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An efficient and robust simulator for
wear of total knee replacements
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Abstract
Wear on total knee replacements is an important criterion for their performance characteristics. Numerical simulations
of such wear have seen increasing attention over the last years. They have the potential to be much faster and less
expensive than the in vitro tests in use today. While it is unlikely that in silico tests will replace actual physical tests in
the foreseeable future, a judicious combination of both approaches can help making both implant design and pre-clinical
testing quicker and more cost-effective. The challenge today for the design of simulation methods is to obtain results
that convey quantitative information and to do so quickly and reliably. This involves the choice of mathematical models
as well as the numerical tools used to solve them. The correctness of the choice can only be validated by comparing with
experimental results. In this article, we present finite element simulations of the wear in total knee replacements during
the gait cycle standardized in the ISO 14243-1 document, used for compliance testing in several countries. As the ISO
14243-1 standard is precisely defined and publicly available, it can serve as an excellent benchmark for comparison of
wear simulation methods. We use comparatively simple wear and material models, but we solve them using a new wear
algorithm that combines extrapolation of the geometry changes with a contact algorithm based on nonsmooth multigrid
ideas. The contact algorithm works without Lagrange multipliers and penalty parameters, achieving unparalleled stability
and efficiency. We compare our simulation results with the experimental data from physical tests using two different
actual total knee replacements. Even though the model is simple, we can predict the total mass loss due to wear after 5-
million gait cycles, and we observe a good match between the wear patterns seen in experiments and our simulation
results. When compared with a state-of-the-art penalty-based solver for the same model, we measure a roughly fivefold
increase of execution speed.
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Introduction

The wear between tibial plateau and femoral compo-
nent is one of the main limiting factors for the life-span
of total knee replacements (TKRs). In the course of
millions of gait cycles, the hard (cobalt–chrome)
femoral condyles grind off small particles from the
tibial plateau, which is usually made from relatively
soft polyethylene (ultra-high-molecular-weight poly-
ethylene (UHMWPE)). Small microparticles start to
migrate within the knee joint, leading to inflammation
and eventually osteolysis.1 In extreme cases, mechanical
failure of the (surface of the) tibial plateau has been
observed for gamma-sterilized implants.2

To limit these risks, various national guidelines
require pre-clinical in vitro testing of the wear behavior
of knee implants. These tests are performed by knee
wear testing machines. The precise conditions are

formulated in a series of documents published by the
International Organization for Standardization (ISO).
We focus here on ISO 14243-1,3 which describes testing
conditions of a load-controlled testing gait cycle for
normal walking. A wear test consists of 5million such
cycles, and of monitoring the mass loss of the tibial
bearing component.

Performing such experimental tests is a cost-intensive
task. The required 5-million cycles take about 3months
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of time. The initial positioning of the femoral and tibial
components with respect to each other is not precisely
specified by ISO 14243-1 for all cases. Its determination
remains an important open problem for wear testers
and designers of knee implants.4,5

Computer simulations of these standardized tests
can help to reduce costs and time-to-market. While
simulations cannot replace the actual compliance tests,
they can help to avoid some of the preliminary tests
that need to be performed during the design phase of a
new implant. In particular, numerical simulations can
help to determine suitable initial configurations. With
this information, the number of actual physical experi-
ments is greatly reduced.

For these reasons, the numerical simulation of TKR
wear behavior has seen increasing interest over the past
years. Various finite element and rigid body models
appear in the literature, all combining different contact
formulations and wear laws. While some authors con-
sider Archard’s wear law to be sufficient,6,7 others focus
on developing more advanced laws to better capture the
behavior of UHMWPE.8,9 Several groups use the ISO
14243 test family as a benchmark problem,7,10 but only
the latter group uses the load-controlled variant 14243-
1. Abdelgaied et al.8 and O’Brien et al.9 compared their
findings with experimental results. Grupp et al.11 apply
simulations to investigate the effects of different mate-
rial properties of TKRs for different activities, see also
Abdelgaied et al.12 Finally, Kang et al.13 performed
simulations similar to ours, but with an off-the-shelf
penalty solver, and report simulation times in the range
of 1week.

