ISOLATION AND CHARACTERISATION OF MICRO-ORGANISMS WITH **INDUSTRIAL IMPORTANCE FROM SISAL BOLE ROTS**

*Consolatha J. N. Mhaiki,**EnockMasanja, **Jamidu H. Y. Katima,*** Gunaratna K. Rajarao, *** Gunnel Dalhammar

^{*}Corresponding author; Sokoine University of Agriculture (SUA), Department of Soil Science, P.O. Box 3008, Morogoro, Tanzania.

**College of Engineering and Technology (CoET), Department of Chemical and Mining Engineering, P.O. Box 35131, Dar Es Salaam, Tanzania

***School of Biotechnology, (Applied Environmental Microbiology), Alba Nova University Centre, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE - 106 91 Stockholm, Sweden. Email;konsolatha@yahoo.com; cmhaiki@suanet.ac.tz;

emasanja@udsm.ac.tz;jkatima@udsm.ac.tz;gunar@biotech.kth.se

ABSTRACT

Investigation of microorganisms naturally acclimatized to Agave hybrid H 11648 (sisal bole rot) was conducted, with the aim of isolating and characterizing Aspergillus niger strains for industrial use. Microorganism were identified morphologically and then confirmation made by polymerase chain reaction (PCR). Results showed the existence of four major groups, listed in order of abundances as follows; Aspergilli (36.0±0.8) %, Penicillin (28.0±0.1) %, Yeast (15.0±1.6) % and Fusarium (10.0±0.12) %. The main groups of Aspergilli strains were A. nidulans, A. tamari and A. niger in ratios (3:2:2), respectively. Several endo-spore forming non-enteric gram (-) rods and coccid bacteria identified by API 20 NE identification systemincluded, Brevundimonas diminuta sp, Shewanella putrefaciens sp, Brevundimonas vesicularis sp and Pasteurella sp. Results showed that sisal bole rot stems hosts a high bio-diversity of microorganism species other than A. niger. Exploitation of the individual strains is recommended. This could eventually produce strains for precursors of industrially and therapeutically metabolites.

Key words: Sisal, filamentous-fungi, Aspergillus niger, yeast, non-enteric gram -ve bacteria

INTRODUCTION

Microbial communities are ubiquitous in the environment and have been implicated various processes including in opportunistic infections living to organisms of both the animal and plant kingdoms. Microorganisms also play a significant role in the global carbon cycle and provide a wide range of hydrolytic and oxidative enzymes, which are usually involved in digestive systems, breaking down of plant carbohydrates and lignocelluloses. Varieties of these enzymes are also important in chemical and for biotechnology industries. The rapid humification (rot) of carbohydrate rich sisal plants "carbon-cycling" by fermentative microorganisms is not

desired in sisal agronomy as it lowers sisal fiber yields. Sisal bole rot (SBR) destruction by fungi has been well documented and strong measures have been emplaced to wade away the chances for manifestation such as proper tillage drainage and moisture control (KATANI Ltd. 1994; Lock, 1969). Since sisal life cycle extends to about 10 to 12 years, this time lapse supports a high microbial biodiversity, for that matter sisal bole rot manifestation suggested the survival of beneficiary microorganisms and that little effort might be needed for the isolation of strains for industrial production purposes. In principle the microbiology of sisal bole rots seems to be limited to essentially some bacteria, fungi and yeast species those which are tolerant to harsh

environmental conditions characterized by comparative low pHs' of sisal saps, hard lignified stem-bark and cuticle layer that covers plant leaves (Taiz and Zeiger, 1998). Presence of carbohydrate in forms of a complex inulin molecule necessitates molecular size reductions by hydrolysis prior the microbial assimilation. This could be another reason for the coexistence of high microbial diversity, where by some produces hydrolytic enzymes while others get access to the readily assimilated hydrolysates sugars. During the extreme dry conditions of Tanzanian coastal summer, sisal plants respiration and osmosis is regulated by the stored complex inulin-carbohydrate (Edelman and Jefford, 1968). Either at this point essentially most of the microorganisms enter the dominancy, forms spores or form a symbiotic alliance that is; waiting for others to break huge molecules for them to assimilate and survive.

