Vol. 39(2), pp. 116-126, Dec. 2020 ISSN 1821-536X (print) ISSN 2619-8789 (electronic) **Tanzania Journal of Engineering and Technology** Copyright © 2020 College of Engineering and Technology, University of Dar es Salaam

Full Length Research Paper

Comparative Analysis of Multiplicative and Additive Noise Based Automated Regularizations in Non-Linear Diffusion Image Reconstruction

Chiza M. Christophe, Bua Anthony, Goodluck Kapyela, Abdi T. Abdalla

Department of Electronics and Telecommunications Engineering, College of Information and Computer Technology, University of Dar es Salaam, Tanzania ^{*}Corresponding author: <u>chizamwaka@gmail.com</u>

ABSTRACT

Multiplicative and additive noises are often introduced in image signals during the image acquisition process and result into degradation of image features. The work done by Perona and Malik in 1990 and its modified versions revolutionized the way through which noises or speckles are removed. The Perona-Malik model requires tuning of the regularization parameter to control and prevent staircase artifacts in restored images. The current manual tuning is a challenging and time consuming practice when a long queue of images is registered for processing. Attempt to automate the regularization parameter appeared in Perona-Malik model with self-adjusting shape-defining constant. Although both multiplicative and additive noise based automated regularizations were presented, the paper stayed silent on matters concerning the automation method that fits with speckle reduction. This paper therefore, presents a comparative analysis of additive and multiplicative noise based automated regularizations results and paired samples T-tests reveal that the multiplicative noise based automation outperforms the additive noise based automation for small speckle variances. However, the two automation methods do not significantly differ when large speckle variances are assumed.

Keywords: Additive Noise, Image Processing, Multiplicative Noise, Non-Linear Diffusion, Regularization.

INTRODUCTION

In image acquisition process, coherent or in-phase waves are usually projected towards the target object. Depending on imagery mechanisms, different types of waves are used in capturing the image. For example, coherent radiation of micro electromagnetic waves is used in synthetic aperture radar imaging, high energy electromagnetic waves are used in X-ray imaging, coherent light waves are used in laser imaging, and acoustic or sound waves are used in ultrasound imaging (Raney, 1998; Huang *et al.*, 2009; Liu *et al.*, 2013; Bharathi *et al.*, 2014; Adabi *et al.*, 2017; Kessy *et al.*, 2017a). When the

transmitted waves reach the target object, they are reflected back to an active sensor for image reconstruction (Chen et al., 2019). Due to the variation and in homogeneity of object characteristics and dimensions, these waves are often back scattered into multipath components that travel different distances to reach the sensor location. Most often, the back scattered waves interfere constructively or destructively generating speckles characterized by black and light spots on images (Kessy et al., 2017a). Speckles significantly undermine the quality and usefulness of images because they corrupt and hide textures and edges that are crucial for accurate assessment of the captured Comparative Analysis of Multiplicative and Additive Noise Based Automated Regularizations in Non-Linear Diffusion Image Reconstruction

scene or extraction and recognition of features and patterns from images (Meenakshi and Punitham, 2011).

Attempts to generate speckle free images came up with different type of filters whereby the image pixel is replaced by an estimated value. During the emerging age of image processing, spatial or linear filters were proposed to approximate pixels' values based on local statistics of the image. These filters include, but not limited to, the Frost filter that replaces the central pixel by a weighted sum of neighboring pixels, Lee and Wiener filters that smoothen the image on variance basis, and Gamma Map filter that estimates the pixel value based on Gamma estimation of contrast ratios (Mansourpour et al., 2000; Chopra and Anand, 2014; Jaybhay and Shastri, 2015). Despite the merits of linear filters in generating speckle free images, they are associated with high degree of blurs and distortions of textures and edges (Jaybhay and Shastri, 2015).

