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Abstract 
 

   The proportion of zero defect (ZD) outputs is as an integral characteristic of a zero-inflated (ZI) process or high quality 

process. Different ZI processes can almost equally satisfy the same USL of number of defects but they can produce substantially 

different proportions of ZD products. The application of conventional method for process capability evaluation fails to 

discriminate these processes because in the conventional method, the process capability is evaluated taking into consideration 

the USL of number of defects only. In this paper, a new measure of process capability for ZI processes is proposed that can truly 

discriminate different ZI processes taking into account the USL of number of defects as well as the proportion of ZD units 

produced in these processes. In the proposed approach, at first a measure of process capability index (PCI) with respect to the 

USL is computed, and then the overall PCI is obtained by multiplying it with an appropriately defined multiplying factor. A real-

life application is presented. 
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1. Introduction 

 

Rapid technological advancement and implementation of automation and computerization have resulted in high quality processes 

in many manufacturing industries. In these processes, most of the time the process is in its perfect state and during this period, 

defects are rarely observed i.e., almost all the produced items are having zero number of defect. These zeros are known as 

structural zeros (Hu et al., 2011; Zamzuri, 2015). But when there is an equipment or process problem (alternatively called random 

shock), defects may occur. The number of defects in items are often modelled by a Poisson distribution or a negative binomial 

distribution. Such high quality manufacturing processes are often referred to as zero-inflated (ZI) processes with random shocks 

(Xie and Goh, 1993; Xie et al., 1995; Chang and Gan, 1999) or simply zero-inflated (ZI)  processes (Lambert, 1992; Sim and Lim, 

2008). Because of presence of the structural zeros, number of defects in a sample of size � collected from a ZI process always 

contains more number of zero defect (ZD) products than are expected under chance variation of the Poisson or negative binomial 

distribution. These extra zeros cause overdispersion (i.e. variance be larger than the mean). When the underlying defect 

distribution is Poisson, the process is called as ZI Poisson (ZIP) process and when the underlying defect distribution is negative 

binomial, the process is called as ZI negative binomial (ZINB) process. The ZIP model is generally used where the overdispersion 
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is solely caused by the extra zeros. For count data where the overdispersion is caused by excess zeros and also by unobserved 

heterogeneity, the ZINB model is usually used (Phang and Loh, 2013; Chaney et al., 2013).  

In literature, several propositions are reported on the control and monitoring of ZI processes (Chang and Gan, 1999; Sim and 

Lim, 2008; Zamzuri, 2015; Rakitzis et al., 2017; Tian et al., 2019; Alevizakos and Koukouvinos, 2021). A detailed review on the 

past and current trends for the models and monitoring of ZI processes is available in Mahmood and Xie (2019). Zhang and Yi 

(2022) have discussed about the Zero-inflated Poisson models with measurement error in the response. Tian et al. (2022) 

introduced  the zero-inflated non-central negative binomial (ZINNB) distribution and presented the maximum likelihood 

estimation method for estimation of the parameters of the ZINNB distribution.  In a manufacturing set up, process capability 

analysis of ZI process or high quality process has also an important role in the context of quality control. In order to survive in 

today's highly competitive markets, manufacturers need to produce items from a high quality process. Also, manufacturers place 

their orders only to those vendors who have high quality processes. Selection of the best vendor among the competing vendors 

having high quality processes is an important issue to these manufacturers. It is also of interest to know how well a high quality 

process will hold the specifications.  

To the best of our knowledge, only Patil and Shirke (2012) and Pal and Gauri (2021) have attempted to measure capability of 

a ZI process. Number of defects is mainly smaller-the-better (STB) type of quality characteristic and the specified requirement for 

number of defects is usually defined in terms of upper specification limit (USL) of number of defects in a unit product. Patil and 

Shirke (2012) have modified the Perakis and Xekalaki (2005) proposed ���� index by incorporating the inflation of zero parameter 

into ���� index, and applied it for measuring the capability of a ZI Poisson (ZIP) process. But it fails to represent the true 

capabilities of ZI processes consistently. Particularly, for small value (≤ 0.5) of inflation of zero parameter, the value of the process 

capability index becomes unusually high, which gives a wrong impression about the capability of the concerned process. On the 

other hand, Pal and Gauri (2021) evaluated the capability of a ZIP process with respect to the USL by applying the concept of 

Borges and Ho (2001). Pal and Gauri's (2021) approach ensure that the computed capability index has a one-to-one 

correspondence with the expected nonconformance and it is not unreasonably high. However, they ignored the count of ZD 

products produced in a ZI process. Because of that, Pal and Gauri (2021) proposed approach fails to discriminate the ZIP processes 

which produces different proportions of ZD units but having the same proportion of nonconforming items with respect to the USL 

of number of defects.  