This research therefore was aimed to isolate and characterize microorganisms, with industrial importance from sisal bole rots (SBR) and apply them in selective fermentation production of bio chemicals. Research findings is presumed to be applied in promotion of utilization of the whole sisal plant, which could lead to the expansion of production and marketing of non-traditional sisal products for example, bio ethanol enzymes and carboxylic acids (CFC/UNIDO 2003;KATANI Ltd. 1994).

MATERIALS AND METHODS

Materials

Sisal boles rot chunks from *Agave* H 11648, were randomly collected from Highland estate, and were handled aseptically. Samples were analyzed the same day; otherwise, stated sisal boles were frozen below -20°C in a deep freezer. Microbial culture media used

were from Sigma Aldrich and Fluka that is Sabouraud Dextrose Agar (SBD) CM0041, Oxytetracycline Yeast Extract Agar (OGYE) 66481 HiCrome, Czapek yeast autolysate agar (CYA) potato dextrose agar (PDA)were purchased from Sigma Aldrich. Standard methods and protocols by the respective suppliers were used throughout (AOAC, 1995; Collins et al., 1998; Domsch et al., 1980; Tran et al., 1998). Isolation recovery screening and confirmation of indigenous A. niger from sisal bole rot was done at the UDSM-College of Engineering and Technology (CPE) and KTH Biotechnology Environmental Department Sweden (KTH-Bio). Representative samples were sent to Nadicoma sequencing company in Germany (Nadicom, 2006).

Isolation of Microorganisms

Isolation and enumeration of microorganisms was done bv sub sampling of 10 small chunks of sisal bole rot stems measuring 1-2 mm diameter and weighing 0.2 -0.3 gm. These were gently crushed, and soaked in 5 ml deionized sterile water for 5 minutes. A serial tube dilution for viable cells counting was performed at the dilution range between 10⁻¹ and 10⁻⁷. Total microbial population numbers was determined by a pour plate count technique on agar plates (PCA) inoculation and culturing after at temperatures 20°C, 30°C and 45°C for 24, 48 and 72 hours (AOAC, 1995; Collins et al., 1998; Guarro et al., 1999; Domsch et al., 1980; Johnson and Case 2004; Tran et al., 1998). The growth media was made up by incorporating hundred millilitres of sisal Inulin so as to ensure that media used are suitable for the survival of indigenous species. Pure cultures of Aspergilli were differentiated by using special media Tryptone Agar (Tryptone) Yeast Extract Agar (YEA) Sabourad Dextrose (SB), Oxytetracycline Yeast Extract Agar (OGYE), and incubation done at 30 ° C for 7 days. Filamentous fungi and yeasts were also enumerated from acidified YEA, along with some endo spore forming bacterial that survives the acidic conditions. Isolated strains were purified, and maintained on NA and PDA slants (Johnson and Case, 2004).

Systematic and molecular-biological analyses

Macromorphologic identification were done by the powerful light microscope and Olympus BX-51 fluorescence research microscope that incorporates the advanced phase contrasting (Nomarski DIC system) and the Sony DXC960MD incorporating a 3 chip CCD video camera system. These were available at the KTH-Bio Laboratory. Cultures expressions on agar plates differed in terms of micro- and macro morphological features according differential media used to and microorganisms in question (Collins et al., 1998; Domsch et al., 1980). While systematic identification was done using taxonomical keys by (Guarro et al., 1999; Pitt, 1993), confirmation was done by subjecting microorganisms to (PCR) polymerase chain reaction identification after method by (Gardes and Bruns, 1993; Kure et al., 2003). While polymerase chain reaction identification was done using Sequences of Oligonucleotides Primers "SOP" AD-02, standard primers the following Internal used had Transcribed Spacer (ITS) sequences:

ITS 1 = 5'-TCCGTAGGTGAACCTGCGG-3' and ITS 4 = 5'-TCCTCCGCTTATTGATATGC-3';

ITS region was preferred because it is the most widely sequenced DNA region in fungi and it is typically most useful for molecular systematic across species level and even within species, as it allows selective amplification of fungal sequences (Gardes and Bruns, 1993). Genomic DNA samples for the *Aspergilla* was prepared according to Applichem manufacturer's instructions by taking the grown colonies from the respective plates, with an inoculating loop and directly inserting into the DNA Applichem extraction kit. The sequences of the oligonucleotides primers (SOP) used had the following sequence:

M13P = 5'-GAG GGT GGC GGT TCT-3'.

