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ABSTRACT 
A homotopy is a continuous one-parameter family of continuous 
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INTRODUCTION 

1.1 Preamble 
Mathematically, Hurewicz will best be remembered for his 
important contributions to dimension, and above all as the founder 
of homotopy group theory. Suffice it to say that the investigation of 
these groups dominates present day topology (Lefschetz, 1957). 
One of the outstanding problems in homotopy theory is that of 
determining the homotopy groups of simple spaces. Even for as 
simple a space as the n-sphere very little is known. In fact, in most 
cases, it is not known whether or not the homotopy groups are zero 
(Whitehead, 1946). Two continuous functions from one topological 
space to another are called homotopic if one can be “continuously 
deformed” into the other, such a deformation being called a 
homotopy between the two functions (Suciu, 2008). A homotopy is 
a continuous one-parameter family of continuous functions from 𝑋 

to 𝑌. If 𝑡 denotes the parameter, the homotopy describes a 

continuous “deformation” of the function 𝑓 into the function 𝑔 as 𝑡 
increases from 0 to 1.  The question of whether 𝑓 is homotopic to 

𝑔 is a question of whether there is a continuous extension of a 

given function. We think of 𝑓 as being a function from 𝑋 × {0} into 

𝑌 and 𝑔 as being a function from 𝑋 × {1} into 𝑌, so we have a 

continuous function from 𝑋 × {0,1} into 𝑌 and we want to extend 
it to a continuous function from 𝑋 × 𝐼 into 𝑌 (Armstrong, 1983). 

For any topological space which is metric, compact (hence 
separable) path connected and locally path connected, its 
homotopy group is not the additive group of the rational, moreover 
if it is not finitely generated then it has the cardinality of the 
continuum (Shelah, 1988). The ageing of the body is described by 
continuity and connectivity which are topological properties (Brew, 
Obeng-Denteh, & Zigli, 2019). They introduced a topological 
computable invariant: the homotopy to describe the process of 
ageing of human body. Homotopy offers a variety of ways which 
can be applied to myriad of systems as showed in research 
conducted by Issaka et al, (2016, 2017) on Fredholm integral 
equations using homotopy analysis. The basic pattern of 
classification, and at the same time the guarantee for its stability, 
is typically homotopy theory. That is, we consider two systems to 
be equivalent, or “in the same topological phase”, if one can be 
deformed continuously into the other while retaining some key 
properties (Cedzich, et al., 2018). Based on the concept of the 

homotopy, computation methods for algebraic and differential 
equations have been developed. The method for algebraic 
equations includes homotopy continuation method (Agyekum, 
2017). 
 

1.2 Basic Definitions 

1.2.1 A path in a topological space 𝑿 is a continuous 

function 𝒇 from the closed unit interval 𝑰 = [𝟎, 𝟏] into 𝑿. The 
points 𝒇(𝟎) and 𝒇(𝟏) are the initial point and terminal point of 𝒇 

respectively. 
 
Paths 𝑓 and 𝑔 with common initial point 𝑓(0) = 𝑔(0) and 

common terminal point 𝑓(1) = 𝑔(1) are equivalent provided 

that there is a continuous function 𝐻: 𝐼 × 𝐼 → 𝑋 such 

 
𝐻(𝑡, 0) = 𝑓(𝑡),           𝐻(𝑡, 1) = 𝑔(𝑡),         𝑡 ∈ 𝐼, 

𝐻(0, 𝑠) = 𝑓(0) = 𝑔(0),       𝐻(1, 𝑠) = 𝑓(1) = 𝑔(1),         𝑠
∈ 𝐼. 

 
The function 𝐻 is called a homotopy between 𝑓 and 𝑔.  
 

1.2.2 Inverse Path 
Given a path 𝑓 in a topological space 𝑋, the inverse path of 𝑓 is 

𝑓−1(𝑠) = 𝑓(1 − 𝑠) (Dooley, 2011). This is a path that moves in 
the opposite direction of the original path 𝑓. For example, if 𝑓(𝑠) 
starts from 𝑥 to 𝑦 then 𝑓−1(𝑠) will start from 𝑦 to 𝑥. 
 

