Eq. (14) can be reduced to: 
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and from Lyapunov stability, the closed-loop system 

is stable if 0V� ≤� which implies: 

||P||4
||	||3

|rB|�|| T <+≤ϕ   (16) 

For a nominal plant there are no perturbations 
0�|�(�)| == , hence nominal stability is 

guaranteed if rr =||  is small. For uncertain plant, 
the parameter ε  can be app.lied as a robust tuning 

factor since it affects the Lyapunov function εV�  

through the closed-loop matrix 
icA  and .Φ  This 

means that for a fixed set { }rαα ,,1 �  an optimal 
ε  can be sought that yields desired robustness. The 
closed-loop performance can be evaluated 
qualitatively or quantitatively using robust stability 
measures like the structured singular value 
(Skogestad and Postlethwaite, 1996) or by the 
integral squared error (ISE) given as: 

( ) [ ] dt(t)|yR|(t)|uQ|
J � +=
ft

0

22  (17) 

where the bar denotes deviation variables with Q 
and R as app.ropriate weight functions. 
 
Using the input-output controller design framework, 
the linearizing state feedback law Eq. (5) requires 

knowledge of the complete transformed state vector 

[ ]Tm
r

1
1 m
		 � . For most physical systems, the first 

state i
i
1 y	 =  is usually measurable because 

typically it represents physical quantities such as 
temperature, concentration, position or velocity. The 
remaining states i

ri
1
2 		 �  consist of the first- and 

high-order derivatives of y which are infeasible to 
measure so they must be estimated. Due to lack of 
separation principle for nonlinear systems, many 
researchers used open-loop observers (Daoutidis 
and Kravaris, 1992; Hu and Rangaiah, 2001) for 
estimation of these states. A high-gain observer 
closed-loop estimator was proposed by Estfandiari 
and Khalil (1995) and later used by Jose et al. 
(1997) for simultaneous state and uncertainty 
estimation. However the observer lacks a systematic 
procedure to calculate its gain, and is associated 
with the peaking phenomenon that necessitates 
imposition of a saturation function on the input. In 
this work, we explore estimation of the transformed 
states using a closed-loop observer similar to the 
one proposed by Ray (1981) but in the context of 
I/O linearization based on the IMC structure shown 
in Figure 1. 
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Assumption 4. Assume that the nonlinear system 

Eq. (1) there is a diffeomorphism ( ) ( )	
,T	
, =  

given by: 
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If these equations are linearly independent, then 

each sub-system { }mi ,,1 �=  has full rank  

 �= irr  where nr ≤  and the nonlinear system is 

observable. The diffeomorphism gives rise to the 
normal form Eq. (4). If we define a new state vector 
z which is related to 	 by 

)(�(t)z(t) tξ=     (19) 
then the observability full rank condition in 
Assumption 3 allows us to express the original state 
vector ξ in terms of the new state vector z and y as: 
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The matrices 1Ω  and 2Ω  are partitions of the rr ×  
square inverse. Since the output y is measurable, to 
get the full state vector now requires only the 
knowledge of z which can be obtained from Eq. (19) 
as 

ξξ ��� Γ+Γ=z     (21) 

Substituting ξ�  from nominal form of the 
Brunowsky Canonical Form Eq. (6) and using the 
following identities: 
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obtained from left and right matrix multiplication in 
Eq. (20) we can simplify Eq. (21) to: 

�Bvy���A�z���A�z +−+−= ][][ 2211
��  (23) 

If all elements of the state transformation matrix Γ  

are assumed to be real constants { } 1ℜ∈ijγ , then 

derivatives 02,1 =Ω�  and the full-order state 

estimator can be constructed from Eqs. (19) and 
(23) as follows: 

y�z�	

�Bvy�A�z�A�z

21

21

ˆˆ

ˆˆ

+=

++=�
             (24) 

where ẑ  and ξ̂  refers to estimated state vectors. 
The advantage of this observer is that the elements 
of Γ  can be selected to yield desired error 
convergence rates through pole-placement. 

