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Abstract

This article deals with the problem of reflectiomdatransmission of shear waves at a plane intetfebereen two dissimilar
incompressible transversely isotropic thermoelasdlf-spaces. Two coupled quasi-shear waves amdfta propagate due to
the incompressibility of such materials. Applyingpeopriate boundary conditions at the plane interfamplitude ratios of the
reflected and transmitted quasi-shear waves ar@naat. It has been observed that these ratiosuaidns of the angle of
incidence, elastic and thermal parameters of thienags. These ratios are computed numericallyafgarticular model to see
the effects of specific heat and thermal expansiomuasi-shear waves in incompressible transveisetyopic thermoelastic
materials. The results are also presented graphical
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1. Introduction

The theory of thermoelasticity deals with théeraction between thermal and mechanical fieldésolid bodies. It is very
important in various fields such as earthquake rezeging, acoustics, soil dynamics, aeronauticsp@atitics, nuclear reactors,
etc. Biot (1956) developed the minimum entropy picitbn principle along with the variational form general laws of
thermoelasticity. Dhaliwal and Sherief (1980) dedvthe equations of generalized thermoelasticityafo anisotropic elastic
medium and proved uniqueness theorem for thesetiegsaFor different types of tension and compr@ssBenveniste (1981)
presented a detail discussion on one dimensiona weopagation in an initially deformed materiahdgerson (1991) investigated
the dynamical behavior of transversely isotropicompressible elastic materials expressing two gnélux vectors explicitly.
Chadwick (1994) developed the constitutive relaifor an incompressible transversely isotropictelanaterial and studied the
transmission of homogeneous plane waves of smallime in the material.

Ogden and Sotiropoulos (1997) discussed thectefié finite strain and pre-stress on the reflecteaves in anisotropic
incompressible elastic solid. Itskov and Aksel 2Dihtroduced more constraints on the elastic @mstand explained the
difficulty of deriving the constitutive relationsif anisotropic incompressible materials. Prikazehiknd Rogerson (2004) shows
that the speed of surface waves in initially siedsscompressible transversely isotropic matedajsends crucially on the normal
static stress. Kumar and Hundal (2005) derivedctieracteristic equations and the relations foragiouities across the wave
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fronts in a fluid-saturated incompressible porowedimm. Abd-Alla et al. (2011) obtained that theegpef shear waves depends
on the direction of propagation, the anisotropyavgy field, non-homogeneity in the initial streasisotropic incompressible
materials. Vinh and Giang (2012) and Gupta and Ah(@817) also explored the impact of incompresisjbidn propagation of
surface waves in elastic medium.

The study of elastic wave propagation has beernnteresting area of research since long. Theyvarg helpful in the
exploration of materials inside the Earth's cr8&tgh (2007) investigated the reflection coeffitiefor three different materials of
incompressible fibre-reinforced transversely ispitanaterials. Singh and Tomar (2007a) obtained¢Hection and transmission
coefficients of the reflected and transmitted sheaves at a corrugated interface between two dissitfiiber-reinforced elastic
half-spaces using Rayleigh method of approximat®ingh (2011, 2013) studied the effect of thernraklee motion of coupled
longitudinal and transverse waves in the thermdielasaterials with voids and obtained the amplitadé energy ratios. Singh et
al. (2014) also studied the behavior of an elastiwe at the interface between two dissimilar hapkices of fibre-reinforced
incompressible elastic material having transvessgropy. Singh (2015) obtained the secular equdtorRayleigh waves in
incompressible transversely isotropic thermoelasbiid using the theory of Lord and Shulman (19&@9rammuana and Singh
(2016) derived the amplitude and energy ratioshef teflected waves in thermoelastic saturated poroadium. Recently,
Zorammuana et al. (2020) obtained the amplitudesaif the reflected waves from a plane free boundé an incompressible
transversely isotropic thermoelastic materizdlawmpuia and Singh (2020) investigated the pnoblef the effect of initial
stresses on the elastic waves in transverselyoiotthermoelastic materials. There are many istarg problems of waves and
vibrations in open literatures as Achenbach (19B#gh (2003), Singh and Tomar (2007b), Singh ancadbhmuana (2014),
Singh (2015), Zorammuana and Singh (2015), Lianggeand Singh (2019), Singh and Lalawmpuia (201@yaGet al. (2020)
and Lalvohbika and Singh (2020)

Two coupled quasi-shear waves are found to propamgmia heat conducting incompressible transvergyropic elastic
material. The problem of reflection/transmissionqofisi shear waves at a plane interface betweerndisgimilar half-spaces of
heat conducting incompressible transversely is@trefastic materials has been investigated. Theliardp ratios of the reflected
and transmitted quasi shear waves are computed riuathe The effects of thermal coefficient and sifie heat on the
propagation of quasi-shear waves in the mater@abbserved graphically.