1.2.3 Homotopy 
Let 𝑋 be a topological space with two paths 𝑓(0) and 𝑓(1) that 

have endpoints 𝑥, 𝑦 ∈ 𝑋. A homotopy from 𝑓(0) to 𝑓(1)  is a 

family of paths 𝑓𝑡: [0, 1] → 𝑋 

such that for all 𝑓(0) and 𝑡 ∈ [0, 1], 𝑓𝑡  satisfies the following 
conditions: 
 

1. 𝑓𝑡(0) = 𝑥 and 𝑓𝑡(1) = 𝑦 

2. The map 𝐹: [0, 1] × [0, 1] → 𝑋 defined by 

𝐹(𝑠, 𝑡) = 𝑓𝑡(𝑠) is continuous.  

 
When there exists a homotopy between the two paths 𝑓0 and 𝑓1, 

then, the two paths are said to be homotopic. The homotopic 
relation between two paths is represented as 𝑓0 ≃ 𝑓1 (which is 

read as 𝑓0 is homotopic to 𝑓1). 

 
The homotopy class of 𝑓, denoted [𝑓], is the equivalence class 
of a path 𝑓 under the equivalence relation of homotopy (Dooley, 

2011). 
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Figure 1: A path homotopy 
 

1.2.4 Homotopy Equivalence 
Two spaces X and Y are homotopy-equivalent: (or of the same 
homotopy type) if there exist maps 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑋 → 𝑋 such 

that 𝑔𝑓 ≃  1𝑥  and 𝑓𝑔 ≃  1𝑦, where 1𝑥 and 1𝑦 are the identity 

maps of 𝑋 and 𝑌 respectively. In this case 𝑓 is equivalence and 𝑔 

is a homotopy inverse to 𝑓. We write 𝑋 ≃ 𝑌 for ‘𝑋 is homotopy-

equivalent to 𝑌' (notice that the symbol has two distinct meanings, 

depending on the context) (Maunder, 1996). 
 

1.2.5 The operation ∙ can be applied to homotopy classes as 

well. Consequently, let 𝒇: 𝑰 → 𝑿 be a path from 𝒙𝟎 and 𝒙𝟏 and let 

𝒈: 𝑰 → 𝑿 be a path from 𝒙𝟏 to 𝒙𝟐.  

Define [𝑓] ∙ [𝑔] = [𝑓 ∙ 𝑔] (Dooley, 2011). 
 

1.2.6 Given two paths 𝒇, 𝒈: 𝑰 → 𝑿 such that 𝒇(𝟏) = 𝒈(𝟎), 
there is a composition or product path 𝒇 ∙ 𝒈 that traverses (travel 
across) first 𝒇 and then 𝒈, defined by the formula 

 

Figure 2 
 

𝑓 ∙ 𝑔 = {
𝑓(2𝑠),  0 ≤ 𝑠 ≤  

1

2

𝑔(2𝑠 − 1),
1

2
 ≤ 𝑠 ≤ 1

 

 
This means that 𝑓 and 𝑔 are traversed twice as fast in order for 𝑓 ∙
𝑔 to be traversed in unit time. This product operation respects 

homotopy classes since if 𝑓0 ≃ 𝑓1 and 𝑔0 ≃ 𝑔1 via homotopies 

𝑓𝑡  and 𝑔𝑡 , and if 𝑓0(1) = 𝑔0(0) so that 𝑓0 ∙ 𝑔0 is defined, then 

𝑓𝑡 ∙ 𝑔𝑡  is defined and provides a homotopy 

𝑓0 ∙ 𝑔0 ≃  𝑓1 ∙ 𝑔1. 

 
 

1.2.7 Given a topological space 𝑿, a path 𝒇: 𝑰 → 𝑿 is a loop 

if 𝒇(𝟎) = 𝒇(𝟏) =  𝒙𝟎 for some 𝒙𝟎 ∈ 𝑿. 