In this contribution, we consider a finite element
model of two TKRs including the tibial inlay and
femoral component. Following Abicht14 and Willing
and Kim,7 we model both components as deformable
objects because numerical tests showed that surpris-
ingly little run time can be saved by keeping the femoral
component rigid. We model the contact between the
two objects exactly, with a surface-to-surface (mortar)
discretization15,16 without recourse to any regulariza-
tion parameter. The wear on the tibial plateau is
described using Archard’s wear law. We compare the
predicted wear patterns and total wear mass loss to val-
ues obtained by experimental testing.

The main contribution of this article is the introduc-
tion of a new algorithm for the simulation of wear,
which combines the extrapolation of the geometry
changes with a globally convergent, penalty-free con-
tact solver algorithm. The combined robustness and
speed of that algorithm allow to compute wear predic-
tions in less time (in the range of hours) and with less
manual intervention. Numerical wear testing requires
the solution of many contact problems, in particular, if
long-time wear, statistical effects or shape-optimization
is involved. Most articles mentioned above use com-
mercial finite element software, which typically uses
penalty approaches or augmented Lagrangian methods
for the contact problems. These methods have

well-known drawbacks. Penalty methods do allow a bit
of nonphysical penetration. Choosing a large penalty
parameter diminishes the penetration, but the problem
may become unstable. A suitable penalty factor is a
compromise, and usually only obtained after a few
steps of trial and error. Augmented Lagrangian meth-
ods, however, need to solve each problem several times.
In addition, the number of variables increases, as the
method needs to track approximations of the contact
forces (see, for example, Chap. 8.4 in the study by
Maas et al.17 for a discussion).

In contrast, our contact model uses a novel non-
smooth optimization algorithm which solves the con-
tact problems directly.18 It uses a sparse direct solver
for its linear correction steps, but performs the costly
matrix factorization only once per contact problem.
This avoids all the above-mentioned drawbacks—
instead, the solver is provably convergent,18 and it does
not involve additional Lagrange multiplier variables or
penalty parameters. It is the goal of this article to
demonstrate that this solver can lead to shorter simula-
tion times for TKR models of reasonable complexity.
Generalization of the method to more advanced mod-
els will be the subject of future work. For example,
recent work19 has shown that a similar algorithm per-
forms well for small-strain elastoplastic materials. The
combination of this with contact and wear appears as a
natural next step.

Previous versions of the contact simulator have been
used in earlier work on biomechanics,20–22 but the
extension to wear problems is new. In the cited works,
larger grids were considered, which required the use of
multigrid techniques. The nontrivial use of direct sol-
vers without refactorization proposed here is new.

Methods

We simulated the ISO 14243-1 testing cycle using a
finite element model that included both the femoral
component and the tibial inlay of the implant as
deformable bodies. The two interacted by a contact
condition which we modeled using a surface-to-surface
(mortar) contact discretization.15,16 As TKRs are well
lubricated inside the testing machine, and as Archard’s
wear law does not involve the tangential stresses, we
omitted friction from the contact model. The numerical
code was our own research implementation based on
the C++open-source finite element code Dune.23–25

Finite element model

We tested our simulation procedure with two implants
that are sold commercially, and for which all geometry
data and the original experimental results of the ISO
14243-1 compliance testing were gratefully made avail-
able to us by the manufacturer (aap Implantate GmbH,
Berlin, Germany). These are a ‘‘Mebio 2015’’ (in the
following: Mebio)26 and a ‘‘Genius Pro, Fixed Bearing,
posterior cruciate ligament (PCL) retaining’’ (in the
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following Genius Pro).27 More details are given in the
section on physical wear tests. Computer-aided design
(CAD) data of the TKR volumes were available in
Parasolid format. Tetrahedral volume meshes with dif-
ferent resolutions were constructed using ANSYS
(ANSYS Inc., Canonsburg, PA, USA) and the open-
source mesh generator GMSH.28 The meshes for the tibial
components had between 5000 and 120,000 elements
(1500–26,500 nodes) for the Genius Pro implant, and
between 4000 and 190,000 elements (1200–38,000 nodes)
for the Mebio implant, see Table 1. Four-node tetrahedral
finite elements were used for the discretization.

To simplify the mesh construction, the geometries of
the implants were simplified slightly on their rear sides.
The geometric modifications did not involve areas close
to the contact region. Geometric changes this far away
from the contact surface do not have a relevant influ-
ence on the wear behavior. Figure 1 shows the meshes
used for the Mebio implant; Figure 2 shows the ones
used for the Genius Pro implant.

