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Rhodoliths are unattached marine benthic crustose 
coralline red algae (Corallinaceae, Rhodophyta) nod-
ules which are the foundation species of the rhodolith 
beds (Bruno and Bertness, 2001). These coralline red 
algae are formed by precipitating calcium carbonate 
(CaCO3) within their cell walls (Foster, 2001). Rhod-
oliths depend strongly on water motion (currents) to 
enable their periodic rotation which allows them to be 
exposed to light on both sides (to photosynthesize) and 
to remain unburied by sediment (Hinojosa-Arango et 
al., 2009). These rhodolith beds (RBs) represent a key 
habitat worldwide and form an important ecosystem 
themselves (Schubert et al., 2019), and are associated 
with other tropical or polar benthic organisms such 
as sponges, corals, molluscs, seagrass, bryozoans and 
macroalgae, among others (Grall and Glemarec, 1997; 
Steller et al., 2003; Amado-Filho et al., 2012; Foster et 
al., 2013; Vilas-Boas et al., 2014; Ordines et al., 2015; 
Riosmena-Rodríguez et al., 2017). RBs also form part 
of the largest recognized macrophyte-dominated ben-
thic communities, consisting of coralline algal reef, 
seagrass and kelp beds (Amado-Filho et al., 2012; Pena 
et al., 2014). They have been mainly reported around 
islands, capes, on submarine plateaus, seamounts, 
marine terraces, channels and banks (Basso et al., 2017). 

While in-depth research on rhodoliths has mainly 
been concentrated in the Mediterranean, North 
Atlantic, and Pacific regions (Foster, 2001; Ama-
do-Filho et al., 2012; Harvey et al., 2017), the only 
mention of these coralline algae from Saya de 

Malha (reported as red-pink Lithothamnium) was 
in Vortsepneva’s review on previous expeditions 
carried out at this particular bank (Vortsepneva, 
2008). Despite the fact that RB habitats are consid-
ered as a hotspot of biodiversity providing an array 
of ecosystem goods and services, such as fishery 
resources, soil conditioning, carbon trapping and 
climate regulation, among others ( Jacquotte, 1962; 
Hall-Spencer et al., 2003; Cavalcanti et al., 2014; Basso 
et al., 2016; Krayesky-Self et al., 2017; Coletti et al., 
2017; Schubert et al., 2020), not many studies have 
been conducted to properly understand their overall 
contribution to ocean ecology.

The Indian Ocean EAF-Nansen research expedition 
survey cruise in May 2018 helped to gather new infor-
mation on RBs from the Saya de Malha and Nazareth 
Banks. With the help of a Remotely Operated Vehicle 
(ROV), RBs were mainly observed at eight locations 
within the Saya de Malha Bank namely SS4, SS34, 
SS36, SS37, SS38, SS39, SS40 and SS42 at depths 
ranging from 20-80 m and at three locations within 
the Nazareth Bank namely SS49, SS50 and SS52 at 
depths ranging from 53-126 m (Fig. 1). Rhodolith ball 
sizes ranged from approximately 0.5 to 4 cm. RBs 
have been reported to mostly occur at depths rang-
ing between 30-75 m (Foster et al., 2013), but have also 
been recorded from as deep as 150 m (Aguilar et al., 
2009) and forming beds of up to 10 m in thickness 
(Harvey et al., 2017). Although rhodoliths are most 
likely to occur in photic to mesophotic areas, they 
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are acclimated to survive in restricted light ranges in 
deeper waters as well (Figueiredo et al., 2012). RBs are 
considered as a rich and important habitat harbouring 
high diversity and density of echinoderms and many 
other associated species (Steller et al., 2003; Gondim et 
al., 2014; Moura et al., 2021).

The study showed that RBs found on both banks 
provided a benthic substrate to sustain other organ-
isms such as echinoderms, asteroids, sea cucumbers, 

sponges, corals, seagrass, fi sh, and seaweed (Fig. 2B-D, 
F-H and Fig. 3C-H). Studies in the Gulf of California 
demonstrated that sea urchins help rhodoliths by turn-
ing them, in a process called bioturbation, during feed-
ing and movement, which contributes to bed integ-
rity ( James, 2000). RBs provide a safe and important 
ground for juvenile echinoderms (Riosmena-Rodri-
guez and Medina-Lopez, 2010). The RBs at location 
SS42 (Fig. 2B) on the Saya de Malha Bank and location 
SS50 (Fig. 3D) at the Nazareth Bank may be considered 

as a niche for echinoderm assemblages, while the other 
locations show the importance of RBs for the sustain-
ability of many other organisms at the banks.  