The common value of the initial point and terminal point is referred 
to as the base point of the loop. Two loops 𝑓 and 𝑔 having common 

base point 𝑥0 are equivalent or homotopic modulo 𝑥0 provided that 

they are equivalent as paths. In other words, 𝑓 and 𝑔 are 

homotopic modulo 𝑥0 (denoted 𝑓 ≃𝑥0 𝑔) provided that there is a 

homotopy 𝐻: 𝐼 × 𝐼 → 𝑋 such that  

 
𝐻(∙ , 0) = 𝑓          𝐻(∙ , 1) = 𝑔          𝐻(0, 𝑠) = 𝐻(1, 𝑠)

= 𝑥0          𝑠 ∈ 𝐼 
 
Since 𝐻(0, 𝑠) and 𝐻(1, 𝑠) always have value 𝑥0 regardless of 

the choice of 𝑠 

in [0, 1], it is sometimes said that the base point "stays fixed 
throughout 
the homotopy." 
In this case the common starting and ending point, 𝑥0, is called the 

basepoint. 
The set of all homotopy classes [𝒇] of loops 𝑓: 𝐼 → 𝑋 at the 
basepoint 𝑥0 is denoted 𝜋1(𝑋, 𝑥0). 
 
 

1.3 Examples of Homotopies 
 

1.3.1 Let 𝑿 = ℝ𝒏, the paths 𝒇𝟎, 𝒇𝟏: 𝑰 →  ℝ
𝒏 with the same 

endpoint (i.e., 𝒇𝟎(𝟎) = 𝒇𝟏(𝟎) = 𝒙, and 𝒇𝟎(𝟏) = 𝒇𝟏(𝟏) = 𝒚) 

are homotopic via the linear homotopy 𝒇𝒕(𝒔) = (𝟏 − 𝒔)𝒇𝟎(𝒔) +
𝒕𝒇𝟏(𝒔). This shows that during this homotopy each point 𝒇𝟎(𝒔) 
travels along the line segment to 𝒇𝟏(𝒔) at constant speed. 

 

1.3.2 For a convex set 𝑿 in ℝ𝒏 with basepoint 𝒙𝟎 ∈ 𝑿 we 
have 𝝅𝟏(𝑿, 𝒙𝟎) = 𝟎, the trivial group, since any two loops 𝒇𝟎 

and 𝒇𝟏 based at 𝒙𝟎 are homotopic via the linear homotopy 

𝒇𝒕(𝒔) = (𝟏 − 𝒔)𝒇𝟎(𝒔) + 𝒕𝒇𝟏(𝒔), as observed in Example 1 

(Hatcher, 2001). 
 

1.3.3 Let 𝑿 and 𝒀 be subspaces of ℝ ×ℝ defined by 𝑿 =
{(𝒙, 𝒚) ∈ ℝ × ℝ: 𝒙𝟐 + 𝒚𝟐 = 𝟏} and 𝒀 = {(𝒙, 𝒚) ∈ ℝ ×
ℝ: (𝒙 + 𝟏)𝟐 + 𝒚𝟐 = 𝟏 𝒐𝒓  (𝒙 − 𝟏)𝟐 + 𝒚𝟐 = 𝟏}. Define 

𝒇, 𝒈: 𝑿 → 𝒀 by 𝒇(𝒙, 𝒚) = (𝒙 − 𝟏, 𝒚) and 𝒈(𝒙, 𝒚) = (𝒙 +
𝟏, 𝒚). 
 
Then  𝑓 is not homotopic to 𝑔. 

Example 3 can be found in (Armstrong, 1983). 

