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Abstract 

The convolution process in the Capsule Network method can result in a loss of spatial data from the 
Electroencephalogram signal, despite its ability to characterize spatial information from 

Electroencephalogram signals. Therefore, this study applied the Continuous Capsule Network 
method to overcome problems associated with emotion recognition based on Electroencephalogram 

signals using the optimal architecture of the (1) 1st, 2nd, 3rd, and 4th Continuous Convolution layers 

with values of 64, 128, 256, and 64, respectively, and (2) kernel sizes of 2×2×4, 2×2×64, and 
2×2×128 for the 1st, 2nd, and 3rd Continuous Convolution layers, and 1×1×256 for the 4th. Several 

methods were also used to support the Continuous Capsule Network process, such as the Differential 

Entropy and 3D Cube methods for the feature extraction and representation processes. These 
methods were chosen based on their ability to characterize spatial and low-frequency information 

from Electroencephalogram signals. By testing the DEAP dataset, these proposed methods achieved 

accuracies of 91.35, 93.67, and 92.82% for the four categories of emotions, two categories of 
arousal, and valence, respectively. Furthermore, on the DREAMER dataset, these proposed methods 

achieved accuracies of 94.23, 96.66, and 96.05% for the four categories of emotions, the two 

categories of arousal, and valence, respectively. Finally, on the AMIGOS dataset, these proposed 
methods achieved accuracies of 96.20, 97.96, and 97.32% for the four categories of emotions, the 

two categories of arousal, and valence, respectively. 
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1- Introduction 

Emotions are psychological reactions to daily social interactions [1], which emerge due to certain conditions or 

problems encountered in achieving the desired target [2]. It is categorized into arousal and valence, with positive and 

negative values, respectively. Valence is an individual's reaction toward an event, while arousal is the excitement to 

behave accordingly or express the feeling [3]. A combination of arousal and valence labels is categorized into four 

quadrants: the 1st represents high arousal and positive valence (HAPV), 2nd depicts high arousal and negative valence 

(HANV), 3rd implies low arousal and negative valence (LANV), while the 4th describes low arousal and positive valence 

(LAPV) [4, 5]. The emotional reactions in each quadrant represent mental health and human performance [6]. It is 

essential to recognize the emotions in each quadrant to understand these individuals' mental state and performance. 
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Several preliminary studies have been carried out both externally and internally. External emotional reactions are usually 

hidden by individuals in social environments [7, 8]. In contrast, internal emotions are primarily recognized through 

Electroencephalogram (EEG) signals. These have several advantages, such as (𝑖) EEG signals have spatial information 

that tends to represent human affective experiences [9], and (𝑖𝑖) they directly reflect changes in emotional reactions and 

responses in the human brain, particularly in the limbic system [10, 11]. 

This study's success was impacted by the EEG signals' characteristics, such as low-frequency and spatial data [12]. 

Several studies identified these attributes in feature extraction, feature representation, and classification processes [13, 

14]. Regarding feature extraction, the Differential Entropy (DE) method is used to detect low amplitudes [15], as well 

as characterize the time series of EEG signals [16]. The most accurate and stable features for emotional recognition are 

generated by this method [17–19]. Although the feature extraction process executed using the DE method tends to 

consider the characteristics of EEG signals, different participant characteristics significantly affect the emotional 

responses [12, 20]. Yang et al. (2018) investigated the baseline reduction approach and its ability to overcome these 

problems. This approach can improve the accuracy of emotion recognition [18]. 

Due to the fact that the signals have characteristics related to spatial information, it is crucial to determine an 

appropriate representation method for these features before carrying out the classification process. Based on several 

preliminary studies, the representation features using the 3D Cube method can maintain spatial information between 

channels and frequency bands, such as Theta, Alpha, Beta, and Gamma [12, 18, 21]. In addition to the feature extraction 

and representation phases, the classification stage is essential for emotional recognition. Several studies stated that the 

adoption of the capsule network method is used to characterize the spatial relationships between different features [22]. 

This procedure is adequately trained on a smaller scale than a Convolutional Neural Network (CNN) [23]. However, the 

convolution process in the capsule network method can result in a loss of spatial information from the EEG signal. 

Therefore, using a continuous convolution approach in the capsule network method is crucial. A continuous convolution 

has been investigated in previous studies; however, this approach is applied to the CNN method. This procedure does 

not involve a pooling process, and zero-padding is a SAME in the convolution layer [12, 18]. A combination of the 

capsule network and continuous convolution approaches is called the continuous capsule network method. 

This study contributes to the development of the Continuous Capsule Network method and its utilization to overcome 

the loss of spatial information from EEG signals. Several secondary datasets such as DEAP, DREAMER, and AMIGOS 

were used to test this contribution. The emotional outcomes were divided into four classes: high arousal and positive 

valence; high arousal and negative valence; low arousal and positive valence; and low arousal and negative valence. In 

addition, this method was used to classify two classes: high and low for arousal and high and low for valence. 

2- Related Works 

EEG signals with respect to emotional recognition have a few essential characteristics, such as low-frequency and 

spatial data. Previous studies distinguished these attributes based on extraction, representation features, and 

classification. Feature extraction is obtaining characters relevant to an EEG signal's emotional state. It is grouped into 

three features: time, frequency-domain, and time-frequency domain [12]. Based on a few studies, the extraction method 

executed using Differential Entropy (DE) emphasizes a few points of interest compared to other methods. The DE 

method tends to recognize low-frequency EEG signals [15]. In addition, it is also used to characterize the time series 

[16]. The most accurate and stable features are generated for emotional recognition [17–19]. Although the feature 

extraction process using the DE method considers the characteristics of EEG signals, that of diverse participants also 

significantly affects the emotional responses [12, 20]. These responses are also affected by a few characteristics, such as 

mental capacities, gender, and identity [14, 24]. Several studies examined the baseline reduction approach to represent 

emotional reactions based on the different characteristics of each participant [18, 25]. The reduction approach was 

implemented by reducing the DE feature of the experiment EEG signal using the average value of the baseline EEG 

signal [18]. The baseline EEG signals were recorded before the participants were given the stimulus medium. This 

procedure also increases the accuracy of emotional recognition [18, 21]. The classification process employed the DE 

feature of the reduced signals. 