To address this weakness of linear filters, Perona and Malik proposed a nonlinear diffusion filter to smoothen internal regions of the image while fleeing regions where sharp contrast variations or edges are detected (Perona and Malik, 1990). The Perona-Malik model significantly attracted scholars' attention due to its edge preservation capabilities. This attraction is characterized by several modifications of the Perona-Malik model that are published in different journals (Guo et al., 2012; Kessy et al., 2017a; Kessy et al., 2017b; Maiseli et al., 2018). These works are establishing stable and accurate models that deal with different noise variants and staircase artifacts caused by the ill-posed associated with aspect the partial differentiation applied in the Perona-Malik kernel (Liu et al., 2013; Jain and Ray, 2019; Yao et al., 2019). In general, the Perona-Malik model is made of a diffusion kernel functional that approximates the pixel value and the regularization term,

which has been added to control the illposed aspect of the model and prevents staircase artifacts in the despeckled image.

The classical regularization requires manual tuning of the Lagrange multiplier or regularization parameter. This manual tuning consumes time and is harmful in domains that operate under high workload and high-level of accuracy (Maiseli et al., 2018). The regularization parameter should be correctly chosen so that a proper image can be recovered (Liu et al., 2013). The study that automates the regularization parameter is presented in Perona-Malik model with self-adjusting shape-defining constant whereby automation analysis based on both additive and multiplicative noise models came up with two distinct automated regularization parameter formulae (Maiseli et al., 2018). However, authors did not present a formulation that fits with speckle granularities and proprieties. Therefore, this paper presents a comparative analysis of multiplicative and additive noise based automated regularizations that establish a general agreement for automated regularization in speckles reduction process.

MATERIALS AND METHODS

Modified Perona-Malik Models

The Perona-Malik filter was modelled based on the concept of anisotropic diffusion as presented by Fick's law (Perona and Malik, 1990; Paul and Laurila, 2014). The idea behind the modelling was to smoothen internal regions of the image while fleeing regions with sharp contrast variations or edges (Perona and Malik, 1990; Maiseli *et al.*, 2018). The fleeing of regions was achieved through adaptive diffusion under assumption that stronger smoothing is needed in areas with large diffusivity value and vice versa. A high norm of the gradient is measured in area with smaller

Perona-Malik model mainly focus on the

manipulation of either diffusion Kernel

functional or the regularization term.

including, but not limited to, the

evolution equations in equations (1), (2),

equations

convincing

were

results

evolution

with

diffusivity value, which predicts the location of edges in an image and hence no or less smoothing should be applied. The Perona-Malik model incorporates the diffusion Kernel functional that approximates the pixel value and the regularization term that controls the illposed aspect of the model and prevents staircase arti image. There

Different

derived

Automation Regularization of the **Parameter**

Lagrange multiplier or regularization parameter enables the adjustment between the despeckled image and the noisy image during a specific iteration. This parameter is tuned to control and prevent staircase artifacts in the restored image and therefore, different images may require different values. The work done by Maiseli et al. (2018) proposed an automated regularization parameter based on the local information of an image. Authors assumed an optimal solution for the evolution equation (1) such that $\frac{\partial u}{\partial t} \to 0$ for $t \to \infty$, and the resulting equation was multiplied by (u - f), as given by equation (7).

Equation (7) was then modified by assuming that the noise variance is known so as to obtain equation (8) or the automated value of λ .

$$(x,t) \in \Omega \times (0,T)$$

$$u(x,0) = f, x \in \Omega$$
 (5)

$$\frac{\partial u}{\partial \overline{n}} = 0, (x, t) \in \partial \Omega \times (0, T)$$
.....(6)

The function \boldsymbol{u} represents the speckle free image, f represents the noisy image, div denotes the divergence, ∇ denotes the gradient, k symbolizes the shape-defining constant. Also, the supporting domain is represented by Ω in which (x,t) captures the despeckled image in spatial and time domain.