The UHMWPE of the tibial inlay as well as the
cobalt–chromium–molybdenum alloy of the femoral

Figure 1. Tetrahedral meshes 1–3 (from left to right) for femoral and tibial components of the Mebio implant.

Figure 2. Tetrahedral meshes 1–3 (from left to right) for femoral and tibial components of the Genius Pro implant.

Table 1. Mesh resolutions.

Mesh Number of elements Number of nodes

Mebio 1
Femur 13,824 4633
Tibia 3948 1205

Mebio 2
Femur 31,432 9234
Tibia 81,400 17,445

Mebio 3
Femur 184,526 42,750
Tibia 188,993 37,982

Genius Pro 1
Femur 9238 2820
Tibia 4720 1496

Genius Pro 2
Femur 33,864 8745
Tibia 18,799 5038

Genius Pro 3
Femur 109,045 24,550
Tibia 121,548 26,484

For each of the two TKRs, meshes in three different resolutions were

constructed.

Burchardt et al. 923



component was modeled as homogeneous and isotropic
materials, with linear elastic stress–strain relationships.
Material parameters were taken from Abicht14 (p. 51).
(The particular type of polyethylene used there was
UHMWPE standard Chirulen GUR 1020. It was
Gamma-sterilized, and not cross-linked.) Young’s
modulus E=220 GPa and Poisson’s ratio n=0:31
were used for the femoral component, and values
E=1:1 GPa, n=0:42 were used for the tibial inlay.
Both Poisson’s ratios are far away from the incompres-
sibility limit at n=0:5, and there was therefore no dan-
ger of Poisson locking, that is, excessive model
stiffness, even for four-node tetrahedral elements.29

The reference position for the femoral and tibial
inlay meshes was determined by manually applying a
translation to the tibial component in a visualization
tool such that the most distal points on the femoral
component rested on the lowest point on the tibial side.

Time-dependent boundary conditions were set as
described by the ISO 14243-1 standard. The standard
describes a single gait cycle by giving a table listing
boundary values for 100 discrete time steps within one
gait cycle. The flexion/extension movement of the
femoral component is controlled by a time-dependent
displacement boundary condition applied to all nodes
of the component backside (Figure 3). The boundary
conditions for the tibial inlay are slightly more
complicated:

� The main load is an axial force pushing the tibial
side upward against the femoral component, with
time-dependent values between 167:6 and 2600 N.

� A smaller force acts on the inferior side of the tibial
inlay in anterior–posterior direction with values
between �265 and 110 N.

� An internal–external torque around the axis of the
axial force is applied, with values between �1 and
6 Nm.

These loads were applied as surface loads over the
entire inferior side of the tibial component (Figure 4).
In addition, the inlay was kept in place by restraining

forces and torques that penalize anterior–posterior dis-
placement and internal–external rotation. These forces
and torques were proportional to the anterior–posterior
displacement and tibial rotation, respectively. They
were modeled as Robin (i.e. spring-type) boundary con-
ditions on the inferior side of the tibial inlay. Note that
this testing cycle was load controlled, and no displace-
ment boundary condition was applied to the tibial side
at all. Rigid-body motion of the tibial inlay was
avoided solely by the femoral contact together with the
upward force on the inlay, and the restraining forces
and torques modeled as Robin boundary conditions.
Mathematically, the resulting problems were well-
posed, but have rank-deficient system matrices, making
the finite element system challenging to solve.

For simplicity, we have assumed a linear stress–
strain relationship for UHMWPE. Nevertheless, the
partial differential equations describing the elastic
behavior of a full gait cycle remain nonlinear, because
the testing movement involves large rotations, which
require a nonlinear strain tensor to be handled prop-
erly. We avoided having to solve nonlinear equations
by noting that the movement of the model consists of

Figure 3. Left: Loading conditions during the gait cycle as prescribed by ISO 14243-1. Flexion/extension displacement boundary
conditions applied to the femoral component, and axial force applied to the tibial component. Right: Anterior–posterior force and
rotational torque applied to the tibial component.