Due to the spatial information characteristics contained by the signal, it is essential to determine the appropriate 

representation method before the classification process. Chen et al. (2020) designed a feature representation using the 

2D mesh sequence method. The study stated that the EEG signals data is directly represented in a 9 × 9 × 128 matrix, 

whereby 9 represents the height and width of the matrix, while 128 denotes its depth. The feature mapping of 9 × 9 

matrices is based on the International 10-20 System. However, this does not consider spatial information between the 

frequency bands [26]. Chao et al. (2019) proposed a representation method using the Multiband Feature Matrix (MFM) 

approach, which considers its frequency band. This procedure represents feature values as a 9 × 9 matrix, and each 

depicts theta, alpha, beta, and gamma frequencies. Feature representations are presented in a line to form a matrix 

measuring 18 × 18 [1]. This method produces a more extensive data size than the feature representation using the 3D 

Cube method. Like the MFM method, the 3D Cube was presented in a stack such that combining these four matrices 
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produced the exact size of 9 × 9. The 3D Cube method keeps up spatial data between channels and frequencies, while 

its representation refers to an RGB image. Therefore, this study examines the use of the 3D Cube method for feature 

representation [12, 18, 21]. 

Several classification techniques are used to identify the four categories of emotions, such as the kNN method 

proposed by Liu et al. (2018). Based on the tests carried out on the DEAP dataset, this approach tends to produce an 

average accuracy of 86.05% [27]. Soroush et al. (2019) designed the multi-class support vector machine (MSVM) 

method used to identify four classes of emotions. However, by testing the DEAP dataset, the proposed method produces 

an accuracy of 81.67% [28]. The Graph regularized Extreme Learning Machine (GELM) method was designed by Zheng 

et al. (2016). In the DEAP dataset test, this approach produces an accuracy of 69.67% in recognizing the four emotional 

categories [29]. Mei and Xu (2017) proposed the Deep Learning approach using the CNN method. Based on the tests 

carried out on the DEAP dataset, this approach accurately recognizes four categories of emotions by 75% [30]. To 

improve its recognition accuracy, Zhao et al. (2020) designed the application of baseline reduction on the CNN method. 

In accordance with testing the two secondary datasets, this technique produces an accuracy of 93.53% and 95.86% for 

the DEAP and AMIGOS datasets, respectively [31]. 

In addition, emotions are classified into high and low categories, denoting arousal and valence, respectively. Liu et 

al. (2019) employed the kNN method to recognize these two categories of emotions, which produced an accuracy of 

86.46% and 84.90% using the DEAP dataset [32]. He et al. (2017) used the SVM method to make the same classification 

and obtained an average accuracy of 67.9% and 70.9% [33]. Parui et al. (2019) used the XGboost method to perform 

this classification, and through the tests carried out with an average accuracy of 74.20% and 75.97% for arousal and 

valence, respectively [34]. Pan et al. (2020) employed a Logistic Regression method through the Variable Splitting and 

Augmented Lagrangian (LORSAL) for this classification and obtained an average accuracy of 77.17% and 77.03% for 

arousal and valence, respectively [35]. Garg and Verma (2020) proposed the CNN method with GoogleNet architecture, 

and through the tests carried out, an average accuracy of 61.23% and 92.19% was obtained for arousal and valence, 

respectively [36]. Song et al. (2018) designed the Dynamical Graph Convolution Neural Network (DGCNN) method for 

this categorization, and an average accuracy of 84.54% and 86.23% was obtained [10]. The use of the CNN method for 

classifying emotions into two categories was also proposed by Huang et al. (2019). This approach produced an average 

accuracy of 84.5% and 83.7% for valence and arousal [37].  

Wardoyo et al. (2022) proposed the Radius SMOTE technique to improve the performance of the CNN method 

through the data oversampling process to realize an average accuracy of 82.11% and 78.99% for arousal and valence, 

respectively [20]. Another attempt was made by Yang et al. (2018), where they proposed a Continuous CNN method to 

identify the two categories. This approach does not employ pooling and utilizes the SAME padding in the convolution 

process. It aims to overcome the loss of feature information from the EEG signal, which consisted of average accuracy 

of 69.55% and 68.56% for arousal and valence, respectively. Yang et al. (2018) enhanced the performance of the 

Continuous CNN method by applying a baseline reduction approach. This led to achieving an average accuracy of 

90.24% and 89.45% for arousal and valence, respectively [18].  

The application of a baseline reduction technique to the CNN method was also studied by Wirawan et al. (2021), and 

this approach uses the Relative Difference procedure. Based on the tests carried out on the DEAP dataset, the proposed 

CNN method produced an average accuracy of 82.10% and 81.47% for arousal and valence, respectively [21]. Of the 

several classification methods studied, CNN produces higher accuracy than others [18]. However, it cannot represent 

spatial information between parts of an object and its whole, which affects the accuracy of emotion recognition [12]. 

This issue is resolved with the Capsule Network method. It is based on a deep learning approach with several advantages, 

such as characterizing spatial relationships between objects [22] and being trained effectively on a much smaller data 

scale than the CNN method [23]. The Capsule Network technique is an improvement of the CNN method. Recognition 

of emotions based on EEG signals using this approach was first studied by Chao et al. (2019). The capsule network 

method only achieved an accuracy of 68.28% and 66.73% in recognizing arousal and valence emotions on the DEAP 

dataset [1]. Liu et al. (2020) also seek to improve its performance by applying Multi-Level Feature maps on the Primary 

Capsule. Regarding the DEAP dataset's testing, this method produces an average accuracy of 64.36% and 62.57% for 

arousal and valence, respectively [23]. 

Irrespective of the fact that it is an improvement of the CNN method, its accuracy is still low. This problem is caused 

by the loss of spatial information from the EEG signals during the convolution process [1, 12]. Therefore, the Continuous 

Convolution approach in the Capsule Network method is essential. This approach produces higher accuracy than the 

Capsule Network technique, irrespective of its application to the CNN method [18, 23]. The application of the 

Continuous Capsule Network method is expected to be able to represent spatial information and overcome its loss in the 

EEG signals during the classification process. This study proposes the Differential Entropy, 3D Cube, and Continuous 

Capsule Network methods for the feature extraction, representation, and classification, respectively. 
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3- The Proposed Model 

This study developed a Continuous Capsule Network architecture based on EEG signals for emotion recognition, as 

shown in Figure 1. 