Tanzania Journal of Engineering and Technology (Tanz. J. Engrg. Technol.), Vol. 39 (No. 2), Dec. 2020 118

Comparative Analysis of Multiplicative and Additive Noise Based Automated Regularizations in Non-Linear Diffusion Image Reconstruction

$$0 = (u-f)div\left(\frac{1}{1+\left(\frac{|\nabla u|}{k}\right)^2}\nabla u\right) - \lambda(u-f)^2 \dots (7)$$

$$\lambda = \frac{1}{|\Omega| \times \delta_{\alpha}^2} \int_{\Omega} (u - f) div \left(\frac{1}{1 + \left(\frac{|\nabla u|}{k}\right)^2} \nabla u \right) dx, \qquad (8)$$

where δ_a^2 represents the variance of a zero mean additive noise as given by equations (10). It should be noted that equation (9) represents the mean value formulation of the additive noise.

$$\frac{1}{|\Omega|} \int_{\Omega} n \, dx = 0.$$

$$\lambda = \frac{1}{|\Omega| \times \delta_m^2} \int_{\Omega} \left(1 - \frac{f}{u}\right) div \left(\frac{1}{1 + \left(\frac{|\nabla u|}{k}\right)^2} \nabla u\right) dx$$

where δ_m^2 represents the variance of the multiplicative noise as given by equation (13). Equation (12) provides the mean value formulation of the multiplicative noise.

RESULTS AND DISCUSSION

The additive and multiplicative noise based automated regularization parameters were incorporated subsequently in all the evolution equations presented in equations (1), (2), (3) and (4). Simulations were run for the peak signal to noise ratio (PSNR) and the structure similarity index (SSIM) to measure the noise removal and the feature preservation capabilities, respectively (Kessy et al., 2017a; Maiseli et al., 2018). The shape-defining constant (K) was set to 1.96 where 1000 iterations were performed for each noise level. Also, a 300 by 300-pixel size synthetic image was used in simulations. This image was used for all the methods based on the fact that the paired samples T-test imposes the

Accordingly, equation (2) was used to derive the automated parameter λ , as given by equation (11).

evaluation of objects under the same condition.

Table 1 presents PSNR values obtained from several experiments using MATLAB image processing tool box with small scaled noise variances. Pair 1, Pair 2, Pair 3 and Pair 4 represent PSNR variations with noise variances for equations (1), (2), (3) and (4) automated with the additive noise based automation (AA) and multiplicative noise based automation (MA). To perform comparisons for further understating of the noise removal capability of the automation methods, statistical summaries were established as in Table 2. It was observed that the mean of MA leads in all the table entries and hence it deserves superior considerations.

Small scaled					P	SNR				
variance	Pa	ir 1	Pai	ir 2	Pai	ir 3	Pa	ir 4	SumF	PSNR
	AA	MA	AA	MA	AA	MA	AA	MA	AA	MA
0.1	18.5425	22.6123	22.0450	30.1008	21.0624	30.4488	18.9008	27.6904	80.55074	110.8524
0.2	18.9202	22.8841	30.2450	30.1709	24.2719	30.3520	30.1239	29.7461	103.5610	113.1532
0.3	20.5696	30.2261	25.4945	30.0594	19.6592	29.4966	29.5660	29.3836	95.28932	119.1658
0.4	20.402	30.1302	29.6966	30.2961	28.6797	30.1043	23.2274	29.6318	102.0058	120.1625
0.5	18.5455	30.1162	29.0758	29.9763	30.7103	29.7688	29.4414	29.1111	107.7732	118.9724
0.6	20.0194	27.9052	30.1403	30.2454	31.0339	30.5161	29.9070	29.5448	111.1007	118.2116
0.7	21.2470	30.0090	30.0784	30.0631	28.9393	29.9165	24.1295	29.4717	104.3942	119.4604
0.8	18.4676	30.0649	30.1816	30.2190	21.1227	29.5382	26.4952	29.4213	96.26721	119.2435
0.9	21.3050	30.0867	30.0583	30.0620	28.0787	30.1121	26.1094	29.1719	105.5514	119.4328
1	22.0387	30.1865	30.1034	30.2197	30.6818	29.9381	29.9743	29.4846	112.7983	119.8290