Figure 4. Left: Axes for the different boundary conditions, as
prescribed by ISO 14243-1. Right: The boundary conditions are
enforced on the superior side of the femoral component and
the inferior side of the tibial inlay. All forces are applied as
surface loads.
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rotations superimposed by only small deformations.
The rotations are known a priori—they are described
by the femoral component displacement boundary con-
ditions. These boundary conditions were therefore used
to create a sequence of time-dependent reference
domains, and we solved for the small deformations
only. This permitted to use a linear strain tensor and to
solve a sequence of 100 linear contact problems on
changing reference domains instead of nonlinear ones
on a fixed domain. As the model does not include iner-
tia or rate effects, the results of these 100 problems
were independent of each other and could be computed
in parallel using OpenMP.30

We modeled the contact between the two objects by
a penalty-free surface-to-surface (mortar) finite element
discretization as described by Wohlmuth and Krause.31

Mortar discretization avoid the unphysical stress oscil-
lations that are known to occur in node-to-node contact
methods.15 We omitted friction effects because we mod-
eled a situation where the TKR is well lubricated, and
because according to Archard’s law, wear depends only
on normal stresses, whereas friction primarily impacts
tangential stresses.

The resulting systems of equations were solved using a
nonsmooth multigrid method32 together with a sparse
direct solver for the linear correction steps. This solver is
guaranteed to converge to the solution in all cases,18 with-
out the need for artificial load stepping. The stiffness
matrix was factorized only once per time step, and line/
column truncations of the matrix were applied via fast
low-rank updates. The method is parameter free, mean-
ing that there are no additional values that would need
proper tuning to make the algorithm function properly.
The contact problems were solved up to a relative accu-
racy of 1028 for the displacement fields. Extension of the
solver to include certain friction laws is possible.18,33

Wear and grid deformation

We used Archard’s wear law34 to model the wear on
the tibial inlay. For each point on the contact surface,
Archard’s law models the wear depth l at that point.
The wear depth at a time t is given by

l(t)= k

ðt

0

p(t)v(t)j jdt ð1Þ

where k is a material constant, p is the contact pressure
at this point and v is the relative velocity between the
two objects. If p is independent of time, and the sliding
velocity is constant, then we obtain the formula

l= kps

with the sliding distance s typically seen in the litera-
ture. However, these assumptions clearly do not hold

in finite element TKR simulations, and our code there-
fore implements the general integral formula (1). Total
volume loss was computed as the integral of l over the
contact surface. Pressure p and current velocity v were
computed from the finite element model. For the wear
constant k, we chose the value 2:0310�7 mm3=Nm,
used by O’Brien et al.9 in a simulation of wear in TKRs
using Archard’s wear law. This is an important point:
we did not use the experimental data available to us to
determine the important wear coefficient k.

Even with a fast numerical solver, solving the 100
time steps for each of the 5-million gait cycles mandated
by ISO 14243-1 is not possible. However, Archard’s
wear law depends on the wear history only indirectly
through the change in geometry. This change will be
small in a single gait cycle, and we therefore ignored it
and extrapolated the wear values obtained for a single
gait cycle over a larger number of cycles. We estimated
the wear over nD cycles by extrapolating the wear of a
single gait cycle linearly, that is, by multiplying l by nD.
To obtain a reasonable value for the cycle step size nD,
we performed simulations on one grid per implant and
compared the total wear loss over time for different
choices of nD between 23104 and 23105.

Linear extrapolation works over numbers of gait
cycles that are not too large. However, when very large
numbers of cycles are considered, the change in geome-
try needs to be taken into account. This change will be
hardly noticeable on the femoral component, but very
relevant on the softer tibial inlay. As Archard’s law
does not indicate the distribution of wear between two
materials of differing hardness, we assumed all wear to
happen on the tibial inlay. Therefore, after each nD gait
cycles, we deformed the tibial grid by adding the extra-
polated wear depth in normal direction to the grid con-
tact surface. From then on, this modified geometry was
used as the reference configuration for the subsequent
simulation steps. Also, we used this deformed grid to
recompute the normal field for the next geometry
update. As the wear depth l is small, adding it to the
grid hardly influences the grid quality at all. To be on
the safe side, after changing the grid boundary, we per-
formed a grid smoothing step. Similar to Laplace
smoothing, we solved a linear elastic problem for the
tibial inlay with the wear depth l multiplied by the sur-
face normal direction as displacement boundary condi-
tion. The computed displacements at the inner nodes
were then applied to the grid.