1.3.4 Let 𝑿 be the subspace of ℝ×ℝ defined by 𝑿 =
{(𝒙, 𝒚) ∈ ℝ × ℝ: 𝒙𝟐 + 𝒚𝟐 = 𝟏} and let 𝒀 = 𝑿 × 𝑿. Define 

𝒇, 𝒈: 𝑿 → 𝒀 by 𝒇(𝒙, 𝒚) = ((𝟏, 𝟎), (𝒙, 𝒚)) and 𝒈(𝒙, 𝒚) =
((𝟎, 𝟏), (𝒙, 𝒚)). Then the function 𝑯:𝑿 × 𝑰 → 𝒀 defined by 

𝑯((𝒙, 𝒚), 𝒕) = ((√𝟏 − 𝒕𝟐, 𝒕), (𝒙, 𝒚)) is a homotopy between 𝒇 

and 𝒈 so 𝒇 ≃ 𝒈. 
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Notice that 𝑋 is a circle and 𝑌 is a torus, 𝑓 “wraps” the circle 𝑋 

around {(1, 0)} × 𝑋, and 𝑔 “wraps” the circle 𝑋 around 
{(0, 1)} × 𝑋 (See Figure 3). Let 𝐴 denote the arc from 

((1, 0), (1, 0)) to ((0, 1), (0, 1)) (See Figure 3). Then 𝐻  

Figure 3 
 
maps 𝑋 × 𝐼 onto 𝐴 × 𝑋. 

Refer to (Armstrong, 1983) for more on Example 4. 
 

1.3.5 Let 𝑿 = {(𝒙, 𝒚) ∈ ℝ𝟐: 𝟏 ≤ 𝒙𝟐 + 𝒚𝟐 ≤ 𝟒} (see 

Figure 1.2.3), let 𝜶: 𝑰 → 𝑿 be the path that maps 𝑰 in a 

“linear” fashion onto the arc 𝑨 from (−𝟏, 𝟎) to (𝟏, 𝟎) 
and let 𝜷: 𝑰 → 𝑿 be the path that maps 𝑰 in a “linear” 

fashion onto the arc 𝑩 from (−𝟏, 𝟎) to (𝟏, 𝟎). Then 𝜶 

is homotopic to 𝜷 (by a homotopy that transforms 𝜶 into 
𝜷 in the manner illustrated in Figure), but 𝜶 is not path 

homotopic to 𝜷 because we cannot “get from” 𝜶 to 𝜷 

and keep the “endpoints” fixed without “crossing the 
hole” in the space (Armstrong, 1983). 

 

Figure 4 
 
 

Figure 5 
 
PROCEDURAL STRUCTURE 

1.4 Basic theorems 

1.4.1 Lemma 1 
Let 𝑋 be a topological space and 𝐴, 𝐵 be closed subsets of 𝑋 such 

that 𝑋 = 𝐴 ∪ 𝐵. Let 𝑌 be a topological space and 𝑓: 𝐴 → 𝑌 and 

𝑔:𝐵 → 𝑌 be continuous maps. If 𝑓(𝑥) = 𝑔(𝑥), ∀𝑥 ∈ 𝐴 ∩ 𝐵, 

then the function ℎ: 𝑋 → 𝑌 defined by 

 

ℎ(𝑥) ≔ {
𝑓(𝑥),  ∀𝑥 ∈ 𝐴
𝑔(𝑥),  ∀𝑥 ∈ 𝐵

 

is continuous. 
 
Proof: From the above lemma, ℎ is the unique well-defined 

function 𝑋 → 𝑌 such that   ℎ|𝐴 = 𝑓 and ℎ|𝐵 = 𝑔. Now we need 

to show that ℎ is continuous. Let 𝛾 be a closed set in 𝑌, then 

 

ℎ−1(𝛾) = 𝑋 ∩ ℎ−1(𝛾) = (𝐴 ∪ 𝐵) ∩ ℎ−1(𝛾) 

          = (𝐴 ∩ ℎ−1(𝛾)) ∪ (𝐵 ∩ ℎ−1(𝛾)) 

          = (𝐴 ∩ 𝑓−1(𝛾)) ∪ (𝐵 ∩ 𝑔−1(𝛾)) 

= (𝑓−1(𝛾)) ∪ (𝑔−1(𝛾)) 

Since each of 𝑓 and 𝑔 is continuous, 𝑓−1(𝛾) and 𝑔−1(𝛾) are 

both closed in 𝑋. This implies that ℎ−1(𝛾) is closed in 𝑋. Hence, 
ℎ is continuous. 