 

Figure 1. Steps of emotion recognition are based on EEG signals 

In addition, three secondary datasets, DEAP, DREAMER, and AMIGOS, were selected. This was based on several 

considerations, such as the number of channels and participants, duration of the trial, and trial scenarios (individual and 

group scenarios). The DEAP dataset used 32 EEG channels, the duration of each trial was 63 s (one participant watched 

40 trial videos), while the total number of participants was 32. This dataset carried out individual scenarios [38]. In the 

DREAMER dataset, 14 EEG channels were used, and the duration of each trial ranged from 67 s to 394 s. One participant 

of the 23 others watched 18 trial videos. The trial scenarios in this dataset are carried out individually [39]. The AMIGOS 

dataset used 14 EEG channels, the duration of each trial ranges from 56.61 s to 155.46 s for short videos and 851.15 s 

to 1420.42 s for the long ones (one participant watched 16 short trial videos and four lengthy ones). The total number of 

participants who can be used in this dataset is 31 people, and the trial were carried out both individually and in groups 

[40]. These three datasets were used to identify four and two emotional categories. Based on Figure 1, the emotion 

recognition process is divided into six steps, one of which is a blue rectangle. 

3-1- Pre-processing 

At this stage, the raw EEG signals from the secondary dataset is segmented every second and at each channel. It 

contains 128 data points in one second. In the DEAP data set, the first 3 seconds are the baseline segment, while the 

subsequent 4 seconds are the experiment segment. The DREAMER dataset comprises the base segment, which has a 

duration of 5 seconds, while the experiment segment is from 67 to 394 seconds. Lastly, in the AMIGOS data set, 5 

seconds is the base segment, while the next 6 seconds is for the experiment segment. 

After the segmentation, decomposition was performed to obtain theta, alpha, beta, and gamma bands. This process 

uses the bandpass filter method, however, the decomposition process for one second on the DREAMER dataset is shown 

in Figure 2. The bandpass filter method decomposes a one-second EEG signals generated from channel AF3, leading to 

the generation of four frequency bands. 
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Figure 2. Illustration of the decomposition processes for AF3 channel 

3-2- Feature Extraction 

Feature extraction is performed for each second, frequency band, and channel, and the DE method is obtained using 

the following Equation 1 [18]: 

ℎ𝑖(𝑋) =
1

2
log(2𝜋𝑒𝛿2

𝑖(𝑋)) (1) 

where, e s Euler's constant, 𝛿2
𝑖 is the variance at the ith seconds for the EEG signals segment, and ℎ𝑖(𝑋) is the DE value 

at the ith seconds for the EEG signals segment. Furthermore, the DE feature value from the experiment segment is reduced 

using its average from the baseline segment. It aims to represent emotional reactions according to the participants’ 

characteristics. This approach tends to improve the accuracy of emotion recognition, and Equation 2 is used to obtain 

the baseline reduction. 

𝐹𝑖𝑛𝑎𝑙𝑖(𝑋) = 𝐸𝑥𝑝𝑒𝑟𝑖(𝑋) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛(𝑋)  (2) 

where 𝐸𝑥𝑝𝑒𝑟𝑖(𝑋) is the DE feature of the X frequency band at the ith seconds for the experiment segment, 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛(𝑋) 

is the DE feature of the X frequency band for the EEG baseline signals, 𝐹𝑖𝑛𝑎𝑙𝑖(𝑋) is the DE feature after baseline 

reduction of the X frequency band at the ith seconds for the experiment segment. 

3-3- Feature Representation 

Since the EEG signals have spatial information characteristics, it is crucial to determine an appropriate representation 

method for its features before performing the classification process. The feature representation was carried out on each 

frequency band and all channels. It aims to preserve spatial information between adjacent channels. Figure 3 illustrates 

the feature representation process, which lasts one second of the EEG signals on channel AF3. The 3D Cube method 

tends to maintain spatial information between all frequency bands and channels [12, 18, 21].  

The 9 × 9 matrix is the DE feature value for each frequency band. A combination of these four matrices is called the 

3D cube representation. Each participant engaged in all the experimental processes generated 2400, 3728, and 6192 3D 

Cube for the DEAP, DREAMER, and AMIGOS datasets, respectively. 
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Figure 3. Feature extraction and representation processes for AF3 in the DREAMER dataset 

3-4- Classification 

The emotion classification process involves the use of a Continuous Capsule Network method. Yang et al. 2018, 

proposed a similar approach using the CNN method. The Continuous Convolution method is a procedure that uses the 

SAME padding and does not use pooling during the Convolution process. This approach aims to overcome the loss of 

feature information from the 3D Cube during the procedure [18]. It is essential to investigate this issue, considering that 

the 3D Cube as input data has a small size (9 × 9 × 4). Although, its use does not reduce the size of the 3D Cube data to 

a feature map on convolution. The Capsule Network applied in this study references its architecture designed by Liu et 

al. (2020) and Chao et al. (2019). Based on their proposal, its framework consists of three parts: the Convolution, 

Primary, and Emotion Capsules. The Capsule Network method in emotion recognition based on EEG signals can 

represent spatial information from EEG signals [1, 22, 23]. However, the Convolution process in this method can result 

in the loss of spatial data between channels of each frequency band. This study proposes a Continuous Convolution 

approach to the Capsule Network method to overcome these problems. Its architecture is a combination of Continuous 

Convolution with the Capsule Network architecture. It is designed for the recognition of the four categories of emotions, 

and its architecture is shown in Figure 4. 

 

Figure 4. Continuous Capsule Network architecture for four outputs 
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As shown in Figure 4, the classification of emotions was divided into three stages, Continuous Convolution, Primary, 

and Emotion Capsules [1, 18, 23]. 