Table 2: Paired samples statistics of PSNR for small scaled speckle variances

Automa	ated Pair	Mean	Std. Deviation
Pair 1	MA	28.4221	3.0701
	AA	20.0057	1.3188
Pair 2	MA	30.1412	0.1031
	AA	28.7118	2.7501
Pair 3	MA	30.0191	0.3562
	AA	26.4240	4.4615
Pair 4	MA	29.2657	0.5855
	AA	26.7875	3.7751
Sum SSIM	MA	117.8484	3.1702
	AA	101.9292	9.3776

Furthermore, to establish a proper conclusion about this outperformance, paired samples T-tests were used to confirm whether the observed means significantly differ. From Table 3 in Pair 1 entry, the Paired samples T-test t (9) =10.0870 reveals that the means 28.4221 \pm 3.0701 and 20.0057 ± 1.3188 significantly differ at 95% confidence interval of difference with a p value or Sig.(2-tailed) of 0.000 < 0.05. This observation validates the outperformance of the multiplicative noise based automation over the additive noise based automation when the evolution equation (1)is assumed. The

outperformance was also validated for evolution equation (3) and evaluation equation (4) giving p values of 0.0290 and 0.0470, respectively, which are less than 0.05. Unlike this three entries, the means for evolution equation (2) do not significantly differ because the p value was 0.131 > 0.05. The general agreement is that the multiplicative noise based automation should be considered because, despite its high mean values, the sum PSNR's means significantly differ with p value of 0.0000 < 0.05. Comparative Analysis of Multiplicative and Additive Noise Based Automated Regularizations in Non-Linear Diffusion Image Reconstruction

			Paired Dif				
				95% Confidence Interval of the			
			Std.	Difference			Sig.
		Mean	Deviation	Lower	Upper	t	(2-tailed)
Pair 1	MA - AA	8.4163	2.6384	6.5289	10.3037	10.0870	0.0000
Pair 2	MA - AA	1.4293	2.7183	-0.5152	3.3739	1.6630	0.1310
Pair 3	MA - AA	3.5951	4.3747	0.4656	6.7246	2.5990	0.0290
Pair 4	MA - AA	2.4782	3.3992	0.0465	4.9099	2.3050	0.0470
Sum PSNR	MA – AA	15.9191	7.8085	10.3332	21.5050	6.4470	0.0000

Table 3: Paired sam	ples tests of PSNR fo	r small scaled speckle variances
---------------------	-----------------------	----------------------------------

The two automation methods behaved differently depending on the considered noise variance. Table 4 presents the raw data of PSNR obtained when large scaled noise variances were assumed. Also, statistical analysis was done to establish

fair comparisons between the PSNRs for additive and multiplicative based automation methods when an image with large scaled speckle variances is assumed, as in Tables 5 and 6.

Table 4. I brok for large scaled speckle va	rances

Large	PSNR									
variances	Pai	ir 1	Pai	ir 2	Pai	ir 3	Pai	r 4	Sum l	PSNR
	AA	MA	AA	MA	AA	MA	AA	MA	AA	MA
10	27.0330	30.1844	30.2344	30.2496	29.7193	30.0672	29.0594	29.2341	116.0462	119.7354
20	20.6301	30.2413	30.0632	30.0637	29.5610	30.2809	30.0694	29.5148	110.3239	120.1009
30	30.2227	30.0640	30.2154	30.2187	30.2977	30.1583	29.4830	29.4170	120.2189	119.8582
40	27.3743	30.2173	30.0657	30.0633	29.833	30.0263	29.7131	29.3120	116.9862	119.6191
50	30.0132	30.0643	30.2258	30.2262	29.9713	30.1898	28.7070	29.1189	118.9175	119.5993
60	28.0792	30.2191	30.2719	30.2699	29.9109	30.0761	29.5003	29.3179	117.7624	119.8832
70	30.3061	30.2139	30.2492	30.2505	30.2476	30.1007	29.3327	29.5043	120.1357	120.0695
80	30.3305	30.2502	30.1721	30.1687	30.2563	30.0607	29.27084	29.3134	120.0298	119.7931
90	30.4348	30.4207	30.0252	30.0251	30.1577	30.4040	29.2433	29.3128	119.8611	120.1627
100	30.0383	30.0256	30.4205	30.4221	30.2574	30.3356	29.4211	29.3401	120.1375	120.1234