Different ZI processes can almost equally satisfy the same USL of number of defects but they can produce substantially 

different proportions of ZD products. Obviously, the most desirable process is one in which the proportion of ZD products is the 

maximum. Therefore, the proportion of ZD outputs should be considered as an integral characteristic of a ZI process, and a 

measure of process capability of a ZI process should reflect the same. This is possible only if a lower specification limit (LSL) for 

the proportion of ZD products is taken into consideration along with the USL of number of defects. In such a case, the two 

different specification limits are for two different types of attribute quality characteristics – LSL for proportion of ZD products and 

USL for number of defects in a unit. The number of ZD items follows a binomial distribution whereas the number of defects in 

items follows a Poisson or negative binomial distribution. Finding indices for these two different type of characteristics and 

combining them into a single index is a difficult task. No standard methodology can deal with such cases. 

In this paper, a new approach for measuring capability of a ZI process is proposed. In this approach, at first a measure of PCI 

with respect to the USL for defects is computed, which is then multiplied by a factor to obtain the overall PCI. The proposed index 

can truly discriminate the performances of different ZI processes. This article is organized as follows. The literature review is 

presented briefly in section 2. The proposed approach for evaluation of process capability of a ZI process is described in section 3. 

The results of a comparative study are discussed in section 4. Application of the proposed method to a real life problem is 

described in section 5. The article is concluded in section 6. 

 

2. Literature Review 

 

Capabilities of processes are assessed in terms of different indices, e.g. ��, ���, ���, and ���� (Kane, 1986; Kotz and Johnson, 

2002; Chen et al., 2017; Polhemus, 2018). Historically, these indices are developed for a product characteristic that can be 

described as a continuous variable and follows normal distribution. The generalisation of these indices for continuous nonnormal 

quality characteristics are suggested by Clements (1989), Pearn and Chen (1995), Goswami and Dutta (2013) etc. However, in 

reality, many quality characteristics are neither continuous variable, nor they follow normal distribution. These data (e.g. defect, 

error, defective items etc.) are typically obtained by counting and are known as attribute data, which usually follow Poisson or 

binomial distribution. Therefore, standard formulas cannot be used for computation of capability indices of a process involving 

such characteristics. To alleviate the problem, some generalized indices, e.g. �-index (Borges and Ho, 2001), �� index (Yeh and 
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Bhattacharya, 1998),  ��� index (Perakis and Xekalaki, 2005) and ��	 index (Maiti et al., 2010) are proposed in literature. These 

indices are applicable to any process regardless of whether the quality characteristic is discrete or continuous and irrespective of its 

underlying probability distribution. The attribute characteristics are usually smaller-the-better (STB) type and the requirements are 

specified by an USL. Thus, the appropriate generalized indices for these characteristics are ���, ��,  ���� and ��	�. Pal and Gauri 

(2020
a
, 2020

b
) have compared the relative accuracies of these one-sided generalized indices for binomial as well as Poisson 

processes and they recommended for using �� index for measuring capability of a Poisson or binomial process. It may be noted 

that in all these cases the process outputs are assumed to follow purely Poisson or purely binomial distribution, and it is further 

assumed that there is only USL for the process outputs. 

The quality revolution caused by an increasingly competitive global market since 1990s coupled with the rapid advancement 

of technologies and automation in today’s world has led to tremendous improvement in the quality of manufactured products.  One 

assumption is that these processes are so good that, in general, most of the produced items are defect-free and only a few defective 

items are produced because of random shocks in the process (Chang and Gan, 1999; Xie and Goh, 1993). The random shocks 

cause occurrences of defective items each containing one or more number of defects. The number of defects follows a Poisson or 

negative binomial distribution. Such high-quality processes usually have more count of zeros than are expected under chance 

variation of its underlying Poisson or other count distribution (Sim and Lim, 2008). These processes are usually referred to as ZI 

processes (Lambert, 1992; Sim and Lim, 2008), and these processes are modelled as a mixture of a degenerate distribution at zero 

and a Poisson or negative binomial distribution.  