Refer to (Massey, 1991) and (Dooley, 2011) for the complete proof. 
 
 

1.4.2 Proposition 1 
Given a topological space 𝑋 with two endpoints 𝑥, 𝑦 ∈ 𝑋, path 
homotopy is an equivalence relation on the set of all paths from 𝑥 

to 𝑦. 

 
Proof: To show that ≃ is an equivalence relation, we must show 

that it is reflexive, symmetric, and transitive. Let 𝑋 be a topological 

space and consider some 𝑥, 𝑦 ∈ 𝑋. Let 𝑓, 𝑔 and ℎ be paths from 

𝑥 to 𝑦. Then for reflexivity, it is obvious that 𝑓 ≃ 𝑓 by the constant 

homotopy 𝑓𝑡 = 𝑓 or the identity homotopy 

𝑓𝑡(𝑠, 𝑡) = 𝑓(𝑠)        𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ∈ 𝐼. 
Now for symmetry, if 𝑓 ≃ 𝑔, then we have a continuous ℎ(𝑠, 𝑡) 
satisfying  
 
ℎ(𝑠, 0) = 𝑓(𝑠), ℎ(𝑠, 1) = 𝑔(𝑠), ℎ(0, 𝑡) = 𝑓(0),

ℎ(1, 𝑡) = 𝑓(1)           
Define ℎ inverse as ℎ1−𝑡(𝑠, 𝑡) = ℎ(𝑠, 1 − 𝑡). Then ℎ1−𝑡  is 

continuous because it is a composition of continuous maps. Also, 
 

ℎ1−𝑡(𝑠, 0) = ℎ(𝑠, 1) = 𝑔(𝑠) 
 

ℎ1−𝑡(𝑠, 1) = ℎ(𝑠, 0) = 𝑓(𝑠) 
 

ℎ1−𝑡(0, 𝑡) = 𝑓(0) = 𝑔(0) 
 

ℎ1−𝑡(1, 𝑡) = 𝑓(1) = 𝑔(1) 
 
Hence, we have a homotopy 𝑔 ≃ 𝑓. 

 
Finally for transitivity, assume that 𝑓 ≃ 𝑔 via a homotopy 𝑓𝑡  and 

𝑔 ≃ ℎ via a homotopy 𝑔𝑡 . Then we can see that 𝑓 ≃ ℎ via the 

homotopy ℎ𝑡 that is defined by 𝑓2𝑡  on [0,
1

2
] and 𝑔2𝑡−1 on [

1

2
,

1]. It is clear that the associated map 𝐻(𝑠, 𝑡) is continuous since, 

by assumption, it is continuous when restricted to the intervals [0,
1

2
] and [

1

2
, 1], and it agrees at 𝑡 =

1

2
. 
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Refer to (Dooley, 2011) and (Hatcher, 2001) for more on 
Proposition 1. 
 

 
Figure 6: Equivalence relation of paths 
 
 

1.4.3 Proposition 2 
The operation ∙ between homotopy classes is well-defined. 

Proof: Let 𝑓′ ∈ [𝑓] and 𝑔′ ∈ [𝑔]. Because [𝑓′] = [𝑓] and 
[𝑔′] = [𝑔], we want to check [𝑓′] ∙ [𝑔′] = [𝑓] ∙ [𝑔]. Because 𝑓 
and 𝑓′ are path homotopic, there exists a path homotopy 𝐹 from 𝑓 

to 𝑓′. Likewise, there exists a path homotopy 𝐺 from 𝑔 to 𝑔′. 