2. Fundamental Equations

The non-deformed state of homogeneous thernmalwaiing incompressible elastic materials with $karse isotropy at uniform
temperatureT, has the following set of equations (see Singhp201

CiaUyxx T (513 + 044)uz,xz + Caqlly 7z — B T,x - Rx = pily, 1)
Caalz xx + (514 + (_{44)ux,xz + C33Uzz7z — BS T—{' Z} - P,z = pﬁz' (2)
Kl T,xx + K3 T,zz - P Ce (T + To T) = To{ﬁl (ux,x + To ﬁx,x}) + ﬁ3 (uz,z + To i’iz,z)' (3)

wherec;; are elastic constanta, and u, are components of displacementxinandz-axis respectivelyP is the hydrostatic
pressureT is the increment in temperaturg, and C, are thermal relaxation times and specific heapeetvely, p is the
density,K; andK; are the coefficients of thermal conductivity. laynbe noted that comma in the subscript denotesapa
derivatives8; = (c11 + ¢c12)aq + ¢13a5 andps = 2¢,3a, + 333, Wherea, anda; are coefficients of linear expansion.
The incompressibility condition may be given as
Uy + Uy, =0. 4)
Eliminating the hydrostatic pressure from Eqs.gddl (2), we have
C11Ux xxz + (C13 + C4-4-)uz,xzz + CaqUyx 777 — .31 T,xz - pﬁx,z = C4aUz xxx + (C13 + C44)ux,xxz + C33U3 133 — ﬁ3 T,xz - pﬁz,x- (5)
Due to the incompressibility condition (4), we dam a scalar functio(x, z, t) such that
Uy =@z andu, = —Px- (6)

3. Wave Propagation

Consider the Cartesian co-ordinates system wiéimd y-axes lying horizontally and-axis along the vertical direction. We
aim to study the two-dimensional problem of wavepagation inxz-plane in the half-spaces of two incompressible
transversely isotropic materials: 0 < z < o0 andM': —o0 < z < 0.

The equations of motion for the half-spastandM’ are
C44P xxxxt2B O xxzz +3137szzp(¢,xx+¢,zz):
KlT,xx'l'K3 T,zz_pce(T"'TO T)=T0(ﬁ1 _.83)(47,962"'7:0 ‘p,xz)'
CA,}4(P,,xxxx+Zﬁ’ (P,,xxzz +B{3T;Z=p(ip,,xx+¢,’zz)'
K{’I:;cx‘H{sc 'I:;Z—p’Cé(T+T(’) T,)=T0’(.B{_B§)(§b,,xz+70 40’962)'
wheref = (c11 + ¢33)/2 — €13 — a4, B' = (€11 + €33)/2 — €13 — Chay P13 = B3 — P1, Pis = B3 — Bi-

(7)

(8)
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When a quasi-shear wave propagating in thedmalteM be incident at the plane interfaces= 0 making an anglé, with
the normal, two quasi shear waves are reflectedtrmmdmitted inM andM' respectively. The structures of the wave field for
the incident, reflected and transmitted waves neawbtten as

(€] n) _

(@™, TM) = (A, a, Ay)eltknlxpi” +2p37 —cnl} = = 01,234 9)
where4,, is the amplitude constar(tp(") (")) is the unit propagation vectat,, is the wavenumber ang, is the phase
velocity. Note thak = 0 represents |nC|dent guasi shear wawve; 1,2 andn = 3, 4 represent for the reflected and transmitted
guasi-shear waves respectively. The coupling cahalas given by

(n)?

(K2(cas @™ + MY + 28 ™ p — p 2}

n=2012
(n) (n) T
Bz Py
n = 2 (n)* 113) ' (n) (n)z 1.2
| kn{c44(p + p3 ) + 2B'p —pca} n = 34
k Blsp (m)_ () ’ -
13P1 P3
The Snell's law, in this case, is given as (Sirzfi1 1)
Ko _ sinbn for n=1,2,3,4. (10)

kn sin 6

4. Boundary Conditions

The tractions and displacement components aremtanis az = 0. These conditions may be written as
(i) Continuity of normal traction
Yr=0{Cas <P,(z’;z + sz‘PSZc)z PPy @+ Bis T(n)} Z 3{Cha <Pzzz + sz‘PSZc)z péy ™+ B T(n)} (11)
Wherec,, = ci1 + €33 = Cag = 2€13, G2 = €11 + €33 = Caa — 2013
(ii) Continuity of shear traction:

2121:0{%4 <Pzz) + <P(n)} = Z$:3{C44 (pzz) + <P(n)} (12)
(iif) Continuity of displacement components:
Sio0y) = il TEool) = Tioael (13)

Using Egs. (9) and (10) into (11) (13), these b(mplatondmons may be reduced to
Ya—o{Cas k3 p§ w3y Ca2K3 p(n) (n) —-pch k3 p(n) +B13 an p( ™ kn}A_n—

(14)

e 3{044 k3 pgn) +ch k3 pgn) (n) -p'ctk3p (n)+Bl3 anpg )kn}An—O
Zn:o Caq krzl (pgn) (n) )A - Zn 3Ca4 kz ( ®? pi“) )An =0 (15)
22 _oknpS Ay — z=3knp§’”An =0, Y2 kap{"A, - XiskepiVA, = 0 (16)

Equations (14)-(16) will be used for evaluatiortted amplitude rat|os correspondlng to the reflected transmitted waves.

5. Amplitude Ratios

Equations (14)-(16) may be rewritten in matrix riota as
AZ = B, (17)

whereA is a matrix of orde# X 4 andB, Z are matrices of ordessx 1 with the foIIowing entries
Cash ng)g + Cy0k} pl(]) ps(,]) pctiip (1) — Pi3a; P1 k" j= 12
~(cia 5 pd + ik DY = p'? P 0 + BlaapPh), =34
culd (o ), =12 el =12 [k i=12,
—cj k2 (p9° - pd” ), j=34 _{ p?, =34 YT kp?, j=34,

by = —{cask3 p3 ©F 4 C22k3 Pio) p§°) pcs kg p§°) Bizao pi ko},

byy = —Cy4q K§ (ng) pg()) ). by, = —kop§ ), by = —kop”

Eq. (17) is solved foZ; = j‘—(’; due to incident quasi shear wave. The amplitutie Za for j = 1, 2 represent for the reflected
guasi-shear waves and for 3, 4 represent for the transmitted quasi shear waves.

a1j=

apjy =
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6. Particular Cases

Case I: If we neglect the effect of thermal, the problentdraes reflection/transmission of plane waves atinterface of two
dissimilar half-spaces of incompressible transugr&otropic materials. The amplitude ratios of tedlected and transmitted
shear waves, in this case, are given by Eq. (1ff) the following modified values
N3 N2 ; ; i
Cask? DY + 0ok p pP — p 2 kS p, j=12
j=34,
(0)

N2 . , .
()RS 0) p Cjz k]-3 péj)},
0
ps” = p c ki p”}.

‘ i3 ,
—{C4a kj3 Pé + C22k1'3 by D3
by = —{csaks p§0)3 + (11 + €33 — Caq — 213)K3 pio)z

Case |l If the half-spaceé/’ is neglected, then the problem reduces to refleaif plane waves in an incompressible transversely
isotropic thermoelastic materials. The amplitud@osgaare given by Eq. (17) with the modificatioratid is a matrix of orde x

2, B andZ are column matrices with the following entries
C)EN))

alj =

~3 . . .
a1y = cauki P+ ool 0 0 —p P DY~ Brsp” kg j= 1,2,
672

- ' 2 2
ar = cuk? (8 —p0"),  j=12, by =—cu ki (B - ("),

by, = —{csakd P§0)3 + C22k3 Pio)z p§°) —pchkd p§°) — B13ao pl(o) ko}-

The amplitude ratios of the reflected waves depemthe angle of propagation, elastic and thermedipaters of the material.
Case I1I: If we neglect the effect of thermal and the halepM ', the problem reduces to reflection of plane waatethe half-
space of incompressible transversely isotropic ri@tdn this case, the amplitude ratios of thdewted waves are given as in
Case Il with the following modified values

(H?

N3 .
A = C44kj3 Péj) + szkj3 Py P

p3
3 2
by, = _{C44k(3) pgo) + szk(?f p1(0)

—pct i} p{,

p® — p g k3 pi3.

j= 1!2;

7. Numerical Results

We have computed the amplitude ratios of reflécind transmitted shear waves due to incidenti glr@sr waves. The
relevant value of the parameters are given in Tal{lehadwick and Seet, 1970).

