
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

ttps://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-817295

Ulrike Fischer, Frank Rosenthal, Wolfgang Lehner

F2DB: The Flash-Forward Database System

Erstveröffentlichung in / First published in:

2012 IEEE 28th International Conference on Data Engineering. Arlington, 01.-05.04.2012.

IEEE, S. 1245-1248. ISBN 978-0-7695-4747-3.

DOI: http://dx.doi.org/10.1109/ICDE.2012.117

F2DB:
The Flash-Forward Database System

Ulrike Fischer, Frank Rosenthal, Wolfgang Lehner

Database Technology Group
Dresden University of Technology

01062 Dresden, Germany
{firstname.lastname}@tu-dresden.de

Abstract—Forecasts are important to decision-making and risk
assessment in many domains. Since current database systems do
not provide integrated support for forecasting, it is usually done
outside the database system by specially trained experts using
forecast models. However, integrating model-based forecasting as
a first-class citizen inside a DBMS speeds up the forecasting
process by avoiding exporting the data and by applying database-
related optimizations like reusing created forecast models. It
especially allows subsequent processing of forecast results inside
the database. In this demo, we present our prototype F2DB
based on PostgreSQL, which allows for transparent processing
of forecast queries. Our system automatically takes care of model
maintenance when the underlying dataset changes. In addition,
we offer optimizations to save maintenance costs and increase
accuracy by using derivation schemes for multidimensional data.
Our approach reduces the required expert knowledge by enabling
arbitrary users to apply forecasting in a declarative way.

I. INTRODUCTION

Modern data analysis in data-warehouse systems involves

increasingly sophisticated statistical methods that go well

beyond the rollup and drilldown over simple aggregates of

traditional BI [1]. As data warehouse systems implicitly

guarantee to contain a time dimension, stored data usually

constitutes time series (e.g., sales per month). This data is used

as basis of decision-making (e.g., planning of production).

Such decisions benefit from having forecasts of important

metrics (e.g., expected demand or inventory).

Many existing commercial database systems offer some

kind of regression modeling. Although general regression may

be used to extrapolate overall trends, specialized time series

models offer a higher prediction accuracy. Specific methods

for forecasting often involve the specification of a stochastic

model that captures some form of auto-regression. We will

refer to such models as forecast models. Specific methods for

forecasting are offered only in a minority of common database

systems in a limited way (Section IV).

Therefore, a common workflow for forecasting consists of

exporting the data to statistical tools, like Matlab or R, and

choosing and applying forecast methods externally. However,

pushing computation directly to the data has several advan-

tages. First, the knowledge encoded in models by domain

experts can be stored and reused. This allows other users,

especially those not trained in forecasting, to benefit from

forecasts based on these models. Second, the forecast itself can

be used inside the DBMS and processed with other source data

(e.g., through joins). Third, the separation of conceptional and

physical layer in a DBMS opens a wide variety of optimization

potential. For example, we do not need to store a physical

model for every single logical forecast query. Instead, by using

transparent derivation schemes, we can reduce the number of

models that need to be created, stored and maintained.

We propose a solution that integrates forecasting natively

into an existing DBMS. In contrast to flash back queries

that allow a view on the data in the past (AS OF), we

have developed a Flash-Foreward Database System (F2DB).

It offers a simple interface to make forecasting usable for

any database user and hides complex internals like automatic

maintenance of forecast models. For example, this simple

forecast query returns estimates of sold quantities for mobile

phones in the state Ohio for the next month:

SELECT o r d e r d a t e , SUM (s a l e s)
FROM f a c t s
WHERE p r o d u c t = ’ phones ’ AND s t a t e = ’ Ohio ’
GROUP BY o r d e r d a t e
AS OF current_date + interval ’ 1 month ’

In summary, we make the following contributions: (1) We

provide an integrated language to define forecast models and to

submit declarative forecast queries. For this, we introduce new

operators that are compatible to existing relational operators.

(2) We provide a system that transparently processes forecast

queries and automatically maintains forecast models when

base data evolves. (3) We introduce an additional model

advisor that aims to optimize forecast queries (speed and

accuracy) by suggesting derivation schemes.