3-4-1- Continuous Convolution Stage 

At this stage, the Continuous Convolution process is repeated four times, and its formula is represented by Equation 3: 

𝐹𝑀[𝑖]𝑗,𝑘 =  (∑ ∑ 𝑁[𝑗−𝑚,𝑘−𝑛]𝐹[𝑚,𝑛]𝑛𝑚 ) + 𝑏𝐹  (3) 

where FM[i] is the ith feature map matrix, N is the input data matrix, F is the filter Continuous Convolution matrix, bF 

is the bias value of the filter, j and k are pixel positions in the input data matrix, and m and n are the pixel positions in 

the input data matrix. In the first Continuous Convolution, the 3D cube data is convoluted using 64 filters with each 

having a size of 2 × 2 × 4 to produce the first feature map with a size of 9 × 9 × 64. The first feature map was then 

convoluted using 128 filters, with each having a size of 2 × 2 × 64. The second Continuous Convolution produces a 

feature map with a size of 9 × 9 × 128. The third procedure produced a feature map with a size of 9 × 9 × 256, using 256 

filters, each has a size of 2 × 2 × 128. Finally, the third feature map is convoluted, using 64 filters with each having a 

size of 1 × 1 × 256 to produce one with a size of 9 × 9 × 64. This fourth Continuous Convolution process aims to combine 

feature maps and reduce computations. The four procedures used the SAME padding, no pooling, stride value of 1, and 

ReLU activation. The first Continuous Convolution process is shown in Figure 5. 

 

Figure 5. The illustration of the first Continuous Convolution stage 
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3-4-2- Primary Capsule Stage 

At this stage, the feature map data obtained from the fourth Continuous Convolution process were divided into eight 

blocks, with each having a size of 9 × 9 × 8. After separation, each of them was reshaped to generate a vector 𝑢𝑖 with a 

size of 8 × 648 (8 × 9 × 9). This vector is to encode brain areas by representing DE features into an 8 × 648 matrix [23]. 

Figure 6 shows the reshaping process of the fourth feature map. 

 

Figure 6. Illustration of the Primary Capsules stage 

3-4-3- Emotion Capsule Stage 

In this stage, the affine transformation, Weighted Sum, Dynamic Routing, and Squashing were performed [22, 41] as 

shown in Figure 7. 

 

Figure 7. Illustration of the Emotion Capsules stage 
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Based on Figure 7, the value at the input node is a vector, and it emanates from 𝑢1,..., 𝑢648 (each of the 𝑢𝑖 is 1 × 8). 

The Capsule Network method does not use bias values as input, rather it is included in the next phase of the affine 

transformation process with the 𝑊𝑖|𝑗 matrix. In the affine transformation process, the vector 𝑢𝑖 (1×8) i is multiplied by 

the matrix 𝑊𝑖|𝑗  (8 × 16) to produce a vector �̂�𝑗|𝑖 measuring 1 × 16. This process was repeated 648 times to generate 648 

vectors for one emotion class, where j represents each class, and i represents each vector's index. The value of the affine 

transformation process is obtained using Equation 4. 

�̂�𝑗|𝑖 = 𝑊𝑖|𝑗𝑢𝑖  (4) 

where 𝑢𝑖 is the input vector for lower-level capsule (i), 𝑊𝑖|𝑗 is the weight matrix, and �̂�𝑗|𝑖 is the prediction vector. The 

transformation process represents the spatial relationship between the sub-objects and all others in a higher layer. 

Therefore, it is possible to predict whether these sub-objects correlate with higher-level ones. This process is followed 

by the Weighted Sum process between cij and the input vector �̂�𝑗|𝑖. It aims to produce a Weighted Sum (sj) by projecting 

several prediction vectors (�̂�𝑗|𝑖) using the coupling coefficients (cij). According to Sabour et al. (2017), a dynamic routing 

process was used to determine the cij value. as shown in Table 1 [22]. 

Table 1. Dynamic routing algorithm 

Routing dynamic algorithm 

1: procedure ROUTING (�̂�𝒋|𝒊, r, l) 

2: for all capsule i in layer l and capsule j in layer (l + 1): 𝑏𝑖𝑗 0 

3: for r iterations do 

4: for all capsule i in layer l: 𝑐𝑖  SoftMax function (𝑏𝑖) 

5: for all capsule j in layer (l + 1): 𝒔𝒋  ∑ 𝑐𝑖𝑗�̂�𝒋|𝒊𝑖  

6: for all capsule j in layer (l+1): 𝒗𝒋  squash function (𝒔𝒋) 

7: for all capsule i in layer l and capsule j in layer (l+1): 𝑏𝑖𝑗  𝑏𝑖𝑗+�̂�𝒋|𝒊. 𝒗𝒋 

8: return 𝒗𝒋 

Furthermore, the sj vector is activated using the Squashing activation function to obtain the probability values (𝒗𝒋) of 

the four emotional states (HAPV, HANV, LANV, and LAPV). Finally, the loss value was calculated based on the output 

and target using the L2 regularization method, as stated in Equation 5. 

𝐿𝑒 =  𝑇𝑒 max(0, 𝑚+ − ‖𝒗𝒆‖)2 +  𝜆 (1 − 𝑇𝑒)max (0, ‖𝒗𝒆‖ − 𝑚−)2  (5) 

where 𝑇𝑒 assuming the emotion class (e) matches the target, 𝑚− is 0.1, 𝑚+ is 0.9, 𝑣𝑒 represents the output vector of class 

e, and 𝜆 is the down-weighting of the loss function. However, by default, the 𝜆 value was set at 0.5, and this study used 

a batch size of two for the optimization process by employing the Adam optimizer method and a routing coefficient 

value of three. 

3-5- Evaluation Method 

The task or classification model was assessed using K-fold cross-validation at this stage. 10-fold cross-validation 

(K=10) is the most commonly used method, with an illustration shown in Figure 8. 

 

Figure 8. Illustration of k-fold cross validation 
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In K-Fold cross-validation, the initial sampling was divided into K subsamples. One subsample (K) was used as the 

test set (T), while the K sample was employed for training (S). Each subsample was validated once, and the mean K 

value was used as the final result, moreover, cross-validation was repeated K times. 

3-6- Performance Evaluation 

In this study, the performance of the classification process was evaluated using the accuracy rate value. It is a 

proportion of correctly classified samples to their total, calculated using Equation 6. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑅𝑎𝑡𝑒 (𝑅) =  
𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙𝑠

𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝐿𝑎𝑏𝑒𝑙𝑠
 ×  100%          (6) 

True label is the number of samples that can recognize two or four emotion labels, while the False one is the number 

of samples that cannot identify these labels. The four emotional labels were high arousal and positive valence, high 

arousal and negative valence, low arousal and positive valence, and low arousal and negative valence. Furthermore, two 

emotional labels were high and low for arousal and valence. 