There are many research articles on developing appropriate control charts for monitoring of ZI processes (Chang and Gan, 

1999; Sim and Lim, 2008; Zamzuri, 2015; Rakitzis et al., 2017; Tian et al., 2019; Alevizakos and Koukouvinos, 2021). However, 

only Patil and Shirke (2012) and Pal and Gauri (2021) have attempted to measure the capability of a ZI process. Patil and Shirke 

(2012) have modified the Perakis and Xekalaki (2005) proposed ���� index by incorporating the inflation of zero parameter into ���� index. But it fails to represent the true capabilities of ZI processes consistently. Particularly, for small value (≤ 0.5) of 

inflation of zero parameter, the value of their process capability index becomes unusually high, which gives a wrong impression 

about the capability of the concerned process. On the other hand, Pal and Gauri (2021) have applied the concept of Borges and Ho 

(2001) for measuring the capability of a ZI Poisson process. Pal and Gauri's (2021) approach ensure that the computed capability 

index never be unreasonably high and it has one-to-one correspondence with the expected nonconformance from the process. 

However, Pal and Gauri (2021) proposed approach fails to discriminate the ZI processes which produce different proportions of 

ZD units but having the same proportion of nonconforming items with respect to the USL of number of defects.  

 

3. The Proposed Approach for Evaluation of Capability of a Zero-inflated (ZI) Process 
 

Suppose, a ZI process has an upper specification limit (USL) for the maximum number of permissible defects/nonconformities in a 

unit, denoted by ���. Then the outputs of a ZI process can be classified into three categories: zero defect (ZD) units (i.e. outputs 

which contain no defect), acceptable (AC) units (i.e. outputs which contain number of defects/nonconformities ranging from 1 to ���) and nonconforming (NC) units (i.e. outputs which contain more than ��� number of defects/nonconformities). Suppose, the 

proportion of ZD units in the process is ���  and the LSL for proportion of ZD unit is specified as ���� . It may be noted that while 

number of ZD units in a sample follows binomial distribution, number of defects in a unit (�) follows Poisson distribution. 

One possible approach for assessing the overall capability of a ZI process can be evaluating separately the capability indices 

with respect to  ����  and ���, and then integrating the two indices into one index. But it seems to be quite a difficult task. 

Therefore, it is planned to obtain first a measure of process capability with respect to the USL (i.e. ���) and then to apply an 

appropriate multiplying factor taking into consideration the proportion of ZD units with respect to its specified limit. This will 

ensure that different ZI processes are discriminated properly even when they equally satisfy the given USL on the number of 

defects/nonconformities. 

Borges and Ho (2001) suggested a measure of process capability, called �-index, which has one-to-one correspondence 

(mapping) between the proportion of NC items produced in a process and Z-value of the standard normal distribution. When only 

USL is specified, in this approach, the expected proportion of NC items in a process with respect to USL is mapped to the Z-score 

in the right side of standard normal distribution, and 1/3rd of this Z-score is considered as the measure of the process capability 

with respect to USL and it is denoted as ��. Obviously, in this approach, �� responds to changes in the NC region and not to 

changes in the distribution of the observed quality characteristic. Consequently, computation of �� index is feasible in any process 

regardless of whether the quality characteristics are discrete or continuous and irrespective of their probability distributions. 

Another major advantage of �� is its interpretation, which is similar to the interpretation of the index computed from a normally 
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distributed process. Based on the value of ��, one can easily estimate the expected proportion of conforming outputs in the 

process, which is Φ(3��) where Φ(. ) denotes the standard normal cumulative distribution function. 