Evaluation of the PCR products of the M13P-PCR were applied on 2% TAE gel and separated at 100 volts, using the agarose gel which was stained with a 0.1% ethidium bromide solution and photographed (Gardes and Bruns, 1993 Kure et al., 2003). After culturing in NA, non-enteric Gram (-) strainsbacteria forming colonv units (c.f.u)were carefully observed under powerful light microscope and confirmed by the API 20 NE identification system by "bioMérieux Bv, Boxtel, Netherlands" (Johnson and Case, 2004).

RESULTS AND DISCUSSION

Microorganisms isolation screening and identification

As experiments were carried out in three replicates, results were presented as mean values in tabular form (Table 1 to 6). Four major groups of fungi and veasts resulted. Individual group isolated were named and averaged in order of abundances; %, Aspergilli (36.0 ± 0.8) Penicillin (28.0±0.1) %, Yeast (15.0±1.6) % and Fusarium (10.0 ± 1.2) %. Remaining fraction included various spore forming bacteria species, of which the dominant were bacilli and coccid. Also seen were coma shaped but were not considered in this study (Table 1 and 2). Dominant Aspergilli species observed were Aspergillus nidulans, Aspergillus tamari and Aspergillus niger in ratios (3:2:2) consecutively.

Dilution	c.f.u -count		Average counts $(x10^5 \text{ c.f.u})$					
range	range	Mould	Bacteri	Fungi	Yeast	Others	Total	
			a					
10 ⁻²	80 and above	ND	ND	ND	ND	ND	ND	
10 ⁻³	36-42	2.00	4.00	5.50	1.98	0.67	13.48	
10 ⁻⁴	30-40	2.08	3.31	6.60	2.43	0.58	14.42	
10 ⁻⁵	28-32	1.80	1.00	7.40	1.62	0.86	11.82	
10-6	25-30	3.60	4.30	6.80	5.09	0.78	19.79	
10 ⁻⁷	15 and less	ND	ND	ND	ND	ND	ND	
Total counts		9.48	12.61	26.3	11.12	2.89	62.40	
	Min	1.80	1.00	5.50	1.62	0.58	10.50	
	Max	3.60	4.30	7.40	5.09	0.86	21.25	
	Average	2.37	3.15	6.58	2.78	0.72	15.60	
	Stdev	0.83	1.49	0.79	1.58	0.12	4.81	
	Average (%)	15.19	20.21	42.15	17.82	4.63	100	

Table 1: Total microorganisms counts in (SBR) chunks grab samples (n = 10).

ND=not determined above 80 and below 15 c.f.urange so as to avoid uncertainty errors

Figure 1: Morphologies of some microorganisms of industrial potential from (SBR)

Morphologic differences between Aspergillus niger and other filamentous fungi

Shown in Figure1 are some microorganisms of industrial potential from sisal bole rot stems; (A) *A. niger* Conidia, (B) transect of *A. niger* Conidia, (C) *A. niger* spores, (D) *Fusarium sp*, (E) Banana spores *Fusarium solani* and (F) Septate-conidiophores for *Penicillin sp*.

Macroscopically *Aspergillus niger* colonies on surface Czapeck agar plates at 30° C were initially white, and then blackened with conidial production. On reverse side, colonies were pale yellow and grew radialy. Five days old *A. niger* hyphae became distinctive septate and their respective conidia long and smooth, and hyaline measured (500 to 800 µm). The typical *Aspergilli* featured biseriate characteristic was clearly seen under the

microscope. Presence of a metulae and their corresponding conidiogenous phialides, while metulae and phialides covering entire vesicle to form a rough fruiting conidia head whose diameter measured at $132.78 \pm 0.02 \ \mu m$ (A) and (B) in Figure 1, was very conclusive also described by head, metula and phialide diameter values which were measured between 3.77 and 3.89 \pm 0.02 μm (C).