4- Results and Discussion 

A Continuous Capsule Network is used to represent spatial information and overcome its loss in the EEG signals 

during the classification process. In addition, the feature extraction and representation process use Differential Entropy 

and 3D Cube methods to support the classification procedure. The DE is used to recognize low-frequency and 

characterize the time series [15, 16]. The features generated from this method are the most accurate and stable for emotion 

recognition compared to the others [17-19]. The DE features were represented using the 3D cube method. This method 

represents the spatial information between all channels and frequency bands. Two experimental stages were carried out 

to test the proposed Continuous Capsule Network method, namely: 

4-1- First Experiment 

This experiment aimed to determine the optimal Continuous Capsule Network architecture based on the accuracy and 

the number of parameters using the hyperparameter process [1, 23]. This procedure was carried out in two stages. In the 

first one, the hyperparameter process is based on the number of Continuous Convolution layers, while in the second, it 

is dependent on the kernel size [1]. Four test scenarios were carried out in the first stage and three in the second to test 

the Continuous Capsule Network architecture. Furthermore, the architecture generated from each scenario selects the 

best approach, namely the Continuous Capsule Network method, based on the highest accuracy value and least number 

of parameters [1, 23]. Accuracy and the number of parameters is the benefit and cost criteria. Their values were 

determined using the normalization techniques such as in Equation 7 [42]. 

𝑟𝑖𝑗 = {

𝑥𝑖𝑗

𝑀𝑎𝑥𝑖(𝑥𝑖𝑗)
,       𝐼𝑓 𝑥𝑖𝑗  𝑖𝑠 𝑎 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑀𝑖𝑛𝑖(𝑥𝑖𝑗)

𝑥𝑖𝑗
,        𝐼𝑓 𝑥𝑖𝑗  𝑖𝑠 𝑎 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛        

  (7) 

where 𝑥𝑖𝑗  is a cost or benefit criterion, 𝑟𝑖𝑗  is the normalized criterion, i is an alternative, and j is an criteria. Subsequently, 

the weighted sum process is carried out using Equation 8 for all criteria in each alternative. 

𝑉𝑖 =  ∑ 𝑊𝑗𝑟𝑖𝑗
𝑛
𝑗=1   (8) 

where 𝑉𝑖 is the weighted sum value for each alternative, 𝑊𝑗 is the weighted value for each criteria, and the weight used 

in this experiment is 1 for all criteria. 

1. In the first stage, the hyperparameter process is used to determine the optimal Continuous Capsule Network 

architecture based on the number of Continuous Convolution layers. Four scenarios were implemented to ascertain 

the optimal Continuous Capsule Network architecture: 

 The first scenario involves the design of the first Continuous Capsule Network architecture, where the number of 

first, second, and third Continuous Convolution layers were 64, 128, and 256, respectively. 

 The second scenario comprises designing the second Continuous Capsule Network architecture, where the number 

of 1st, 2nd, 3rd, and 4th Continuous Convolution layers were 64, 128, 256, and 64, respectively. 

 In the third scenario, the third Continuous Capsule Network architecture was designed, and the number of the 

first, second, third, and fourth Continuous Convolution layers were 64, 128, 256, and 128, respectively. 

 The fourth scenario involves the design of the fourth Continuous Capsule Network architecture, where the number 

of 1st, 2nd, 3rd, and 4th Continuous Convolution layers are 64, 128, 256, and 512, respectively. 
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By default, the kernel size used in these four architectures is 4 × 4 × 4, 4 × 4 × 64, 4 × 4 × 128, and 4 × 4 × 256. In 

addition, four scenarios were tested using three secondary data sets to identify four classes of emotions. Tables 2 to 4 

show the normalization results based on the accuracy and number of parameters for the DEAP, DREAMER, and 

AMIGOS datasets. Based on Table 2, Architecture 2 was ranked first with a value of 1.977297, although 4 produced the 

highest accuracy, and the number of parameters used was greater than the other three architectures. The DREAMER 

dataset also selected Architecture 2, which had a value of 1.955176. However, 4 produced the highest accuracy, and the 

number of parameters used was greater than the other three architectures. Based on the tests carried out on the AMIGOS 

dataset, Architecture 2 was ranked first with a value of 1.977297. On the other hand, 4 produced the highest accuracy, 

and the number of parameters used was greater than the other three. Architecture 2 of the Continuous Capsule Network 

was selected and retested in the second stage. 

Table 2. Normalization results for the first stage of the DEAP dataset 

Architectures Average accuracy values (𝒙𝒊𝟏) % Number of parameters (𝒙𝒊𝟐) Normalization (𝒓𝒊𝟏) Normalization (𝒓𝒊𝟐) Summation (𝑽𝒊) Ranking 

Architecture 1 58.8815 1987008 0.992908 0.631043 1.623951 3 

Architecture 2 57.9557 1253888 0.977297 1 1.977297 1 

Architecture 3 58.6797 1847872 0.989505 0.678558 1.668062 2 

Architecture 4 59.3021 5411776 1 0.231696 1.231696 4 

Table 3. Normalization results for the first stage of the DREAMER dataset 

Architectures Average accuracy values (𝒙𝒊𝟏) % Number of parameters (𝒙𝒊𝟐) Normalization (𝒓𝒊𝟏) Normalization (𝒓𝒊𝟐) Summation (𝑽𝒊) Ranking 

Architecture 1 47.756 1987008 0.975761 0.631043 1.606804 3 

Architecture 2 46.7485 1253888 0.955176 1 1.955176 1 

Architecture 3 47.9675 1847872 0.980084 0.678558 1.658641 2 

Architecture 4 48.9423 5411776 1 0.231696 1.231696 4 

Table 4. Normalization results for the first stage of the AMIGOS dataset 

Architectures Average accuracy values (𝒙𝒊𝟏) % Number of parameters (𝒙𝒊𝟐) Normalization (𝒓𝒊𝟏) Normalization (𝒓𝒊𝟐) Summation (𝑽𝒊) Ranking 

Architecture 1 47.4117 1987008 0.980695 0.631043 1.611738 3 

Architecture 2 47.8737 1253888 0.990252 1 1.990252 1 

Architecture 3 47.8815 1847872 0.990412 0.678558 1.66897 2 

Architecture 4 48.345 5411776 1 0.231696 1.231696 4 

2. In the second stage, the hyperparameter process was used to determine the optimal Continuous Capsule Network 

architecture based on the kernel size. This was designed using three scenarios, and the architecture tested was 

selected from stage 1 (Architecture 2). 