Therefore, it is proposed to obtain the measure of process capability of a ZI process with respect to USL by using Borges and 

Ho's (2001) approach. Suppose, the proportion of NC units in the process is ��� . Then we need to find out the Z-value in the right 

side of the standard normal distribution that results in probability area equal to ��� . Let �� is the value of Z that results in 

probability area ���  above it. The �� value can be obtained by using inverse cumulative probability of the standard normal 

distribution function as follows: �� = Φ��(1 − ���). Then the process capability index of the ZI process with respect to USL will 

be obtained as ����� = �
� × �� = �

� × Φ��(1 − ���). 

However, as mentioned earlier, count or proportion of ZD products produced is an important characteristics of a ZI process, 

and therefore, assessment of process capability ignoring the count of ZD products produced in a ZI process may be misleading. 

Different ZI processes can have the same proportion of nonconforming items (i.e. products having more than ��� number of 

defects), but they can produce different proportions of ZD products. Obviously, the most desirable process is one in which the 

proportion of ZD products is the maximum and the most undesirable process one in which the proportion of ZD products is the 

minimum. The overall measure of process capability of a ZI process should reflect the same. Suppose, there is a lower 

specification limit (LSL) for the proportion of ZD products produced in a ZI process and let it is denoted as ���� .  Now, if we 

consider ! = �"#�"#$%$  as an multiplying factor to ����� , then the above requirement will be satisfied.  For example, suppose three ZI 

processes equally satisfy the USL of number of defects, but proportions of ZD products produced in these processes are less than ����  (the LSL), equal to ����  and more than ���� , respectively. Then the values of the multiplying factors for these processes will be 

less than one, equal to one and more than one. This will imply that the overall process capability index will be the minimum for the 

first process and the maximum for the third process, which is expected under consideration of proportion of ZD products produced 

in these processes. Thus, the overall process capability index of a ZI process (����) can be obtained as  

                    ���� = ! × �����   

                           = �"#�"#$%$  × �
� Φ��(1 − ���) (1) 

If �&�� ≥ 1, the concerned ZI process will be considered capable of producing products satisfying both the LSL of proportion of 

ZD units (���� ) and the USL of number of  defects / nonconformities (���). Otherwise, the ZI process will be considered not 

capable of satisfying the LSL of proportion of ZD units and/or the USL of number of nonconformities. It is worth to mention that 

if the value of (1 − ���) is less than 0.5, then the value of �&�� will be negative. The value of 1 − ��� < 0.5 implies ��� > 0.5. It 

gives sufficient indication that the process is producing plenty of nonconforming units with respect to the USL of number of 

nonconformities, and thus the process is not capable at all. So it is recommended to consider �&�� = 0 if  1 − ��� < 0.5. This will 

ensure that the process capability index �&�� is always greater than or equal to zero.  

Again, when the value of proportion of NC units (���) is zero, the value of ����� = �
� Φ��(1) ≅ -

� = 1.33. In that case, 

depending on the proportion of ZD units (���) produced in the process and the LSL of proportion of ZD units (���� ), the maximum 

value of �&�� can be �.&��& = 1.33 × �/"#�"#0 . For example, in a high quality ZI process with zero NC unit, if the LSL of the proportion 

of ZD units, i.e. ����  is specified as 0.80, the maximum value of �&�� will not exceed  �.&��& = 1.33 × �.1
1.2 = 1.6625. 

 
3.1 Procedure for obtaining estimate of ���� 
An estimate of the overall process capability index (�.���) of a ZI process can be obtained using the following steps: 

1) Collect a sample of 5 units from the concerned zero-inflated (ZI) process and observe the numbers of nonconformities 

present in each of the sample items.  

Let the observed number of nonconformities in the sample units ranges from 6 = 0, 1, 2,...to m.  Suppose, number 

(frequency) of sample units each having exactly ‘6’ number of nonconformities is denoted by �7 (6 = 0, 1, 2,...,m). Then, the 

total number of nonconformities can be computed as 8 = ∑ 6 × �7�7:1 . 

2) Select an appropriate zero-inflated (ZI) probability distribution for describing the sample data. 