Fusarium sp colonies displayed characteristic banana like spores common to *F. solani* (D) and (E) in Figure 1, whereas *penicillin sp* clearly showed their distinct septate conidiophores' with respective metulae and phialides appearing in branched form (Guarro, 1999; Pitt, 1993).

Reference	Morphological	c.f.u	Microbe-count/g-sisal	Remarks
	Identification		bole rot(% c.f.u)	
OR5	Yeast budding	11.12×10^5	(15.0±1.6)	
OR5 KTH	Yeast budding			For PCR
OR5 NA	Yeast budding			For PCR
4a	Yeast single			
4a KTH	Yeast single			For PCR
Wfus.	Fusarium solani	7.42×10^5	(10.0±0.12)	For PCR
Wfus KTH	Fusarium solani			
BYF KTH	Aspergillus niger wild	26.7×10^5	(36.0±0.8)	PCR & (citric
				acid)
BYF	Aspergillus niger wild			(citric acid)
BWf KTH	Aspergillus tamarii			For PCR&
				(citric acid)
BWf	Aspergillus tamarii			
BfK	Aspergillus nidulans			For PCR
Yf ₁	Aspergillus nidulans			For PCR
Yf ₂	Aspergillus nidulans			
Pe Green	Penicillin	$20.8 \text{ x} 10^5$	(28.0±0.1)	
Pe Gray	Penicillin			
White-	Endospore coccid	5.19x10 ⁵	(7.0±1.5)	API 20 NE
cream				TESTS
Off White	Endospore rods	4.45×10^5	(6.0±1.5)	API 20 NE
				TESTS
Shiny	Coma motile species	2.97×10^5	(4.0±1.5)	
White				
Others		2.89×10^5	(4.0±1.5)	

Table 2: Identifiable microorganism and their incidence in (SBR) grab samples (n=10)

Table 3: PCR sequencing confirmation summary

S/No Nadicom	Reference	Identified as	Remarks
449.1	OR5 KTH	Pichia membranifaciens	
449.2	4a KTH	Clavispora lusitaniae	
449.3	OR5 NA	Pichia membranifaciens	
449.6	Wfus.	Fusarium solani	
449.7	BYF KTH	Aspergillus niger	for CA production
449.8	BWf KTH	Aspergillus tamarii	for CA production
449.9	BfK	Aspergillus nidulans	
449.10	Yf ₁	Aspergillus nidulans	
API 20 NE	Endospore coccid		
API 20 NE	Endospore rods		
API 20 NE	Motile species		

Polymerase chain reaction (PCR) Confirmation and Genomic DNA Results

Polymerase chain reaction (PCR) sequencing results which are presented in Table 3showed high consistence with morphological identities done using taxonomical keys by (Guarro et al., 1999; Pitt, 1993). Concurrently, the genomic DNA results for Aspergilla fungi shown in Figure 2 indicated that samples 449.7-(BYF KTH) Aspergillus niger wild, Aspergillus nidulans strains 449.9-(BfK)and 449.10-(Yf₁)seemed to be very close. Concurrently sample 449.8-(BWf KTH) Aspergillus tamarii showed a different pattern. These findings thus signified a need for a more intensive identification work at species level, so as to capture genomic evolution (Figure 2).