 The first scenario used a kernel size of 2 × 2 × 4, 2 × 2 × 64, and 2 × 2 × 128 for the 1st, 2nd, and 3rd convolution 

layers, and in contrast, the fourth one has a size of 1 × 1 × 256. 

 In the second scenario, used a kernel size of 3 × 3 × 4, 3 × 3 × 64, and 3 × 3 × 128 for the 1st, 2nd, and 3rd 

convolution layers, and in contrast, the fourth one has a size of 1 × 1 × 256. 

 In the third scenario, the kernel size used for the 1st, 2nd, and 3rd convolution layers is 4 × 4 × 4, 4 × 4 × 64, and 

4 × 4 × 128, while the fourth one is 1 × 1 × 256. 

The normalization results of the three test processes carried out on the three secondary datasets are shown in Tables 

5 to 7. According to Table 5, Architecture 2A was ranked first with a value of 1.959773. However, Architecture 2C 

produced higher average accuracy than the other two. The addition of several parameters did not significantly affect the 

average accuracy. Architecture 2A was also ranked first with a value of 1.96987 in the DREAMER dataset test, as shown 

in Table 6. The value of the parameter used in this architecture is 513536. Regarding Table 7, Architecture 2A was 

selected based on the AMIGOS dataset, and it yielded a value of 1.968684, while the number of parameters used was 

513536. 

Table 5. Normalization results for the second stage of the DEAP dataset 

Architectures Average accuracy values (𝒙𝒊𝟏) % Number of parameters (𝒙𝒊𝟐) Normalization (𝒓𝒊𝟏) Normalization (𝒓𝒊𝟐) Summation (𝑽𝒊) Ranking 

Architecture 2A 56.0742 513536 0.959773 1 1.959773 1 

Architecture 2B 57.5326 719616 0.984734 0.713625 1.698359 2 

Architecture 2C 58.4245 1008128 1 0.509396 1.509396 3 
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Table 6. Normalization results for the second stage of the DREAMER dataset 

Architectures Average accuracy values (𝒙𝒊𝟏) % Number of parameters (𝒙𝒊𝟐) Normalization (𝒓𝒊𝟏) Normalization (𝒓𝒊𝟐) Summation (𝑽𝒊) Ranking 

Architecture 2A 45.3343 513536 0.96987 1 1.96987 1 

Architecture 2B 46.2623 719616 0.989723 0.713625 1.703348 2 

Architecture 2C 46.7426 1008128 1 0.509396 1.509396 3 

Table 7. Normalization results for the second stage of the AMIGOS dataset 

Architectures Average accuracy values (𝒙𝒊𝟏) % Number of parameters (𝒙𝒊𝟐) Normalization (𝒓𝒊𝟏) Normalization (𝒓𝒊𝟐) Summation (𝑽𝒊) Ranking 

Architecture 2A 46.3221 513536 0.968684 1 1.968684 1 

Architecture 2B 46.6836 719616 0.976243 0.713625 1.689868 2 

Architecture 2C 47.8196 1008128 1 0.509396 1.509396 3 

The two hyperparameter stages in this experiment were used to design the optimal Continuous Capsule Network 

architectures where the number of the 1st, 2nd, 3rd, and 4th Continuous Convolution layers are 64, 128, 512, and 64, 

respectively. Furthermore, the kernel size used was 2 × 2 × 4, 2 × 2 × 64, and 2 × 2 × 128 for the 1st, 2nd, and 3rd layers, 

whereas the 4th one is 1 × 1 × 256. The stride value used in this architecture is one, and it does not use pooling rather it 

involves zero padding. An illustration of the selected architecture is shown in Figure 4 to identify four classes of 

emotions. Considering that the Continuous Capsule Network is an improvement of the Continuous Convolution Neural 

Network and Capsule Network methods, its architecture obtained from this experiment was compared with several 

related studies, specifically in terms of recognizing the two classes of emotions. A comparison of its accuracy with 

related classification processes is shown in Table 8. 

Based on Table 8, the average accuracy of the Continuous Capsule Network in this study is higher than in other 

investigations. Irrespective of the extraction and representation features applied to the DE and 3D Cube methods, and 

the implemented Continuous Capsule Network approach produced higher accuracy than the Continuous CNN technique 

proposed by Yang et al. (2018) [18]. Considering that the Capsule Network is an improvement of the CNN method, it 

tends to represent spatial data from the EEG signals and can be trained with less information [22, 23]. The application 

of the Continuous Capsule Network also produces higher accuracy than the Capsule Network procedure proposed by 

Liu et al. (2020) and Chao et al. (2019). Although Liu et al. (2020) and Chao et al. (2019) applied it during the 

classification process, the loss of spatial information from the EEG signals causes the resulting accuracy to be less than 

the Continuous Capsule Network method [1, 23]. This usually occurs during the Convolution process using the 

Continuous procedure. The spatial information contained in the input data (3D Cube) is maintained, as evidenced by the 

size of the feature map generated for each convolution that does not decrease. 

Table 8. Comparison of the accuracy of the Continuous Capsule Network method with several related studies in recognizing 

two classes of emotions 

No. Researchers Methods 
DEAP DREAMER AMIGOS 

Arousal Valence Arousal Valence Arousal Valence 

1 
Yang et al. 

(2018) [18] 

Feature Extraction using DE; Feature 

representation using 3D Cube; Classification using 
Continuous CNN 

69.55% 68.56%     

2 
Chao et al. 
(2019) [1] 

Feature Extraction using PSD, Feature 

representation using MFM Classification using 

Capsule Network 

68.28% 66.73%     

3 
Liu et al. 

(2020) [23] 
Representation features using MLF; Extraction 
features & Classification using Capsule Network 

64.36% 62.57%     

4 
Present study 

(2022) 

Feature Extraction using DE; Feature 
representation using 3D Cube; Classification using 

Continuous Capsule Network 

72.63% 71.21% 74.40% 61.35% 69.50% 63.07% 

Besides, the number of parameters used in the Continuous Capsule Network method is less than those applied in the 

Continuous CNN procedure. Yang et al. (2018) stated that the Continuous CNN method used 5989892 parameters [18]. 