The same as for small scaled noise variances, the multiplicative noise based automation presents high mean values in most of the entries for large scaled variances as in Table 5. The application of paired samples T-tests reveals that the outperformance of the multiplicative noise based automation is not significant for large scaled variance under all the

evolution equations. This is because all the **p** values or Sig. (2-tailed) in Table 6 are not less than 0.05. For example, Paired samples T-test t(9) = 1.7990 reveals that the means 30.1900 ± 0.1156 and 28.4462 ± 3.0456 do not significantly differ at 95% confidence interval of difference with a **p** value or Sig.(2-tailed) of 0.1060 > 0.05.

Automa	ated Pair	Mean	Std. Deviation	
Pair 1	MA	30.1900	0.1156	
	AA	28.4462	3.0456	
Pair 2	MA	30.1958	0.1196	
	AA	30.1943	0.1183	
Pair 3	MA	30.0212	0.2604	
	AA	30.1958	0.1196	
Pair 4	MA	29.3385	0.1184	
	AA	29.3800	0.3653	
Sum SSIM	MA	119.8945	0.2102	
	AA	118.0419	3.0963	

Table 6: Paired samples tests of PSNR for large scaled speckle variances

			Paired				
			Std.	95% Confidence Interval of the Difference			Sig.
		Mean	Deviation	Lower	Upper	t	(2-tailed)
Pair 1	MA - AA	1.7438	3.0659	-0.4493	3.9371	1.7990	0.1060
Pair 2	MA - AA	0.0014	0.0052	-0.0023	0.0052	0.8690	0.4080
Pair 3	AA - MA	-0.1745	0.2437	-0.3489	-0.0001	-2.2650	0.0500
Pair 4	MA - AA	-0.0414	0.2851	-0.2454	0.1624	-0.4600	0.6560
Sum PSNR	MA - AA	1.8525	3.1101	-0.3722	4.0774	1.8840	0.0920

The structure similarity index denoted as SSIM, measures the edges or textures recovery capability for several despeckling methods. The higher the SSIM value the better the performance in recovering useful features of the image. Like for the PSNR, Table 7 presents the raw data of SSIM obtained from several experiments in which small scaled noise variances were manipulated.

For comparisons purposes, statistical summaries were established whereby it was observed that the multiplicative noise based automation (MA) presents higher mean values compared to the additive noise based automation, as in Table 8. The same as for PSNR, paired samples T-tests

were used to establish a proper conclusion about the difference between mean values of SSIM for the two automation methods. From Table 9 in Pair 1 and Pair 3 entries, the outperformance of the multiplicative based automation is validated by the Ttests because the p values of 0.000 and 0.0360 are less than 0.05. In contrast, values of Pair 2 and 4 are greater than 0.05 and hence the differences are not significant in these two cases. In light of the high mean values in most of the entries and the significance of difference in the sum SSIM entry, the multiplicative noise based automation should be used for more texture and edges recovery when small scaled variances are assumed.