Figure 2: Genomic DNA results for Aspergilli fungi

31

	1	1	1				1
ID	13	RTN ₄	other	RTC ₄	RTC ₆	WA_4	7
		а			а		
Media	NA	NA	NA	CZ	CZ	WAYE	NA
Temp °C	30	30	30	20	20	30	30
Hrs	24	24	24	24	24	24	24
Average diameter of several	2	1.5	2	1.5	3	1.5	3
c.f.u (mm)							
General Shape:	Spr	Ro	Ro	Ro	Ro	Ro	Spr
Gram Staining	G(-)	G(-) C	G(-) R	G(-) C	G(-) C	G(-) C	G(-)
	K	(1)	(1)	(1)	(1)	()	K
Catalase	(+)	(+)	(+)	(+)	(+)	(-)	(+)
Oxidase	(+)	(-)	(+)	(-)	(-)	(-)	(-)
Endospores	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Oxygen demand	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Minimal nutrient	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Maconkey	(-)	(-)	(-)	(-)	(-)	(-)	(-)
Starch Hydrolysis (+)clear	(+)	(+)	(+)	(+)	(+)	(+)	(+)
zone indicates starch							
hydrolysis							
Gelatin	(+)	(-)	(+)	(-)	(-)	(-)	(+)
Casein Hydrolysis	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Litmus milk	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Sulfur Indole Motility Test	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Minimum agar	(+)	(+)	(+)	(+)	(+)	(+)	(+)
MaConkey(-) Negative re	(-)	(-)	(-)	(-)	(-)	(-)	(-)
confirms G (-) for endo-							
spores							
FE Negative re confirms G	(+)	(+)	(+)	(+)	(+)	(+)	(+)
(+) for endo-spore							
FM(-)acid	(-)	(-)	(-)	(-)	(-)	(-)	(-)

Table 4: Biochemical characterization of bacteria colonies viewed from above

KEY:G (-) R = Gram-negative rods; G (-) C = Gram-negative cocci; (Spr) = Spreading; (Ro) = Round irregular

Table 5: Bacteria colonies reaction to antibiotic (AB Biodisk) after 24 Hrs

ID	Media	Tem p °C	Tetracycline		Penicillin			Aminogl ycosides	Sulphon amides	
			CL	TC	RI	PG	AM	GM	SM	SU
13	NA	30	(R)	(R)	(R)	(R)	(S)	(R)	(S)	(R)
RTN _{4a}	NA		(IS)	(R)	(R)	(R)	(S)	(R)		
other	NA		(R)	(R)	(R)	(R)	(R)	(IS)	(S)	(R)
RTC ₄	CZ	20	(IS)	(R)	(R)	(R)	(S)	(R)	(S)	(R)
RTC _{6a}	CZ		(R)	(R)	(R)	(R)	(R)	(IS)	(S)	(R)
WA ₄	WAYE	30	(R)	(R)	(R)	(R)	(R)	(IS)	(S)	(R)
7	NA		(R)	(R)	(R)	(R)	(R)	(IS)	(S)	(R)

KEY: (ID) = Colony identity; (IS)-(S) = Intermediate - Sensitive to systemic infection dosage has to be concentrated to organs; (S) = Sensitiveto systemic infection; (R)= Resistantto systemic infection; **CL** =Chloramphenicol 30µg; =Tetracycline 30mg; TC RI= Rifampicines $2\mu g$; AM = Ampicilin10µg; GM =Gentamycin 30µg; SM =Streptomycin 30µg; SU =Sulphonamide Trimethoprim $250\mu g$, **PG** = Benzyl penicillin 100µg. Shown in Table 5, bacteria isolates were found to be resistant to most common antibiotics. However in very few cases bacteria reactions to antibiotics rated resistant was to intermediate - sensitive to systemic infections, colonies moderately and reacted to either of the following antibiotic; Chloramphenicol, Ampicilin and Gentamycin. This suggested that if either of these drugs is to be used, the dosages have to be concentrated to organs.

Table 6: Bacteria	coloniesre	actions to	API 20	NE TESTS

Colony	Media	API 20 N	Έ	Suggested nomenclature	
ID					
		Temp	code-24	code-48	
		°C	hrs	hrs	
13	NA	30	1510004	1510004	(B. dim) synonym, (P. dim)OR
					(S. put)
RTN _{4a}	NA	30	1430000	1430000	(B. ves)OR (Pas)
Other	NA	30	1510004	1510004	(B. dim)
RTN _{4a}	CZ	20	1430000	1430000	(B. ves)OR (Pas)
RTC _{6a}	CZ	20	1600000	1600000	(Bru)
WA ₄	WAYE	30	400000	400000	(B. ves)OR (Pas)
TN _{3b}	NA	30	430000	1430000	(B. ves) OR (Pas)