The Capsule Network approach proposed by Liu et al. (2020) utilized 110850000 parameters [23]. Compared to the two 

procedures proposed in previous studies, the parameters used in the Continuous Capsule Network were relatively 

513536. Based on this experiment, it was stated that the application of this approach represents and maintains spatial 

information from the EEG signals. 
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4-2- Second Experiment 

Irrespective of the fact that a hyperparameter was used to determine the optimal Continuous Capsule Network 

architecture, its accuracy was less than 75%. Therefore, applying a baseline reduction approach is crucial for boosting 

emotional recognition accuracy. This experiment implemented a baseline reduction procedure after the feature extraction 

process was performed, as illustrated in Fig. 1. A comparison of the accuracies of Continuous Capsule Network methods 

with and without baseline reduction for the four emotion categories in the three secondary datasets is shown in Figures 

9 to 11. 

 

Figure 9. Comparison of accuracy with and without baseline reduction approach on the DEAP dataset 

 

Figure 10. Comparison accuracy with and without baseline reduction approach on the DREAMER dataset 
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Figure 11. Comparison accuracy with and without baseline reduction approach on the AMIGOS dataset 

Figure 9 shows that the implemented baseline reduction in the Continuous Capsule Network tends to boost the 

accuracy of emotion recognition in the DEAP dataset by an average increase of 35.28%. In addition, its standard 

deviation using the baseline reduction is 3.58. 

Interestingly, certain improvements were also observed in the DREAMER dataset, as shown in Figure 10. The 

application of baseline reduction in the Continuous Capsule Network method boosts the accuracy of all subjects, with 

an average increase of 48.90 %. Its standard deviation using the baseline reduction approach was 2.68. 

An increase in the accuracy was also observed in the AMIGOS dataset, as shown in Figure 11. In addition, there were 

40 participants, and only 31 were included in the test. The others had missing values in their EEG signals data and 

emotion labels. Based on the data acquired from the 31 participants, the implementation of baseline reduction in the 

Continuous Capsule Network method triggered the accuracy of the emotion recognition, with an average increase of 

49.87% and a standard deviation of 2.65. The Wilcoxon statistical test was carried out when the baseline reduction 

approach was applied to the Continuous Capsule Network method for the four emotion categories to prove the significant 

increase in accuracy. This was aimed to compare the accuracy of the Continuous Capsule Network that uses the baseline 

reduction approach to the one that does not use the procedure. Two hypotheses were developed to support the Wilcoxon 

test: 

 Ho: There was an insignificant difference in the accuracy of the results obtained with and without baseline 

reduction when applied to the Continuous Capsule Network. This hypothesis is true if the 2-tailed value is greater 

than or equal to the degree of significance (α = 0.05), expressed as 2-tailed >= α. 

 Ha: When applied to the Continuous Capsule Network, there was a significant difference in the accuracy of the 

results obtained with and without baseline reduction. This hypothesis is true when the 2-tailed value is greater than 

or equal to the degree of significance (α = 0.05), expressed as 2-tailed < α. 

The Wilcoxon test results realized from the application of baseline reduction in the Continuous Capsule Network 

method for the DEAP, DREAMER, and AMIGOS datasets are shown in Table 9. 

Table 9. Wilcoxon test results for applying the baseline reduction in the Continuous Capsule Network method for four 

emotion categories 

No. 
Secondary 

dataset 

Average Accuracy Wilcoxon Test 

Without baseline 

reduction 

With baseline 

reduction 

Positive 

Ranks 

Negative 

Ranks 
Ties 2-tailed Hypotheses 

1 DEAP 56.07% 91.35% 32 0 0 0.000 Ha accepted 

2 DREAMER 45.33% 94.23% 23 0 0 0.000 Ha accepted 

3 AMIGOS 46.32% 96.20% 31 0 0 0.000 Ha accepted 
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In accordance with Table 9, a combination of baseline reduction and the Continuous Capsule Network method used 

to identify the four emotion categories produced average accuracies of 91.35%, 94.23%, and 96.20% for the DEAP, 

DREAMER, and AMIGOS datasets, respectively. Its accuracy is higher than the approach without baseline reduction. 

Furthermore, several values are generated from the Wilcoxon test, such as Positive and Negative Ranks, Ties, and 2-

tailed. The Positive Ranks are the data samples obtained from the Continuous Capsule Network method, with the baseline 

reduction having higher accuracy than the one without this procedure. The Negative Ranks were the data samples from 

the Continuous Capsule Network method with baseline reduction have lower accuracy than those without this approach. 

Ties are the data sample from the Continuous Capsule Network method with baseline reduction, which has the same 

accuracy as those realized without the procedure. The 2-tailed approach (Asymp. sig.) is the significant value between 

the Continuous Capsule Network method with and without baseline reduction. It was used to determine the hypothesis. 

Ha was accepted if the 2-tailed value was < 0.05; otherwise, Ho was accepted. Based on the Wilcoxon test carried out 

on the three secondary datasets, using the baseline reduction and the Continuous Capsule Network method for the 

emotion classification process significantly improves the emotion recognition accuracy based on EEG signals (2-tailed 

= 0.000). The average accuracy realized with the Continuous Capsule Network method with baseline reduction was 

compared with previous studies, particularly in recognizing the four emotional classes, as shown in Table 10. 

Table 10. Comparison of accuracy results between the proposed method and other methods for the four categories of emotions 

No. Researchers Methods DEAP DREAMER AMIGOS 

1 Liu et al. (2018) [27] Extraction feature using ResNets dan LFCC; Classification using kNN. 86.05% - - 

2 Soroush et al. (2019) [28] Extraction feature using Angle Space; Classification using MSVM. 81.67%. - - 

3 Zheng et al. (2016) [29] Extraction feature using DE; Classification using GELM. 69.67% - - 

4 Mei and Xu. (2017) [30] 
Extraction feature using Pearson Correlation Coefficient; Classification 

using CNN. 
75% - - 

5 Zhao et al. (2020) [31] 
Baseline reduction using Difference; Extraction feature and Classification 

using CNN. 
93.53% - 95.95% 

6 Present study (2022) 
Extraction feature using DE; Baseline reduction using Difference; 
Representation features using 3D Cube; Classification using Continuous 

Capsule Network. 