The proposed controller and state estimator have 
been app.lied to control concentration of an 
isothermal continuous stirred tank chemical reactor 
(Kolavennu et al., 2000) with liquid phase multi-
component reaction system CBA →↔ . The 
dynamic equations of the system take the following 
form: 

( )

( ) uxkkx
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Where  ,/CCx AFA1 =   /CCx AFB2 =  and 

 /CCx AFC3 = are dimensionless concentrations, 

and  AFBF/FCN u = is the dimensionless 
manipulated variable. The objective is to keep the 
concentration  x2 at a desired set-point by 

manipulating -NBF  the molar feed rate of 3x . The 

process variables and other parameters are given in 
Table 1 where the subscript s refers to steady-state. 
 
Table 1: Process parameters for the chemical 
reactor 
 

2sx  = 3.775 [-]  �  = 0.8 [-] 

1sx  = 3.665 [-]  c2 = 2.9 [s-1] 

3sx  = 0.869 [-]  k1 = 1 [s-1] 

su  = 5.0 [-]  
2k̂  = 3 [s-1] 

AfC  = 3.3 [mol/m3]  k3 = 5 [s-1] 

V = 3.0 [m3]  F = 3 [m3/s] 
 
The subscript s in Table 1 refers to steady-state 
parameters, and the parameters ki's are uncertain 
chemical reaction rate constants with k2 given as 

k2=  �ck̂ 22 +  such that |�|<1. Equation (24) can be 
written in the form of Eq. (1) and smooth vectors 
f(x) and g(x) can be obtained to compute the 
following I/O linearization 

1
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2
f2

21

y 

u  h(x)LLh(x)L 
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 (26) 

The concentration x2 is the measured output and the 
system has a relative degree r = 2 because Lgh(x) = 
0 but LgLfh(x) = 2k3x3 � 0. According to Theorem 1 
the following IMC based parameterized controller is 

obtained: r
�

�
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�
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1
v 1

1
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222 +−−= . Figure 2 

shows the effect of the tuning parameter on the 
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nominal plant response when x2 is controlled to 
steady-state x2s =3.775 from an initial state vector x0 
= [1  8.33  1]. 
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Figure 2: Response for control of x2 to steady-state 
x2s with �1 = 1, 
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Figure 3: ISE performance objective versus tuning 
parameter � 
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Figure 4: Performance comparison between the PI 
and parameterized IMC Controller 
 
A small � gives good output response but is 
associated with aggressive manipulated variable 
moves which in a real process may cause undue 
wear of actuators. On the other hand, a bigger � 
yields moderate moves but result in sluggish closed-
loop performance. Therefore optimal tuning for 
robustness should combine qualitative measures 
based on user's knowledge of the process, and 
quantitative performance measures like the ISE 
described earlier. As shown in Fig. 3 for weighting 
functions Q = 1500 and R = 1000 in Eq. (17), a 
minimum value of the ISE objective function is 
obtained at � = 0.7. As seen in Fig. 4 for this optimal 
value, the parameterized controller gives superior 
performance compared to a PI controller in the 
outer-loop designed using state-feedback linearizing 
procedure outlined by Daoutidis and Christofides 
(1995). The PI controller was designed using �0 = 1, 
�1 = 0.5, �2= 0.1 whereas the controller gain Kc = 
0.1 and the integral time �I = 0.49 were obtained 
using IMC tuning rules (Morari and Zafiriou, 1989) 
based on the second-order plant y(s) = v(s)/(�2S

2+ 
�1s+�0) in the outer-loop. The initial move of the 
parameterized controller is computed based on the 
feedback error r  and system states x thus no 
controller initialization is required. The PI controller 
however must be initialized from arbitrary values 
which may cause performance degradation or 
instability. 
 