KEY: (*B.* dim) = Brevundimonas diminuta sp; (*B.* Ves) = *B.* vesicularis; (*P.* dim) = Pseudomonas diminuta; (*S.* put) = Shewanella putrefaciens sp; (*B*) = Brucella sp; (Pas) = Pasteurella sp; ID=Identity

Shown in Table 6, the dominant bacteria sp are *B. Diminuta, S. Putrefaciens, B. vesicularis* and *pasteurella sp.* Bacterial colony ID 13 tested (+Ve)in respect to NO₃ &N₂ test however were identified as *B. Vesicularis*.

Biochemical characterization and API 20 NE identification

A combination of standard biochemical tests and assimilations tests, are supported by the API 20 NE Identification system for non-enteric Gram (-) rods done at 24 and 48 hours. The growth guide for API 20 NE Identification system was adapted in characterization of the non-fermentingmetabolizing bacteria (Tables 4 to 6). The standardized inoculums picking with a low bacterial concentration using a $(0.5 \ \mu l)$ micro pipette tip from a freshly refined cultures, guaranteed reliability of this method, while eliminating the contaminants from mixed cultures and subcultures.

DISCUSSION

Microbial sampling was done during the humid rainy season, under the assumption that the conditions were suitable for the proliferations of the fungal diseases. Despite to the fact that the black sisal bole rot has been occasional spotted to some injured individual plants and those under extremely stress conditions, the evidence on existence of spontaneous fungal out breaks were infrequently encountered. This results which are supported by literature cited indicate that sisal bole rot is very rich in microbe biodiversity specifically mould fungi and some endospore forming bacteria communities. Concurrently under the normal circumstances sisal plants showed a high microbial diseases immunity to (CFC/UNIDO, 2003; Lock, 1969).

In general terms both microorganisms isolates assimilated raw sisal inulin and used it as the sole carbon source Most of sisal bole rot isolated fungi species were good in processing raw sisal juice, and strains are known to have a high potential for industrial use, for example strains of Aspergillus niger are known to produce citric acid (Kubicek et al., 1994). While penicillin, yeast and fusarium strains are used in enzyme and drugs manufacturing (Masih and Paul, 2002). In this study yeast species that were suspected to be responsible for the volatile alcohol stench while creating competitions with other comprehensively moulds were not investigated thus suggesting further considerations for future studies.

The encountered co-existence of moulds and bacteria was probably due to the inherent symbiosis. Among these, the motile and endo spore forming bacteria were common isolates. These were identified by using the API 20 NE TESTS, and named as; Brevundimonas diminuta sp, Shewanella putrefaciens sp, Brevundimonas vesicularis SD and Pasteurella sp (Ngonyani, 2010). The identified strains were able to hydrolyze starch but not glucose(Table 4). The current study suggested that while bacteria strains preferred complex form of carbohydrate, they were able to assimilate starch and were resistant to common antibiotics as indicated in (Table 5).

CONCLUSIONS

Agave hybrid H 11648 (sisal bole rot) has got high bio-diversity of microorganisms naturally acclimatized to inulin rich environment. The identified four major groups of fungi and yeasts namely Aspergillus niger, Penicillin, Yeast and Fusarium suggested further tests on their versatile use in selective fermentation processing of useful metabolites. The existence of endo-spore forming nonenteric Gram (-) rods and coccid bacteria, suggests some possible symbiosis and competition pattern that needs a lengthy investigation. The isolated fungi strains, example Aspergilli niger for was considered as the potential citric acid production strain with sisal inulin hydrolysates being used as feed stock. With less strenuously manipulations fungi strains acclimatized to inulin rich saps are presumed to be in better position for future selective industrial fermentation processing of useful metabolites. The same analysis suggests that further rigorous screening is required for the identification of missed strains.

ACKNOWLEDGEMENTS

The authors would like to express their sincere tribute to the late Prof Lennart Nilson of KTH; his contribution before his premature death is highly appreciated.