Zhao et al. (2009) and Kumar and Ramachandran (2020) have provided test procedures for checking zero-inflation in the 

process data. Generally ZI Poisson (ZIP) model is used for modelling ZI count data where the overdispersion is solely caused 

by the extra zeros. Yang et al. (2011) proposed a method for outlier identification and robust parameter estimation in a ZIP 
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process. For count data where the overdispersion is caused by excess zeros and also by unobserved heterogeneity, the most 

commonly recommended model is ZI negative binomial (ZINB). This is because it employs additional parameter that models 

additional variability (Chaney et al., 2013). Some other models that are used for such overdispersed count data are ZI double 

Poisson (ZIDP) model (Phang and Loh, 2013) and ZI generalized Poisson (ZIGP) model (Wagh and Kamalja, 2018). A few 

other models proposed in literature for modelling ZI data are Bayesian ZI regression model (Workie and Azene, 2021) and 

generalized linear mixed models (Favero et al., 2021). 

Since, in real life, most commonly ZIP model is used for modelling ZI count data, here the procedure for obtaining the 

estimate of ���� are described considering that the concerned process data is well modelled by ZIP distribution. If the random 

variable ; represents number of nonconformities presents in a unit product and ; follows ZIP distribution, the probability 

mass function (pmf) for ZIP model can be written as 

 

where Ω is the probability of occurrence of random shock and in this state of the process, nonconformities (defects) occur in 

the produced items according to Poisson distribution with parameter λ. The probability of occurrence of the other state is 1- 

Ω and in this state, only zero defect items are produced. The mean and variance of the ZIP distribution are <(;) = Ω= and >?@ (;) = Ω=A1 + (1 −  Ω)λC, respectively. 

3) Estimate the parameters of the selected ZI distribution from the observed count data. 

The parameters Ω and λ can be estimated from the observed dataset by the method of maximum likelihood (Xie and Goh, 

1993). The log-likelihood function of Ω and λ for the observed dataset can be written as 

D� E(Ω, =) = lnAIJ(; = 0)KLMC + ln A∏ IJ(; = 6)KLOC�7:�   
 

                        =  �1 D�P(1 − Ω) + ΩQ�RS + ∑ �7D� (Ω
TUVRO

7! )�7:�  (3) 

The partial derivatives of the log-likelihood function with respect to Ω and λ result in the following two likelihood equations: 

                    
LM(��XTUV)
(��Ω)XΩTUV + L�LM

Ω
= 0 

 (4) 

                   
�LMΩTUV

(��Ω)XΩTUV + �
R − (� − �1) = 0 

(5) 

The maximum likelihood estimates (MLEs) of Ω and λ can be obtained by solving these two likelihood equations and that 

can be executed by using enumerative search procedures. The values of Ω and λ that maximizes the log-likelihood function 

are the MLEs of Ω and λ respectively. A Chi-square goodness-of-fit test must be performed for checking the adequacy of the 

fitted model for the sample data.  

Suppose, the estimated parameters of the ZIP distributions are ΩY  and =.. 
4) Estimate the expected proportion of nonconforming units (�̂��) in the concerned ZI process.  

A unit will be considered nonconforming if the number of nonconformities in it is more than ���. Then ���  in the concerned 

ZIP process can be estimated as follows: 

              �̂�� = J(; > ���) = 1 − AJ(; = 0) + J(1 ≤ ; ≤ ���)C  

                    = 1 − \]^1 − ΩY_ + ΩYQ�RY` + ∑ ΩY RYaTUVY
	!

�b%$	:� c 
 

                    = ΩY^1 − Q�RY_ − ∑ ΩY RYaTUVY
	!

�b%$	:�  
(6) 

5) Estimate the expected proportion of zero defect units (def) in the concerned ZIP process. 

The estimated probability of occurrences of random shock is ΩY . Then, the probability of absence of random shock is 1 − ΩY , 

and in the absence of random shock only ZD products are produced.  On the other hand, when random shock takes place, the 

                        g(h; Ω, =) = j(1 − Ω) + ΩQ�R      for h = 0              
Ω

RaTUV
	!                       for h = 1,2,3, ..   n                           (2) 
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number of nonconformities in the produced items occurs according to Poisson distribution with parameter =.. Therefore, the 

probability of ZD products due to occurrences of random shock is  J(; = 0) = ΩQ�R. Thus, ���  in the concerned ZIP 

process can be estimated as follows: 

                      �̂�� = J(; = 0) =  ΩYQ�R + (1 − ΩY) (7) 

 

6) Finally, obtain the estimate of the overall process capability index (�.���) 
The estimate of the overall process capability index of the concerned ZI process can be obtained as follows: 

                             �.��� = �/"#�"#$%$ × �
� Φ��(1 − �̂��) (8) 

7)     Obtain the confidence interval of the estimated overall process capability index (oYdep) 
Since �.&�� is a point estimate obtained from sample data, it is necessary to construct confidence interval (CI) of the capability 

index �&�� for inference purpose, especially when the sample size is relatively small.  