Small		SSIM								
scaled										
variances	Pai	ir 1	Pai	ir 2	Pai	ir 3	Pai	ir 4	Sum	SSIM
	AA	MA								
0.1	0.1326	0.5623	0.4506	0.9512	0.8858	0.9514	0.2127	0.8835	1.6817	3.3484
0.2	0.1570	0.5722	0.9753	0.9518	0.6315	0.9519	0.8805	0.8849	2.6443	3.3608
0.3	0.2282	0.9650	0.7442	0.9508	0.6822	0.9509	0.8844	0.8843	2.5390	3.7511
0.4	0.2464	0.9852	0.9684	0.9584	0.9312	0.9522	0.8693	0.8846	3.0155	3.7805
0.5	0.1388	0.9852	0.8871	0.9512	0.9512	0.9511	0.8833	0.8833	2.8605	3.7709
0.6	0.2111	0.8154	0.9571	0.9511	0.9509	0.9510	0.8841	0.8844	3.0033	3.6019
0.7	0.3248	0.9849	0.9534	0.9510	0.9314	0.9508	0.8536	0.8847	3.0632	3.7715
0.8	0.0128	0.9522	0.9548	0.9509	0.7029	0.9513	0.8694	0.8851	2.5400	3.7395
0.9	0.3528	0.9528	0.9564	0.952	0.9127	0.9517	0.8624	0.8844	3.0843	3.7410
1	0.4068	0.9538	0.9526	0.9513	0.9463	0.9514	0.8766	0.8844	3.1824	3.7410

Table 7: SSIM for small scaled speckle variances

Table 8: Paired samples statistics of SSIM for small scaled speckle variances

Automa	ated Pair	Mean	Std. Deviation
Pair 1	MA	0.8729	0.1685
	AA	0.2211	0.1180
Pair 2	MA	0.9520	0.0022
	AA	0.8800	0.1659
Pair 3	MA	0.9514	0.0004
	AA	0.8526	0.1271
Pair 4	MA	0.8844	0.0005
	AA	0.8077	0.2092
Sum SSIM	MA	3.6607	0.1689
	AA	2.7615	0.4451

In terms of SSIM, the two automation methods also behaved differently on noise variance basis. Table 10 presents the raw data of SSIM obtained when large scaled noise variances were assumed. Also, for fair comparisons between the automation methods, statistical analysis was used as in Table 11 and 12. It was observed in Table 11 that the multiplicative noise based automation presents high mean values in most of the entries for large scaled variances. To establish conclusions about this outperformance, significance tests were performed as in Table 12.

From Table 12, it was observed that all the *p* values represented by Sig.(2-tailed) are greater than 0.05, which means that there is no significant difference between the results from multiplicative and additive noise based automations. This aspect indicates that any automation method can be used when large scaled noise variances are assumed.

		Paired Differences					
			Std.	95% Confidence Interval of the Difference			Sig.
		Mean	Deviation	Lower	Upper	t	(2-tailed)
Pair 1	MA - AA	0.6517	0.1688	0.5309	0.7725	12.2060	.0000
Pair 2	MA - AA	0.0719	0.1654	-0.0463	0.1903	1.3760	.2020
Pair 3	MA – AA	0.0987	0.1272	0.0077	0.1897	2.4550	.0360
Pair 4	MA - AA	0.0767	0.2089	-0.0727	0.2262	1.1601	.2750
Sum SSIM	MA - AA	0.8992	0.3543	0.6457	1.1527	8.0250	.0000