II. SYSTEM OVERVIEW

A general overview of our forecasting system is shown in

Figure 1. Models of time series are represented as database

objects that are managed in a model pool (center of Figure

1). The model index makes models quickly accessible for

model usage and is necessary for identifying models that are

affected by updates to base data [2]. F2DB provides language

constructs to create new models and add them to the pool (left

in Figure 1). This can be done manually, which is a way for ex-

perts to store their knowledge in F2DB, or by using algorithms

that automatically select the ”best” model for a time series,

e.g., based on the Akaike Information Criterion [3]. After a

model is indexed in the model index, it can be automatically

Final edited form was published in "2012 IEEE 28th International Conference on Data Engineering. Arlington 2012", S. 1245-1248, ISBN 978-0-7695-4747-3
https://doi.org/10.1109/ICDE.2012.117

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Model

Model Index

Model
Pool Model Model

Model
Maintenance

Time Series Time Series

Base Tables

Q1 Q2 Q3

Model
Usage

Model
Creation

Model Advisor

Model
Matching

Model
Usage

Derivation

Model
Matching

Model
Evaluation

Estimation
Scheduling

Model
Update

Workload
Analysis

Model Performance
Analysis

Configuration
Proposal

use

Model

Specification

Class
Structure

Parameters

Parameter
Estimation

Time Series

State

Manual
by Expert

Heuristic
Algorithms

use

Query
Processing

Model
Estimation

Time Series

Fig. 1. System Overview

and transparently used by forecast queries. Model matching is

necessary to identify the concerning model(s). Matching may

also return models of related time series that can be used to

derive the requested forecast (Section III-B). After usage and

possible derivation, the forecast can be further processed using

regular relational primitives.

Models need to be maintained when new data arrives (right

in Figure 1). First, a matching step is required to find the

affected model(s) using the model index. Next, the model state,

i.e., the internal history, is updated. However, updates may

also reflect changes in the time series behavior and these can

only be incorporated by reestimating model parameters. Since

this step is computationally expensive we propose several

possibilities to reduce the effort for maintenance. First, model
evaluation checks the need for maintenance (e.g., through

an error threshold). Second, we reduce maintenance effort

through estimation scheduling (Section III-C).

Last, we provide a model advisor [4] component that

analyzes past query workloads and model performance (cost

and accuracy). Consequently, it might propose a different

configuration of models in the model pool (Section III-B).

III. SYSTEM DETAILS

Forecasting has been studied intensively in various domains,

which leads to a very large number of possible forecast

methods. For example, the machine learning domain offers

approaches that involve the use of support vector machines

[5] or extended decision trees [6], while the field of statistics

yields classes of models like exponential smoothing (EXP)

models [7] or the autoregressive integrated moving average

(ARIMA) models [8].

From a usage perspective, these diverse methods all share a

simplified interaction paradigm, where (1) model parameters

are estimated to fit a specified model to a time series and (2)

the model is applied to forecast future data.

F2DB provides a general architecture that allows the inte-

gration of any forecast method. We use the extension capa-

bilities of PostgreSQL to provide a generic interface where

a new forecast method is added by implementing predefined

functions and registering them in the system catalog. However,

for the purpose of this demo we selected two representatives,

exponential smoothing and ARIMA models. Both are well ex-

amined [9], have shown empirically to be able to model a wide

range of real world time series and are usually computationally

more efficient than elaborate machine learning approaches.

A. Model Specification and Representation

The creation of a model can be triggered using a CREATE
MODEL statement that specifies which model to fit to which

time series. The time series is defined by a regular SQL query.

The only constraints to this subquery are naturally that there

needs to be one value attribute and at least one ordering

attribute. For example, in order to create a forecast model for

the forecast query shown in the introduction of this paper, we

provide the following SQL statement:

CREATE MODEL m1
FOR FORECAST OF s a l e s ON o r d e r d a t e
ALGORITHM a r ima AUTOMATIC SEARCH
TRAINING_DATA

SELECT o r d e r d a t e , SUM (s a l e s)
FROM f a c t s
WHERE p r o d u c t = ’ phones ’ AND s t a t e = ’ Ohio ’
GROUP BY o r d e r d a t e

The model is then stored in the model pool. This involves

storing the model class, model structure, model parameters and

current model state. For fast retrieval of forecast models, we

internally provide a special index structure over all models

[2]. In order to enable specific derivation schemes (Section

III-B) we explicitly encode functional dependencies in this

index. To exploit existing functional dependencies, we provide

a CREATE FORECAST HIERARCHY statement. Our example

forecast query results from a hierarchy of store locations that

leads to the model index shown in Figure 2. Sales for stores

in cities (Sacramento, Parma, Toledo) can be aggregated to

sales over whole states (California, Ohio) and finally to total

phone sales over all locations. Models are always stored in the

leaves of this index. The node [Total] below the node Ohio
represents sales over all cities in the state Ohio and therefore

references the model m1 created before.

Final edited form was published in "2012 IEEE 28th International Conference on Data Engineering. Arlington 2012", S. 1245-1248, ISBN 978-0-7695-4747-3
https://doi.org/10.1109/ICDE.2012.117

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 2. Example Model Index

B. Model Usage with Derivation Schemes

A forecast query declaratively defines a time series that our

system should forecast. When such a query is issued we need

to find out whether there are suitable models in the model

pool. If no model is found in this process an error is returned

to the user. Otherwise, there are three different ways to answer

the forecast query: direct, aggregation or disaggregation.