It is known that the number of ZD units in a Poisson process follows a binomial distribution with parameters � (sample 

size) and proportion � = Q�R, where λ is the parameter of the Poisson process. Accordingly, the mean value and 95% 

confidence intervals of number of ZD items in a Poisson process with parameter λ can be estimated (using normal 

approximation of the binomial distribution) as follows: 

  Mean number of ZD units = ��̂ = �Q�RY and  

  95% CI of ZD units = q�Q�RY − 1.96 × s�Q�RY(1 − Q�RY), �Q�RY + 1.96 × s�Q�RY(1 − Q�RY)t  

Extending the same for a ZI Poisson process with parameters Ω and λ, the mean number of ZD units and 95% CI of ZD units 

in a ZI Poisson process can be estimated as follows: 

  Mean number of ZD units = ��̂�� = �P^1 − ΩY_ + ΩYQ�RY S   and  

  95% CI of ZD units = q��̂�� − 1.96 × s�Q�RY(1 − Q�RY), ��̂�� + 1.96 × s�Q�RY(1 − Q�RY)t 

It may be noted that the number of ZD products in a sample of size � collected from a ZI Poisson process cannot be less than �(1 − ΩY). 

Similarly, the mean number of NC units and 95% CI of NC units in a ZI Poisson process can be obtained as follows: 

   Mean  number of NC units = ��̂�� = � \ΩY^1 − Q�RY_ − ∑ ΩY RYaTUVY
	!�uv0	:� c and 

95% CI of NC units =P��̂�� − 1.96 × w��̂��(1 − �̂��), ��̂�� + 1.96 × w��̂��(1 − �̂��)S 
However, deriving the CI of �&�� taking into account the CIs of ZD and NC units is quite difficult. Hence, it is proposed to use 

Nagata and Nagahata (1994) proposed generalized approximation formula for construction of two-sided CI of �&��. According 

to Nagata and Nagahata (1994),  

       (1 − x)%  CI of �&�� =  q�.&�� − ���z{s �
|L + �.}"~

�(L��)  , �.&��& + ���z{ s �
|L + �.}"~

�(L��)t (9) 

where, x is the level of significance and (1- x) is the confidence coefficient. 

 
4. Comparative Study and Discussions 
 

For the purpose of the comparative study, a ZI Poisson process is considered where the USL for number of defects is 3. So the 

outputs of the process can be classified into following three categories: zero defect (ZD) units (i.e. outputs which contain no 

defect), acceptable (AC) units (i.e. outputs which contain 1-3 number of defects) and nonconforming (NC) units (i.e. outputs 

which contain more than 3 defects).  

In order to understand the possibilities of occurrence of number of units in these three categories, under different values of 

the parameters (Ω, =) of ZI Poisson distribution, a few theoretical computations are carried out. At first, maintaining = = 2 as 

constant, expected proportions of ZD, AC and NC units are computed under different values of Ω (probability of occurrence of 
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random shock). The results of these computations are presented in Table 1. It can be observed from Table 1 that the proportion of 

ZD units varies substantially depending on the values of Ω, although the parameter (λ) remains constant (here λ = 2).  

Table 1. Expected proportions of ZD, AC and NC units in ZI Poisson process when λ = 2 but Ω varies 

Defect categories 
Values of random shock probability (Ω)  

Ω = 0.15 Ω = 0.12 Ω = 0.10 Ω = 0.08 Ω = 0.05 

ZD (0 defect) 0.8703 0.8962 0.9135 0.9308 0.9568 

AC (1-3 defects)  0.1083 0.0866 0.0722 0.0578 0.0361 

NC (more than 3 defects) 0.0214 0.0172 0.0143 0.0114 0.0071 

Now it is tried to find out various combinations of Ω and λ values for ZI Poisson processes where the proportion of NC units is the 

same. Although there are many such combinations, only four ZI Poisson processes are chosen, where proportion of NC units is the 

same 0.01. Table 2 shows the values of the parameters of the chosen four ZI Poisson distributions and the expected proportions of 

ZD, AC and NC units in these ZI Poisson processes.    