91.35% 94.23% 96.20% 

Considering that the recognition of emotions for the two categories was absolutely investigated in previous studies, 

the resulting accuracy compared to preliminary analyses is shown in Table 11. 

Table 11. Comparison of accuracy results between the proposed method and other methods for the two categories of emotions 

No. Researchers Methods 
DEAP DREAMER AMIGOS 

Arousal Valence Arousal Valence Arousal Valence 

1 Liu et al. [32] Extraction feature using EMD; Classification using kNN. 86.46% 84.90%     

2 He et al. [33] Extraction feature using MEMD; Classification using SVM. 67.90% 70.90%     

3 Parui et al. [34] 

Extraction feature using Hjorth Parameters, Autoregressive 

Parameters, dan Wavelet Domain Features; Classification 

using XGboost. 

74.20% 75.97%     

4 Pan et al. [35] Extraction feature using DE; Classification using LORSAL. 77.17% 77.03%     

5 Garg & Verma [36] 
Extraction feature and Classification using CNN with 
GoogleNet architecture. 

61.23% 92.19%     

6 Song et al. [10] Extraction feature using DE; Classification using DGCNN.   84.54% 86.23%   

7 Huang et al. [37] Extraction feature using STFT; Classification using CNN. 84.50% 83.70%     

8 Yang et al. [18] 

Extraction feature using DE; Baseline reduction using 

Difference; Representation features using 3D Cube; 

Classification using Continuous CNN. 

90.24% 89.45%     

9 Wirawan et al. [21] 

Extraction feature using DE; Baseline reduction using Relative 

Difference; Representation features using 3D Cube; 

Classification using Continuous CNN. 

82.10% 81.47%     

10 Wardoyo et al. [20] 

Extraction feature using DE; Oversampling data using Radius 

SMOTE; Representation features using 3D Cube; 

Classification using Continuous CNN. 

82.11% 78.99%     

11 Present study 

Extraction feature using DE; Baseline reduction using 

Difference; Representation features using 3D Cube; 

Classification using Continuous Capsule Network. 

93.69% 92.85% 96.66% 96.05% 97.96% 97.32% 
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Several machine learning-based emotional classification methods have been evaluated based on EEG signals, 

including the KNN, SVM, XGboost, LORSAL, and GELM approaches [27, 28, 32-35]. However, this procedure is not 

highly accurate (less than 90%). This is because machine learning-based classification methods are unable to characterize 

EEG signal information in depth [12, 43]. The process is essential, considering that the signal has low-frequency 

characteristics and contains many noises [12]. To overcome this problem, a deep learning-based approach using the 

CNN method was investigated in previous studies [10, 30, 36, 37]. Although, it is unable to characterize the spatial 

information between channels and frequency bands of the EEG signals. The CNN method further requires much training 

data to improve the classification performance. The availability of secondary datasets on emotion recognition, 

specifically based on EEG signals, is still minute. Several publicly available datasets are in an unbalanced condition, and 

efforts to overcome this issue using the Radius SMOTE approach were employed by Wardoyo et al. (2022). This method 

was used to curb data limitations and imbalances [20]. Interestingly, these efforts are not absolutely accurate. The 

Capsule Network method is also used to overcome this problem, while the application of the Continuous Capsule 

Network technique proposed in this study can characterize the spatial information of the EEG signals as well as to 

overcome its loss and maintain it when the Convolution process is performed. 

In addition, the challenge of recognizing emotions is also strongly influenced by the differences in the characteristics 

of each participant, such as gender, age, education, and personality traits. The baseline reduction approach was employed 

to overcome this problem [12, 18]. Its implementation in the Capsule Network process can produce significantly 

increased accuracy compared to without its usage. Irrespective of the fact that this approach was also reviewed by Yang 

et al. (2018), the CNN method employed in this study was unable to characterize the spatial information of the EEG 

signals, and the resulting accuracy is less than the proposed technique [18]. The baseline reduction approach was also 

investigated by Zhao et al. (2020), which used the CNN procedure to produce higher accuracy compared to the proposed 

method, involving the use of the DEAP test dataset and not the AMIGOS [31]. Another effort to optimize the baseline 

reduction approach was also reviewed by Wirawan et al. (2021) [21]. It was not maximized because the resulting 

accuracy was still less than the proposed method [20]. Based on the results and findings of this study, it was stated that 

the application of baseline reduction and the Continuous Capsule Network methods significantly increased the accuracy 

of emotion recognition based on EEG signals. Although the baseline reduction approach tends to improve emotion 

recognition accuracy, its EEG signals may be impaired [12]. This disturbance causes the resulting accuracy not to be 

maximal in the three secondary datasets. Therefore, the future study challenge is optimizing the baseline reduction 

approach to increase emotion recognition accuracy based on EEG signals. 

5- Conclusion 

Despite the use of the capsule network method can characterize spatial information from EEG signals, its loss reduces 

the performance of emotion recognition, resulting in poor accuracy. Therefore, this study applied the continuous capsule 

network as a solution to overcome these problems. Based on the two experiments carried out, the optimal architecture 

of this method for emotion recognition has (1) 1st, 2nd, 3rd, and 4th Continuous Convolution layers of 64, 128, 256, and 

64, respectively, and (2) a kernel sizes of 2×2×4, 2×2×64, and 2×2×128 for the 1st, 2nd, and 3rd layers, while the 4th is 

1×1×256. In addition, several methods are used to support the Continuous Capsule Network in the classification process, 

such as the DE approach for the feature extraction process, which is represented using the 3D Cube procedure. The 

choice of DE and 3D Cube methods is based on their ability to characterize spatial and low-frequency information. Based 

on the tests on the three secondary datasets, the Continuous Capsule Network produces higher accuracy than some of 

the proposed methods in previous studies, both for recognizing four and two classes of emotions. The number of 

parameters used in the continuous capsule network is less than those employed in previous studies. 

Furthermore, applying the baseline reduction to the Continuous Capsule Network method increases emotion 

recognition accuracy. Although it also enhances emotion recognition accuracy, the baseline EEG signals used in this 

approach may be impaired. This disturbance causes the resulting accuracy not to be maximal in the three secondary 

datasets. The future study challenge is optimizing the baseline reduction approach to increase emotion recognition 

accuracy. 
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