𝐻(𝑠, 𝑡) = {
𝐹(2𝑠, 𝑡)             𝑠 ∈ [ 0,

1

2
 ]

𝐺(2𝑠 − 1, 𝑡)     𝑠 ∈ [ 
1

2
, 1]

 

Now, we show that 𝐻 is a path homotopy between 𝑓 ∙ 𝑔 and 𝑓′ ∙
𝑔′, which are paths from 𝑥0 to 𝑥2. We know 𝐻 is continuous by 

Lemma 1. For all 𝑡 ∈ 𝐼, we have 𝐻(0, 𝑡) = 𝐹(0, 𝑡) = 𝑥0 and 

𝐻(1, 𝑡) = 𝐺(1, 𝑡) = 𝑥2. For all 𝑠 ∈ 𝐼, we have 𝐻(𝑠, 0) = (𝑓 ∙
𝑔)(𝑠) and 𝐻(𝑠, 1) = (𝑓′ ∙ 𝑔)(𝑠). The function 𝐻 is therefore a 

path homotopy between 𝑓 ∙ 𝑔 and 𝑓′ ∙ 𝑔′. Thus, [𝑓′ ∙ 𝑔′] = [𝑓 ∙
𝑔]. This means [𝑓′] ∙ [𝑔′] = [𝑓] ∙ [𝑔]. Therefore ∙ is well-defined 
(Munkres, 1996). 
 
 

Figure 7: [𝑓] ∙ [𝑔] is well-defined (Dooley, 2011). 
 

1.4.4 Theorem 1 

Given a topological space 𝑋, the set of homotopy classes [𝑓] of 
loops 𝑓: 𝐼 → 𝑋 at the basepoint 𝑥0 forms a group under the 

product [𝑓] ∙ [𝑔] = [𝑓 ∙ 𝑔]. (i.e., 𝜋1(𝑋, 𝑥0) is a group with 

respect to the product [𝑓][𝑔] = [𝑓 ∙ 𝑔]). We call 𝜋1(𝑋, 𝑥0) the 
fundamental group. 
 

Proof: To prove that 𝜋1(𝑋, 𝑥0) is a group, we must show that 

𝜋1(𝑋, 𝑥0)  satisfies the group axioms: 

 
1. Closure: We define the product of two classes 

[𝑓] ∈ (𝑋, 𝑥0) and [𝑔] ∈ (𝑋, 𝑥0)  by [𝑓][𝑔] = [𝑓 ∙
𝑔]. The definition of product is independent of the 

choice of representatives of [𝑓] and [𝑔]. Because if 
𝑓 ≃ 𝑓1 and 𝑔 ≃ 𝑔1 then 𝑓 ∙ 𝑔 ≃ 𝑓1 ∙ 𝑔1 and so 

[𝑓1][𝑔1] = [𝑓1 ∙ 𝑔1] = [𝑓 ∙ 𝑔]. So, the product 
[𝑓][𝑔] is uniquely defined by [𝑓] and [𝑔].This verifies 

the closure property of groups. We now verify that all 
the group axioms are satisfied. 
 

2. Associativity: Given paths 𝑓, 𝑔, and ℎ with 𝑓(1) =
𝑔(0) and 𝑔(1) = ℎ(0), we define 

([𝑓][𝑔])[ℎ] = [𝑓 ∙ 𝑔][ℎ] = [(𝑓 ∙ 𝑔). ℎ] 
and  

[𝑓]([𝑔][ℎ]) = [𝑓][𝑔 ∙ ℎ] = [𝑓 ∙ (𝑔 ∙ ℎ)] 
 
From this, we can see that 𝑓 ∙ (𝑔 ∙ ℎ) is a 
reparameterization of (𝑓 ∙ 𝑔) ∙ ℎ which is given by the 

function 

𝑓 ∙ (𝑔 ∙ ℎ) =  

{
 
 

 
 𝑓(2𝑠),              0 ≤ 𝑠 ≤

1

2

𝑔(4𝑠 − 2),      
1

2
≤ 𝑠 ≤  

3

4

ℎ(4𝑠 − 3),      
3

4
≤ 𝑠 ≤ 1

 

           From this, it is clear that 
            

(𝑓 ∙ 𝑔) ∙ ℎ =  

{
 
 