Table 2. Parameters of ZI Poisson processes and expected proportions of different types of units  

Process 

number 

Parameters of ZI Poisson process Expected mean 

number of defects 

Expected proportions of 

Ω = ZD units AC units NC units 

1 0.20161 1.36263 0.2747 0.850 0.140 0.010 

2 0.16247 1.46699 0.2383 0.875 0.115 0.010 

3 0.12501 1.60900 0.2011 0.900 0.090 0.010 

4 0.08953 1.81849 0.1628 0.925 0.065 0.010 

Now process capability indices for these ZI Poisson processes are evaluated using Patil and Shirke (2012), Pal and Gauri (2021) 

and the proposed approaches. The results of these analysis are presented in Table 3. 

Table 3. Parameters of ZI Poisson processes and expected proportions of different types of units  

Process 

number 

Process parameters Estimates of  

Ω = 
Patil and Shirke’s �����  index  

Pal and Gauri's �� index 

Proposed �&�� index 

1 0.20161 1.36263 1.339 0.776 0.732 

2 0.16247 1.46699 1.662 0.776 0.754 

3 0.12501 1.60900 2.160 0.776 0.776 

4 0.08953 1.81849 3.016 0.776 0.797 

It can be noted that when Pal and Gauri's (2021) approach is used, the computed process capability indices are the same for all the 

four processes. This is because Pal and Gauri (2021) evaluated the capability of a ZI Poisson process considering only the 

proportion of NC units with respect to USL, and here, the proportion of NC units with respect to the USL is the same 0.01 for all 

the four processes. That is, the Pal and Gauri (2021) proposed approach fails to discriminate the ZI Poisson processes if the 

proportion of NC units is the same but proportion ZD units produced in these processes are different. On the other hand, the 

differences in the expected proportions of ZD units and/or AC units in different ZI Poisson processes are well reflected in the 

estimated process capability indices obtained by both Patil and Shirke’s (2012) approach and the proposed approach.  

However, the process capability indices obtained by Patil and Shirke’s (2012) approach seems to have interpretation issues. 

Traditionally, a value of process capability index equal to 0.776 implies that the process is capable of producing 99% conforming 

products; a value of process capability index equal to 1 implies that the process is capable of producing 99.865% conforming 

products and the capability of the process is considered good; a value of process capability index equal to 1.33 implies that the 

process is capable of producing 99.995% conforming products and the capability of the process is considered very good. It may be 

noted that all the four ZI Poisson processes considered here are capable of producing 99% conforming products and therefore, the 

expected values of the process capability indices should be around 0.776. The process capability indices obtained by the proposed 

approach satisfy this requirement. In addition, the proposed approach can also discriminate the ZI processes based on proportions 

of ZD items produced. On the other hand, the values of process capability indices obtained by Patil and Shirke’s (2012) approach 

are found to be substantially high, which gives a wrong impression about the capability of the concerned process.  
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5. The Real-life Application 

 

The motivation for the current study was a real life problem of an Indian automobile industry. One of the critical components used 

in the automobile industry is supplied by three vendors. The vendors are coded as A, B and C. The vendors’ processes are so well 

managed that most of the supplied components are usually free from defect barring a few items. Yet for ensuring adequate check 

on the quality of the component, a strict USL (��� = 3) is specified for the number of defects in a component. If any component 

contains more than three defects, it is considered nonconforming and gets rejected. The engineers of the company experienced that 

the performances of components differ considerably vendor wise when these components are used. So they were interested to 

assess the process capability of each vendor which will enable them for vendor selection objectively. 