Table 1: Value of the elastic and thermal parameters

Cobalt (M) | Value Zinc (M") | Value Units
p 8.836 x 103 P’ 7.14 x 103 Kgm™3
1 3071x 10 | ¢, | 1.628 x 10 Nm™2
C1s 1.650x 10" | C}, | 0.362x 10" Nm™2
C1s 1.027x 10 | Cj; | 0.508 x 10 Nm™2
Ca 3581 x 101 | Cl; | 0.627 x 10 Nm™2
Can 0.755x 101 | C,, | 0.385x 10! Nm™2
B 7.04 x 10° B] 5.75%x 10% | Nm~% degree™?
Bs 6.90 x 10° B} 5.17 X 10 | Nm~% degree™?
C. 4.27 x 10? C; 3.9x10% | Jkg ldegree™?!
K, 0.690 x 10?2 K{ 1.24 x 10?2 | Wm™ldegree™
K 0.690 x 102 Kj 1.24 x 102 | Wm ldegree™
T, 298 T, 296 K
7 0.05 T 0.06
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Figure 1: Variation of|Z, | with angle of incidence for different valuespandpg’.

It may be noted thatp”,0,p”) = (sin 8,0, cos 6,) for incident quasi shear wavéy™,0,p") = (sin6; ,0, - cos 6,),

®®,0,p?) = (sin6,,0,— cos 6,) for reflected quasi-shear wave agt>,0,p>) = (sin6s,0,cos6;), P™,0,p?) =

(sind, ,0,cos 8, ) for transmitted quasi shear waves

, %1012
peg
sl 125 & 28
n:38&34 "
5 1| M 1
05
0 i I\ L 1 1 1 L i i
0 10 20 30 40 50 60 70 80 90

Angle ofincidence

Figure 2: Variation of|Z,| with angle of incidence for different valuespfindg’.

The variation of amplitude ratios with the angfeiridence,f, at different values ofB, 8’) are depicted through
Figures 1-4, while Figures 5 and6 show the variation of amplitude ratios at différealues of(C,, C;). The values of the
amplitude ratios|Z;| and |Z;| in Figures 1 and 3 of the reflected and transmitted shear waves as&® and decreases
respectively with the increase 6. We have observed that the effects(8f8’) on |Z;| and|Z;| have minimum near the
normal and grazing angle of incidence.
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Figure 3: Variation of|Z;| with angle of incidence for different valuespandg’.
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Figures 2 and4 show that the amplitude rati¢8,| and |Z,| have similar fashion. They started from certaituga which
decrease with the increase@fand increase thereafter to the maximum value fabbby decreasing with the increasefgf
Here also the minimum effect @8, ") on|Z,| and|Z,| is observed near normal and grazing angle of imziee
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Figure 4: Variation of|Z,| with angle of incidence for different valuesgpandg’.

The effect of specific heats on the amplitudeosltZ,| and|Z,| in Figures 5 and6 have similar pattern. They have
minimum effect of(C,, C;) nearf, = 14° and grazing angle of incidence. It is also obs#t¥mt the values dZ,| and|Z,|
decrease with the increase of specific heats. We abticed very few effects of specific heats|8n| and |Z;|. Thus, the
amplitude ratios of the reflected and transmitteelas waves are found to be functions of angle @flence, elastic and thermal
parameters.
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Figure5: Variation of|Z,| with angle of incidence for different values@fandCy,.
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8. Conclusion

The problem of incident quasi-shear wave at an@linterface between two dissimilar half-spacesnobmpressible
transversely isotropic thermoelastic materials liean investigated. Due to the incompressibilitysti@int, we have observed
that two coupled quasi-shear waves are propagatindpe material. Using the property of continuities tractions and
displacement at the plane interfatke amplitude ratios of the reflected and trangditshear waves are analytically and
numerically obtained to analyze the effect of sfiedieats and coefficient of linear thermal expansiwe summarize the
concluding remarks as

(i) The amplitude ratios of the reflected and traitted waves are found to be functions of angleoidence, elastic
and thermal parameters of the materials.

(ii) The value of the amplitude rati¢g, | and|Z5| increases and decreases respectively with theaserob,,.

(ii) The effect of(B, 8") on the amplitude ratios is minimum near the noramal grazing angle of incidence.

(iv) The effects ofC,, C;) on|Z,| and|Z,| are minimum neaf, = 14° and grazing angle of incidence.

(v) The values ofZ,| and|Z,| decrease with the increase(6§, C;).

(vi) The effect of(C,, C;) on|Z;| and|Z5]| is found to be negligible as compared to thos&Zghand|Z,|.

The problem of the effect of corrugation on treflection/refraction of elastic waves between tiweo dissimilar
incompressible transversely isotropic thermoelasailf-spaces can be extended from the present @rk&. may also work on
the surface wave propagation in the incompressiatesversely isotropic thermoelastic half-space.
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