 
 𝑓(4𝑠),              0 ≤ 𝑠 ≤

1

2

𝑔(4𝑠 − 2),      
1

2
≤ 𝑠 ≤  

3

4

ℎ(2𝑠 − 1),      
3

4
≤ 𝑠 ≤ 1

 

          It is obvious that  
(𝑓 ∙ 𝑔) ∙ ℎ ≃  𝑓 ∙ (𝑔 ∙ ℎ) 

          and is given by  
           
ℎ(𝑠, 𝑡)

=  

{
 
 

 
 𝑓(2𝑠)𝑡 + (4𝑠)(1 − 𝑡),                                0 ≤ 𝑠 ≤

𝑡

2
+
1 − 𝑡

2

𝑔(4𝑠 − 2),                                   
𝑡

2
+
1 − 𝑡

4
≤ 𝑠 ≤  

3𝑡

4
+
1 − 𝑡

2

ℎ(4𝑠 − 3)𝑡 + (2𝑠 − 1)(1 − 𝑡),               
3

4
+
1 − 𝑡

2
≤ 𝑠 ≤ 1

 

 
          Hence, the operation is associative. 

3. There exists a constant path called the identity 𝑒𝑥0 ∈

 𝜋1(𝑋, 𝑥0) such that        [𝑓] ∙ 𝑒𝑥0 = 𝑒𝑥0 ∙ [𝑓] = [𝑓]: 

Let 𝑒𝑥0(𝑠) = 𝑓(1) = 𝑥0 for all 𝑠 ∈ 𝐼. Now, 𝑓 ∙ 𝑒𝑥0 ≃

𝑓 via the homotopy, 

 

𝐻(𝑠, 𝑡) = {
𝑓((2 − 𝑡)𝑠),  0 ≤ 𝑡 ≤  

1 − 𝑡

2

𝑒𝑥0 ,                        
1 − 𝑡

2
 ≤ 𝑡 ≤ 1
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𝑒𝑥0 ≃ 𝑓 

              hence, the identity exists. 

4. For all [𝑓] ∈  𝜋1(𝑋, 𝑥0), there exists [𝑓]−1 such that  
 

[𝑓] ∙ [𝑓]−1 = [𝑓]−1 ∙ [𝑓] = 𝑒𝑥0 

 
Take a representative of [𝑓] and call it 𝑓. Let 
[𝑓]−1(𝑠) = 𝑓(1 − 𝑠) for all 𝑠 ∈ 𝐼.  
We need to show that 𝑓 ∙ [𝑓]−1 ≃ 𝑒𝑥0.  

Hence, we define  

ℎ(𝑠, 𝑡) =  

{
 
 

 
 𝑓(2𝑠),                         0 ≤ 𝑠 ≤

1 − 𝑡

2

𝑓 (
1 − 𝑡

2
),         

1 − 𝑡

2
≤ 𝑠 ≤  

1 + 𝑡

2

𝑓−1(𝑠),                     
1 + 𝑡

2
≤ 𝑠 ≤ 1

 

             This means that 𝑓 ∙ [𝑓]−1 ≃ 𝑒𝑥0 and 𝑓−1 ∙ 𝑓 ≃ 𝑒𝑥0 are 

similar (Dooley, 2011). 
 
Conclusion 
This enquiry sought to find out how the various forms ranging from 
paths, inverses, reflexivity, symmetry and transitivity culminating in 
equivalence relation and engaged in a descriptive survey. The 
survey has shown that not all continuous functions are actually 
homotopic just as seen discontinuous functions. The concept of 
homotopy is also been applied in other areas of mathematics; the 
use of the homotopy analysis method in providing solutions to 
Fredholm’s Integral Equations of the Second Kind as seen in the 
work of (Issaka I. , Obeng-Denteh, Mensah, & Owusu-Mensah, 
2016) and the application of homotopy to the ageing process of the 
human body (Brew, Obeng-Denteh, & Zigli, 2019).  
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