Most of the components produced by the vendors are of zero defect (ZD). The overdispersion (variance more than mean) in 

the sample data is mainly caused by the excess number of zeros in the sample data. Hence, the underlying distribution of the 

number of defects are assumed to be ZI Poisson (ZIP). However, the goodness-of-fit tests are performed to verify the same after 

estimating the parameters of ZIP distribution from the sample data using the maximum likelihood method. It was highlighted to 

the engineers that the efficiency of a ZIP process should be judged not only taking into account the proportion NC products 

produced but also taking into consideration the proportion of ZD products produced. Being enlightened by the above 

understanding, the engineers of the company decided to specify the LSL for the proportion of ZD units (���� ) as 0.95 in addition to 

the existing USL for the number of defects in a unit. So the process capabilities of the three vendors are now assessed taking into 

consideration both the specifications. 

About 300 components are collected randomly from the grinding process under stable conditions for each of three vendors. 

The frequency of different number of defects in the sample components of each vendor is shown below in Table 4.   

Table 4. Sample data on defects for all three vendors 

Vendor 
Sample 

Size (�) 

Frequency of number of defects in the sample 

0 1 2 3 4 5 

Vendor A 304 296 7 4 3 0 0 

Vendor B 296 287 5 3 0 1 0 

Vendor C 305 284 8 6 4 2 1 

A ZIP distribution is fitted to the sample data of each vendor using the maximum likelihood method. Let the estimated parameters 

of the fitted ZIP distribution for the ��� vendor are ΩY � and =.� (� = 1,2,3). Putting these estimated parameter values in Equations (6) 

and (7), the expected proportion of NC components (�̂��) and expected proportion of ZD components (�̂��) in the processes of all 

three vendors are obtained. The process capability indices for all three vendors are then obtained using Equation (8). The 95% 

confidence intervals of the capability indices are then computed using Equation (9). The estimated parameters of the fitted ZIP 

distributions, estimated proportions and capability indices for the three vendors are shown in Table 5.  

Table 5. Estimated parameters of the fitted ZIP distributions and capability indices 

Vendor 
Sample 

size (�) 

Parameters of ZIP 

process 

Estimated 

Proportions 

 �.��� 95% confidence 

limits of ���� 
ΩY  =. �̂�� �̂�� 

Vendor A 304 0.0660 1.1958 0.9539 0.00221 0.953 [0.868, 1.038] 

Vendor B 296 0.0450 1.1263 0.9696 0.00125 1.029 [0.938, 1.120] 

Vendor C 305 0.0828 1.7823 0.9311 0.00877 0.776 [0.704, 0.848] 

It can be observed from Table 5 that the estimated �.&�� value for vendor B is above 1.0 and the estimated �.&�� value for vendor A is 

also reasonably good. But the estimated �.&�� value is quite poor for vendor C. The 95% confidence intervals of capability index ���� for vendor B and vendor A are overlapping and hence there may not be any significant difference between these two vendors’ 

capability indices. However, the capability index of vendor C is significantly inferior compared to vendors B and A. Based on the 

estimated indices, the vendors are prioritized for placement of purchase order in the following sequence: vendor B, vendor A and 

vendor C.  

It may be worth to highlight the followings: There is a single NC component in the sample of vendor B, but the proportion of 

ZD items is almost 97%. Whereas there is no NC item in the sample of vendor A, but the proportion of ZD items (95.4%) is just 

above the specified LSL. Although there is no NC item in the sample of vendor A, the estimated proportion of NC items in the lot 

is computed as 0.22%, which is slightly more than that of vendor B. This difference in proportion of NC items and the difference 

in the proportion of ZD items are reflected in the estimated process capability indices. 
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6. Conclusions 
 

In today’s manufacturing scenario, zero-inflated (ZI) processes are quite common, which is due to tremendous improvement in 

automation technologies. Often evaluation of capabilities of different high quality processes becomes necessary for their 

comparison and decision making. Keeping in mind that proportion of ZD products produced is an integral part of a ZI process, a 

measure of process capability index is proposed for ZI processes. 

with respect to the USL of the number of defects is computed, and then 

multiplying a factor defined based on the actual value of 

proposed method is applied to tackle a real

distribution is used for modelling the defect data. In many situations, especially when there is overdispersion in the 

negative binomial (ZINB) or ZI generalized Poisson (ZIGP) distributions are utilized for modelling the defect data. The proposed 

approach for computing the overall PCI can be used for those cases also. Existence of bivariate and multivariate 

also not uncommon in real-life manufacturing set up. Future studies may aim at developing appropriate methodologies for 

evaluating PCI for such processes. 
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