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

t [ hr ]

x
2
−

x
2

s

− 60% uncert. on k
3

  Nominal plant
+ 60% uncert. on k

3

0 0.2 0.4 0.6 0.8 1
0

5

10

15

t [ hr ]

u

 
Figure 5: Closed-loop response for different plant 
uncertainty in k3 for a constant � 
 
Figure 5 shows robustness of the parameterized 
controller against model-mismatch in the reaction 
constant k3 when a tuning constant � = 1.5 was used. 
Similar simulation runs showed that even for non-
optimal tuning parameters the controller could bring 
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the output to the desired steady-state operating point 
when significant uncertainty is present in the 
reaction rate constants. 
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Figure 6: Error between actual and estimated states 

22y' 		̂e −= for different observer parameters 
 

The state 2ξ  represents time derivative of the output 
	 = dy/dt which usually cannot be measured. If 
measurement noise is low it can be estimated from 
time series data using 	k = (yk - yk-1)/Ts where Ts is 
the sampling time. In this work, the complete state 
vector is estimated using the observer described in 

Section 4. The estimated state variable 1̂ξ  showed 

negligible difference from the actual state y=1ξ .  

Figure 6 shows the error profiles between the actual 
and estimated state 2ξ  for an observer tuning matrix 
� whose elements are assumed constant � = [�1  �2]. 
As seen in Fig. 6, the elements of � can be adjusted 
to alter the speed of convergence of the error and 
hence improve the closed-loop speed of response 
and performance. 

CONCLUSIONS 
A parameterized controller that uses a simple 
robustness tuning factor was developed for 
multivariable minimum phase I/O linearizable 
nonlinear system. The tuning factor arises naturally 
by mapp.ing real-scalar perturbations from 
nonlinear model to I/O linearized model, and its 
optimal value can be determined using the ISE 
criteria for a given level of uncertainty. A full-order 
state observer was constructed for fully observable 
nonlinear system and combined with the controller 
to achieve output feedback using the IMC structure. 
The effectiveness of the controller-observer 
combinations was illustrated for control of 
concentration in an isothermal chemical reactor. 
Compared to a PI controller, the parameterized 
controller yielded robust output tracking and 
regulation even for arbitrary initialization. Using 
simple tuning parameters, the observer showed 
robustness against model uncertainty with rapid 
error convergence hence improving the overall 
closed-loop performance. 

  

English Symbols  Greek Symbols 
A = State space matrix  �  = tuning parameter 
B = state space matrix  
  = zero-dynamic states 
C =  output matrix  �  = observer tuning parameter 
F = flow rate   �, � = perturbation  
H = output scalar field  � = observer tuning parameter 
k = reaction rate constant   	 = transformed state vector 
K = controller gain  � = parameter 
M = number of output points  � = time constant 
n = system order   = parameter  
P = positive-definite matrix  � = tuning parameter  
Q = weighting matrix     
Re( ) = Real part of ( )     
R = weighting matrix     

mn×ℜ  = m n×  real number matrix      

r = set-point     
t  = time     
u = manipulated variable     
v = external input     
V = volume     
x = state variable vector     
y = output variable vector     
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Appendix 

 

Proof of Theorem 1. The proof is by inspection. 

For �= ir

1

i
jji 	 �- v , the closed-loop characteristic 

polynomial of the uncertain Brunovsky Canonical 
Form Eq. (6}) for different relative degrees is given 
by: 
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(27) 

 
where � =1 + � as assumed. � represents eigen-value 
and I is the identity matrix. The powers raised to the 
� 's associated with each �i are tabulated below for 
ri= { }7,,1 �  
 
 �1 �2 �3 �4 �5 �6 �7 
ri = 2 � 1      
ri = 3 � 

3 �
 2 1     

ri = 4 � 
6 

�
 5 �

 3 1    
ri = 5 �

 10 � 9 �
 7 �

 4 1   
ri = 6 �

 15 � 14 � 12 � 9 �
 5 1  

ri = 7 �
 21 � 20 � 18 � 15 � 11 � 6 1 

 
Since closed-loop stability depends on the eigen-
values in Eq. (27) which in turn depend on 
perturbations � embedded in � we can eliminate 
them in the closed-loop characteristic polynomial 
using the following feedback law 
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where [ ]Ti
ri

i
1 			 �=  and �� is a diagonal matrix 

that consist of �i's coefficients for a particular ri 
tabulated above. �
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The control law Eq. (28) performs a similarity 
transformation of Eq. (6) into a Hurwitz matrix Eq. 
(12) whose characteristic polynomial does not 
depend on �'s any more but on the tuning parameters 
�i’s. 
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