Direct In the simplest case, model usage returns the fore-

casts of the model that fits exactly the queried time series.

Aggregation However, as we store hierarchical dependen-

cies in the model index, we can use it to lookup whether

we can derive forecast values of a query by aggregation of

forecast values at a lower hierarchy level. For example, a query

that requests forecasts over all phones in all locations can be

answered by using the forecast models m1 and m2 for sales in

Ohio and California (Figure 2). The individual forecast values

of these models are aggregated to get the final result.

Disaggregation Finally, we can use the model index to find

a model at a higher level of the aggregation hierarchy and use

disaggregation to derive the forecast on the target level. How-

ever, this requires a disaggregation scheme that specifies how

to scale down the high level forecast to retrieve low level fore-

cast values (e.g., the historical fraction). Therefore, we provide

the possibility to explicitly create a disaggregation scheme

in the model index by using the CREATE DISAG SCHEME
command. The example model index in Figure 2 contains two

disaggregation schemes, for sales in Parma and Toledo, which

both reference the model m1. Assume, a user wants to forecast

sales for phones in Toledo for the next month. The execution

plan of this query (Figure 3) consists of only one forecast

operator that gets as input a disaggregation scheme and a

reference to the model m1. Internally the model m1 is used to

create forecast values for sales in Ohio and multiplied with a

disaggregation key to produce the final output. To answer this

query no access to the base data is necessary as all required

information is stored in the model index. The appropriate

derivation scheme is chosen transparently.

Model Advisor In contrast to materialized view selection,

a derivation scheme influences the accuracy of the output

Fig. 3. Example Execution Plan

compared to the accuracy of a model specifically created

for a given query [10]. Some derivation schemes might even

increase the accuracy. For example, the time series over sales

in Toledo might contain a lot of random fluctuations but the

general trend is similar to other cities in Ohio. Therefore,

a more robust forecast may be created by using the model

for sales in Ohio and by applying a disaggregation scheme.

In order to exploit the potential of derivation schemes, we

provide an additional model advisor component [4]. Our model

advisor takes as input current models in the system, a history

of forecast errors over these models and a workload consisting

of forecast queries and updates. Using this input, it either

proposes to drop models and to create disaggregation schemes

in order to save maintenance cost or to create new models in

order to increase forecast accuracy.

C. Model Maintenance

The goal of model maintenance is to provide a logical con-

sistency between a time series and the models that are based

on it. First, maintenance involves the update of the model

state and disaggregation scheme. However, the most expensive

part in model maintenance is parameter reestimation, since

estimators for typical time series models are implemented

using numerical procedures and involve optimization algo-

rithms that evaluate complex cost functions many times over

all available data of the time series. To address this issue, we

first evaluate models by using the updates of the time series

to determine the prediction error and trigger estimation only

when necessary. To determine the best point of reestimation,

we provide simple strategies (e.g., time-based or by using an

error threshold) as well as more sophisticated ones that assess

the need for parameter reestimation based on a synopsis that

can be maintained incrementally [11]. Second, we perform

maintenance asynchronously. We therefore delay maintenance

to whenever the system has low CPU utilization, so writers

do not have to pay for model maintenance. However, if a

query references a model that is not up to date, we trigger

immediate parameter reestimation if required. Only in this case

the reader has to pay for estimation effort in terms of longer

Final edited form was published in "2012 IEEE 28th International Conference on Data Engineering. Arlington 2012", S. 1245-1248, ISBN 978-0-7695-4747-3
https://doi.org/10.1109/ICDE.2012.117

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 4. Example Maintenance Trace

query response times.

IV. RELATED WORK

Forecasting is supported as extension of only two common

database systems. Oracle offers a FORECAST command as

part of its OLAP DML [12]. Therefore, it cannot be used

as part of regular SQL queries. The Data Mining Extension

(DMX) in Microsoft SQL Server supports forecasting of time

series using a custom forecast algorithm, which offers the in-

terface method PredictTimeSeries [13]. DMX allows to

query models itself for predictions, but lacks the transparency

of our seamless integration that does not require the selection

of a model in a forecast query. In addition, both products

do not provide automatic maintenance of models. Recently,

Akdere et. al. [14] published a high-level description of a

database system that integrates regression and classification

on ordinary relations. In our work, we focus on time series

forecasting (requiring different models) and employ techniques

specific for this task like model reuse with derivation schemes

as well as time series model maintenance.