Table 9: Paired Samples Tests of SSIM for Small scaled speckle Variances

Table 10: SSIM for Large-scaled Speckle Variances

Large	SSIM									
scaled										
variance	Pair 1		Pair 2		Pair 3		Pair 4		Sum SSIM	
	AA	MA	AA	MA	AA	MA	AA	MA	AA	MA
10	0.7485	0.9523	0.9506	0.9511	0.95203	0.9521	0.8846	0.8847	3.5358	3.7403
20	0.4621	0.9850	0.9510	0.9510	0.9518	0.9519	0.8848	0.8849	3.2497	3.7729
30	0.9787	0.9509	0.9507	0.9509	0.9514	0.9513	0.8844	0.8844	3.7653	3.7377
40	0.7822	0.9509	0.9520	0.9519	0.9506	0.9506	0.8830	0.8830	3.5678	3.7365
50	0.9638	0.9519	0.9514	0.9514	0.9525	0.9526	0.8836	0.8837	3.7514	3.7396
60	0.8356	0.9511	0.952218	0.9520	0.9514	0.9514	0.8843	0.8843	3.6236	3.73897
70	0.9582	0.9521	0.95147	0.9516	0.9515	0.9514	0.8850	0.8850	3.7461	3.7402
80	0.96	0.9516	0.951068	0.9509	0.9519	0.9519	0.8846	0.8846	3.7476	3.7391
90	0.9581	0.9522	0.950771	0.9506	0.9517	0.9518	0.8843	0.8843	3.7450	3.7390
100	0.9523	0.9508	0.952115	0.9521	0.9517	0.9518	0.8848	0.8848	3.7410	3.7395

Table 11: Paired Samples Statistics of SSIM for Large-scaled Speckle Variances

Automa	ated Pair	Mean	Std. Deviation		
Pair 1	MA	09548	0.0105		
	AA	0.8599	0.1633		
Pair 2	MA	0.9514	0.0005		
	AA	0.9513	0.0005		
Pair 3	MA	0.9517	0.0005		
	AA	0.9517	0.0005		
Pair 4	MA	0.8844	0.0006		
	AA	0.8843	0.0006		
Sum SSIM	MA	3.7424	0.0107		
	AA	3.6473	0.1634		

		Paired Differences					
			Std.	95% Confidence Interval of the Difference			Sig.
		Mean	Deviation	Lower	Upper	t	(2-tailed)
Pair 1	MA – AA	0.0949	0.1724	-0.0284	0.2183	1.7410	0.1160
Pair 2	MA – AA	0.0000	0.0001	-0.0000	0.0001	0.7230	0.4880
Pair 3	MA – AA	0.0000	0.0000	-0.0000	0.0000	1.7040	0.1230
Pair 4	MA – AA	0.0000	0.0000	-0.0000	.00005	1.9670	0.0810
Sum SSIM	MA – AA	0.0950	0.1725	-0.0284	0.2184	1.7410	0.1160

Table 12: Paired Samples test of SSIM for	or Large-scaled Speckle Variances
---	-----------------------------------

CONCLUSIONS

This work has established a comparative analysis of additive and multiplicative noise based automated regularizations in nonlinear diffusion image processing based on four modified versions of the Perona-Malik model. The simulation and paired samples **T**-tests results revealed that the multiplicative noise based automation presents convincing results compared to the additive noise based automation for small speckle variances while performances of the two automation methods do not significantly differ for large speckle variances. It should be noted that the multiplicative noise based automation stay quasi stable after attaining the peak value and therefore, it is recommended for speckle reduction. The multiplicative and additive noise variances are assumed known in priori and that this is not the case in real environment. Therefore, to fully automate the regularization parameter, the noise variance should be estimated based on speckles distribution in the image. The estimation of speckle noise variances remains an open research problem for future studies.

REFERENCES

Adabi S., Conforto S., Clayton A.,

Podoleanu A.G., Hojjat A. and Avanaki M.R.N. (2017). An Intelligent Speckle Reduction Algorithm for Optical Coherence Tomography Images. International conference on photonics, optics and laser technology, IEEE 4: 40-45. DOI:

10.5220/0005744700380043

- Bharathi K.K., Muruganand S. and Periasamy A. (2014). Digital Image Processing Based Noise Reduction Analysis of Digital Dental Xray Image Using MATLAB, Journal of NanoTechology, NonoScience and 2(2): 198–203. Corpus ID: 55951350
- Chen M., Zhang H., Han Q., and Huang, C.C. (2019). A convex nonlocal total variation regularization algorithm for multiplicative noise removal. EURASIP Journal Image Video Proc., 28 https://doi.org/10.1186/s13640-019-0410-2
- Chopra N. and Anand A. (2014). Despeckling of Images Using Wiener Filter in Dual Wavelet Transform Domain, International Journal ofComputer Science and Information Technologies 5(3): 4069–4071.
- Guo Z., Sun J., Zhang D. and Wu B. (2012). Adaptive Perona-Malik Model Based on the Variable Exponent for Image Denoising. IEEE Trans. Image Process, 21(3): 958-967. DOI: 10.1109/tip.2011.2169272

- Huang S.Q., Liu D.Z., Gao G.Q. and Guo X.J. (2009). A Novel Method for Speckle Noise Reduction and Ship Target Detection in SAR Images. Pattern Recogn., 42(7): 1533–1542.
- Jain S.K. and Ray R.K. (2019). Non-Linear Diffusion Models for Despeckling of Images : Achievements and Future Challenges, IETE Technical Review. Taylor and Francis Online, 37(1):: 66-82. <u>https://doi.org/10.1080/02564602.2019.</u> 1565960
- Jaybhay J. and Shastri R. (2015). A Study of Speckle Noise Reduction Filters, Signal and Image Processing: An International Journal, 6(3): 71–80. DOI:10.5121/sipij.2015.6306
- Kessy S.J., Msuya H.G., Kisangiri M. and Maiseli B.J. (2017a). Diffusion-Steered Denoising Framework for Suppressing Multiplicative Noise in Ultrasonograms, African Journal of Applied Research, 3(2): 58–72. <u>https://doi.org/10.1016/j.ipl.2018.04.01</u> <u>6</u>
- Kessy S.J, Maiseli B. and Kisangiri M. (2017b). Hybrid Diffusion-Steered Model for Suppressing Multiplicative Noise in Ultrasonograms, Signal & Image Processing: An International Journal (SIPIJ), 8(4): 1–13. <u>DOI :</u> <u>10.5121/sipij.2017.8401</u>
- Liu J., Huang T., Xu Z. and Lv X. (2013). High-Order Total Variation-Based Multiplicative Noise Removal with Spatially Adapted Parameter Selection. Journal of the Optical Society of America A, 30(10): 1956-1966. <u>https://doi.org/10.1364/JOSAA.30.0019</u> <u>56</u>
- Maiseli B., Msuya H., Kessy S. and Kisangiri M. (2018). Perona-Malik

model with self-adjusting shapedefining constant. Information Processing Letters, 137: 26–32. <u>https://doi.org/10.1016/j.ipl.2018.04.01</u> 6

- Mansourpour M., Rajabi M.A. and Blais, J.A.R. (2006). Effects and Performance of Speckle Noise Reduction Filters on Active Radar and SAR Images, Proceedings of the ISPRS Ankara Workshop, Ankara, Turkey.
- Meenakshi A.V. and Punitham V. (2011). Performance of Speckle Noise Reduction Filters on Active Radar and SAR Images, International Journal of Technology and Engineering System, 2(1): 111–114.
- Paul A., Laurila T., Vuorinen V. and Divinski S.V. (2014). Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer International Publishing, Switzerland. ISBN 978-3-319-07461-0
- Perona P. and Malik J. (1990). Scale-Space and Edge Detection Using Anisotropic Diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12(7): 629--639. DOI: <u>10.1109/34.56205</u>
- Raney R.K. (1998). Radar Fundamentals: Technical Perspective. Chapter 2 in Principles and Applications of Imaging Radar, Manual of Remote Sensing. 3rd Edition. John Wiley and Sons Inc., Toronto: ASPRS.
- Yao W., Guo Z., Sun J., Wu B. and Gao H. (2019). Multiplicative Noise Removal for Texture Images Based on Adaptive Anisotropic Fractional Diffusion Equations, SIAM J. Imaging Sciences, 12(2): 839–873. DOI: 10.1137/18M1187192