In addition to their structural complexity and their 
importance to continental shelf biodiversity, RBs 
are considered as important carbonate factories 
(Amado-Filho et al., 2012). This is similar to coral 
reefs which have been reported to be a major coastal 
CaCO3 manufacturers (Spalding and Grenfell, 1997; 

Vecsei, 2000, 2004a, b) through evidence built on 
their global distribution (Spalding and Grenfell, 1997; 
Vecsei, 2000, 2004a, b) estimations of their miner-
alization rates (Kinsey and Hopley, 1991; Milliman, 
1993; Milliman and Droxler, 1996; Kleypas, 1997). 
Similarly, RBs contribute considerably to continen-
tal shelf ecosystem CaCO3 cycles owing to their high 
community CaCO3 production and dissolution rates 
(Foster, 2001; Martin et al., 2007; Martin and Gattuso, 
2009). Ample evidence indicates that the capture and 

Figure 1. 
Figure 1. Map showing the locations of the rhodolith beds. A: Western Indian Ocean map show-

ing the location of Saya de Malha and Nazareth Banks in the red-shaded box. B: Map showing 

the 11 locations (indicated by yellow and red border stars) where rhodolith beds were observed 

using the ROV. Map prepared using the GEBCO Bathymetry Grid layer data 2020.
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Figure 2. Figure 2. Rhodolith beds (RBs) at Saya de Malha Bank. A. Location 42 at a depth of 48.41 m - Sponge and echinoderms on RB; B. Location 42 at a 

depth of 46.86 m – Group of echinoderms on RB.; C. Location 42 at a depth of 49.21 m – Demospongia growing on RB; D. Location 42 at depth 

of 49.79 m – Octocoralia, soft  corals and sponge growing on RB; E. Location 40 at a depth of 74.66 m – Rhodoliths clustered forming a mount; 

F. Location 39 at a depth of 35.89 m - Acropora sp. and Porites sp. growing on rhodoliths; G. Location 38 at a depth of 26.16 m – Seagrass Thalasso-

dendron ciliatum growing on RB; H. Location 36 at a depth of 38.44 m - Moray eel (Gymnothorax sp.) using rhodoliths as habitat. Photos were taken 

using the Argus Remotely Operated Vehicle (ROV) during the expedition.
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Figure 3. Figure 3. Rhodolith beds (RBs) at Nazareth Bank. A. Location 49 at a depth of 107.05 m – RB overview; B. Location 50 at a depth of 51.45 m – RB 

overview; C. Location 50 at a depth of 53.30 m – Coral (Tabular Acropora sp.) growing on RB; D. Location 50 at a depth of 53.27 m – Group of 

echinoderms on RB; E. Location 52 at a depth of 80.58 m – cushion seastar on RB; F. Location 52 at a depth of 69.77 m – Sea cucumber (Thelenota 

ananas) on RB; G. Location 52 at a depth of 101.52 m – Rhodoliths clustered forming a mount with coralline algae (Halimeda sp.) colonising the 

mount; H. Location 52 at a depth of 126.33 m – Gorgonian sea fan growing on RB. Photos were taken using the Argus Remotely Operated Vehicle 

(ROV) during the expedition.
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storage of atmospheric carbon dioxide by RBs over 
time are comparable, both in effi  ciency and area, to 
those of coral reefs (Amado-Filho et al., 2012). Studies 
have shown that the RB on the Abrolhos Shelf (approx-
imate area of 200,000 km2) was able to produce a total 
of 0.025 Gt yr-1 (1.060.7 kg m-2 yr-1) of CaCO3 (Ama-
do-Filho et al., 2012), almost equivalent to the yearly 
total CaCO3 produced by Caribbean coral reefs (0.04- 
0.08 Gt yr-1 or 1.3-2.7 kg m-2 yr-1) (Vecsei, 2004a, b) and 
the estimated mean calcifi cation rate of 1.5 kg m-2 yr-1

produced by global coral reefs (Andersson et al., 2005). 
RBs are however at risk from disturbances such as cli-
mate change, global warming, and associated ocean 
acidifi cation, as well as from other disturbances with 
anthropogenic sources such as sedimentation, and 
fi shery trawling (Foster et al., 2013; Harvey et al., 2017; 
Schubert et al., 2019). Rhodoliths grow only a few mil-
limeters per year (Foster et al., 2013) and these distur-
bances aff ect their recruitment, development, health, 
and survival rate which may lead increased compe-
tition from space competitors such as fl eshy algae 
(Martin and Hall-Spencer, 2017; Carvalho et al., 2020) 
in shallower areas.

This fi rst documentation of RBs from the Saya de 
Malha and Nazareth Banks provides the basis for 
future research and conservation work on RBs in this 
part of the world. RBs at the two banks may be con-
sidered as marine biodiversity hotspots that function as 
seedbanks, habitat, nursery grounds, refugia and areas 
of high carbonate production. The vast number of 
organisms that RBs host, including sponges and other 
macroalgae, may also provide new opportunities for 
bioprospecting in the future. However, there is a need 
for directed research to fully understand the physical 
integrity, ecological balance and community structure 
of RBs over time in order to better conserve and protect 
these important, yet poorly studied and understood 
ecosystems on the Saya de Malha and Nazareth Banks. 
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México. In: Seckbach J, Einav R, Israel A (eds) Sea-
weeds and their role in globally changing environ-
ments. Springer, Netherlands. pp 127-138
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