REFERENCES

- AOAC (1995). *The Official Standard Methods of Analysis* 16th ed., Association of Official Analytical Chemists Washington DC.
- Collins, C. H., Lyne, P. M., and Grange, J. M. (1998). *Microbiological Methods*: A Laboratory Manual 7th ed., pp 493 Butter-worth Heinemann Publishers.

- Common Fund for Commodities/United Nations Industrial Development Organization 'CFC/UNIDO' (2003). Example of Project Formulation for CFC Co-financing Cleaner Integral Utilization of Sisal Waste for Biogas and Bio-fertilizers, Location of the project: Tanzania, http://www.unido.org.
- Domsch, K. H., Gamsch, W., and Anderson, T. H. (1980). *Compendium* of Soil Fungi: Vol. 1, Academic Press, and London.
- Edelman, J., and Jefford, T. G. (1968). The mechanism of factor metabolism in higher plants as exemplified in *Helianthus Tuberosm*, *New Phytol.*, Vol. 67, pp. 517-531.
- Gardes, M., and Bruns, T. D. (1993). *ITS* primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts., Mol. Ecol. 2: 113-118.
- Guarro, J., J. Gene, and Stchigel, A. M. (1999). *Developments in Fungal Taxonomy*, Clinical Microbiology Reviews, Vol. 12, No. 3, pp. 454–500.
- Johnson, T. R., and Case, C. L. (2004). *Laboratory Experiments, In: Microbiology*: 7th ed. Pearson Benjamin Cummings Publishers, pp. 434.
- Katani Ltd (1994). The Sisal Bole Revaluation Project, A Proposal submitted at the Conference on University – Industry Science Partnership in Africa (UNISPAR) Arusha, Tanzania.
- Kubicek, C.P., Witteveen, C. F. B., and Visser, J. (1994). Regulation of organic acid production by *Aspergilli*, In: Powelli, K. A., (ed.), *The genusAspergillus*: Plenum Press. New York, pp. 35-145.
- Kure, S., K. Kojima, A. Ichinohe, Aoki,Y. Suzuki, Y., and Matsubara, Y.(2003).A comprehensive mutation analysis of GLDC, AMT, and GCSH

in glycine encephalopathy. J Inherit Metab Dis, Vol. 26, No. 2, pp. 66.

- Lock, G. W. (1969). Sisal: Report on Thirty years' of sisal research in Tanzania, 2nd Ed., pp. 200 - 365, Department of Agriculture Longmans London.
- Masih, E. I., and Paul, B. (2002). Secretion of β -1, 3-Glucanases by the Yeast Pichia membranifaciens and Its Possible Role in the Biocontrol of Botrytis cinerea Causing Grey Mold Disease of the Grapevine. *Current Microbiology*, Vol. 44, pp. 391–395.
- Nadicom (2006). The PCR-sequencing *Company:* physical and correspondence address; Nadicom Gesellschaft für angewandte Mikrobiologie mbH Hertzstr. 16 76187 D-Karlsruhe and Pflanzogarten 10, D-35043, Marburg-Bauerbach, Germany: available online at <http://www.adicom.de>
- Ngonyani, C. J. (2010). *The Utilization of Sisal Bole Juice – Inulin as an alternative chemical feedstock in citric acid production*: Ph D Thesis University of Dar Es Salaam Tanzania.
- Pitt, J. I. (1993). Speciation and evolution in *Penicillium* and related genera. pp 113–117.In: D. R. Reynolds, and J. W. Taylor (eds.), *Fungal holomorph mitotic meiotic and pleomorphic speciation in fungal systematics*. CAB International Wallingford, United Kingdom.
- Taiz, L., and Zeiger E. (1998). *Plant Physiology*:2nd ed., pp 287-297, Sinauer Associates Inc. Publishers, Sunderland Massachusetts.
- Tran, C. T., Sly, L. I., and Mitchell, D. A. (1998). Selection of a strain of Aspergillus for the production of citric acidfrom pineapple wastes in solidstate fermentation. *World J Microbiol. Biotechnol.*, Vol. 14, pp. 399-404.