V. DETAILS OF THE DEMO

Our prototype F2DB is based on PostgreSQL and integrates

the different components described in this paper. Our demon-

stration contains different workloads and scenarios to show

how F2DB works and how the system scales.

Workloads We have obtained several real-world datasets,

which we use with different forecasting workloads in our

system. This includes hierarchical data sets to demonstrate

model usage with derivation schemes and the benefit of

our model advisor. For example, one dataset was obtained

from the Tourism Research Australia (http://www.ret.gov.au/

tourism/tra/domestic/national/Pages/default.aspx) and consists

of observations on the number tourists in Australia (according

to state and purpose of visit). In addition, we will provide

real-world datasets from the energy domain. These datasets

pose the challenge of high update intervals and demonstrate

the necessity of our maintenance scheme.

Scenarios Our demonstration focuses on three different

aspects: (1) user view, (2) global view and (3) maintenance.

First, a user can create forecast models manually using SQL
(see the Example in Subsection (III-A)) or by a provided

graphical interface. The user can submit declarative forecast

queries and view the resulting query plan (Figure 3). The user

can also view a graphical representation of the forecast results

as well as additional information like confidence intervals in

order to gain insight into the concepts and accuracy of the

different derivation schemes.

From a global point of view, a user can view and manipulate

the model pool by using our model index (Figure 2). Different

workloads can be submitted to our system and statistics like

the maintenance costs, forecast accuracy or query throughput

can be viewed. This is also an interactive part where the demo

visitor can change workloads (e.g., query and insert frequency)

and parameters (e.g., model types, maintenance strategy). In

addition, we prepared some demo runs in order to benchmark

the performance of different model configurations (e.g., all

possible models vs. advisor recommendation).

Last, we will demonstrate in detail different strategies to

maintain models and to determine the need for parameter

reestimation. For example, Figure 4 shows a screenshot of

short error traces of two models over time. We see the result

of one strategy where maintenance is triggered when an error

threshold is exceeded (red line). In this example, estimation

is triggered four times for one model (blue), while the other

model caused no maintenance cost whatsoever (black). After

every maintenance step, the forecast error is reduced.

REFERENCES

[1] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton, “Mad
skills: New analysis practices for big data,” in VLDB, 2009.

[2] U. Fischer, F. Rosenthal, M. Boehm, and W. Lehner, “Indexing forecast
models for matching and maintenance,” in IDEAS, 2010.

[3] R. J. Hyndman and Y. Khandakar, “Automatic time series forecasting:
The forecast package for r,” Journal of Statistical Software, vol. 27, pp.
1–22, 2008.

[4] U. Fischer, M. Boehm, and W. Lehner, “Offline design tuning for
hierarchies of forecast models,” in BTW, 2011.

[5] K.-R. Müller, A. J. Smola., G. Rätsch, B. Schölkopf, J. Kohlmorgen,
and V. Vapnik, “Predicting time series with support vector machines,”
in ICANN, 1997.

[6] C. Meek, D. M. Chickering, and D. Heckerman, “Autoregressive tree
models for time-series analysis,” in SIAM, 2002.

[7] R. J. Hyndman, A. B. Koehler, R. D. Snyder, and S. Grose, “A state
space framework for automatic forecasting using exponential smoothing
methods,” International Journal of Forecasting, vol. 18, 2000.

[8] G. B., G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting
and Control. Wiley, 2008.

[9] J. G. D. Gooijer and R. J. Hyndman, “25 years of time series forecast-
ing,” International Journal of Forecasting, vol. 22, pp. 443–473, 2006.

[10] G. Fliedner, “Hierarichal forecasting issues and use guidelines,” Indus-
trial Management & Data Systems, vol. 101, pp. 5–12, 2001.

[11] F. Rosenthal and W. Lehner, “Effcient in-database maintenance of arima
models,” in SSDBM, 2011.

[12] Oracle, “Oracle OLAP DML Reference: FORECAST - DML State-
ment,” 2011.

[13] PredictTimeSeries – Microsoft SQL Server 2008 Books Online, “http:
//msdn.microsoft.com/en-us/library/ms132167.aspx,” 2011.

[14] M. Akdere, U. etintemel, M. Riondato, E. Upfal, and S. Zdonik, “The
case for predictive database systems: Opportunities and challenges,” in
CIDR, 2011.

Final edited form was published in "2012 IEEE 28th International Conference on Data Engineering. Arlington 2012", S. 1245-1248, ISBN 978-0-7695-4747-3
https://doi.org/10.1109/ICDE.2012.117

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	1666872039635a72e7af5ef3.pdf
	F2DB_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Ulrike Fischer, Frank Rosenthal, Wolfgang Lehner