Combining finite element simulations, linear extra-
polation and grid deformation lead to the following
hybrid time-stepping method to compute long-time
wear patterns and mass loss. An extrapolation step
size nD is picked and the following three steps are
performed:

1. Compute surface wear for a single gait cycle.
2. Multiply the result by nD to obtain the extrapolated

values for nD gait cycles.
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3. Modify geometry using the extrapolated wear
depth.

These three steps are repeated until the total number of
gait cycles reaches 5million. The result is the total mass
loss due to wear over time, and the wear patterns in the
tibia that can be read off directly from the grid.

Physical wear tests

Physical wear testing data were kindly provided by the
manufacturer aap Implantate AG (Berlin, Germany),
and by Questmed GmbH (Kleinmachnow, Germany),
an accredited test laboratory for physical testing of
implants. No dedicated tests were performed for this
study, but rather we were allowed to use the data from
the original compliance tests.

The data set contained wear results for two types of
TKRs, both manufactured by aap Implantate AG
(Berlin, Germany). The first was a MebioKnee system
TR 15-046, with a size S, height 7.5 tibial inlay and size
S cobalt–chrome–molybdenum (ISO 5832-4) tibial
inlay and femoral components (‘‘Mebio’’). The other
one was a Genius Pro Fixed Bearing, PCL retaining
TKR system, with a size M, height 6.5 tibial inlay, and
size M tibial inlay and femoral components (‘‘Genius
Pro’’). The polyethylene used in these experiments was
UHMWPE standard Chirulen GUR 1020. It was
Gamma-sterilized, and not cross-linked.

The implants were tested according to the specifica-
tion of the ISO 14243-1 wear testing standard. Three
identical implants of each type were tested in parallel,
under identical conditions. Total mass loss was mea-
sured every 53105 cycles. After the wear testing, the
wear results on each tibia inlay were photographed.
The relative area of the wear marks was evaluated by
manually segmenting the marks and counting pixels.

Results

We performed two sets of tests. The first set compared
simulated wear rates and patterns with experimental

data. This is mainly to check that we calibrated the
model well. The more important second set of tests
demonstrates that our algorithm solves the resulting
problems much faster than penalty-based ones.

Wear prediction

Figure 5 shows the result of the convergence study for
the extrapolation step length nD. The values indicate
that nD =53104 is a good choice.

Figure 6 shows the total mass loss due to wear after
up to 5-million gait cycles for the two implant geome-
tries. The three sets of experimental data are shown for
each implant. For both implant types, there are two sets
of data that agree very well with each other, whereas
the third one shows lower values (10% for the Mebio
implant and 25% for the Genius Pro implant).

The simulation predicts 98.31/81.04/53.13mg of
mass loss for the Mebio for the three grids, and 112.18/
100.15/98.44mg for the Genius Pro after 5million
cycles. This matches the corresponding experimental
results in the range of 66.5–77.6mg for the Mebio, and
between 59.33–84.65mg for the Genius Pro well. We
observe that mass loss for the Genius Pro implant
appears to converge for increasing mesh resolution,
whereas the corresponding number for the Mebio
implant does not. This highlights the difficult nonlinear
nature of the contact/wear problem. We also observe
that the experimental curves start with a steeper slope
that flattens after about 1-million gait cycles, an effect
that is not reproduced by the simulation.

Figures 7 and 8 show the simulated wear patterns
for both implants. For the Mebio implant, sizes, shapes
and positions of the wear marks match the correspond-
ing experimental results very well, as can be seen in the
overlay in Figure 9. Wear occurs on 12.5%–15.6% of
the proximal side of the tibial inlay in the simulation
compared to 13.7%–16.5% in the experiment. The
experimental wear pattern of the Genius Pro implant
shows several secondary wear marks near the border of
the tibial plateau (Figure 10). These are typical for this
type of implant, and they are caused by anterior–posterior

Figure 5. Total wear mass loss as a function of time for different extrapolation step sizes nD (left: Mebio; right: Genius Pro). Lines
without symbols represent simulated data; the other ones represent experimental data. The lines for 20,000, 25,000 and 50,000 gait
cycles per extrapolation step are overlapping, which indicates that an extrapolation step length of nD = 53104 (50,000) is a good
compromise between accuracy and execution speed.
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translations in the swing phase. The numerical simu-
lation does not show these marks. The main wear
marks do not appear quite at the positions of the
experimental ones. Wear occurs on approximately
10% of the surface in the simulation; on the experi-
mental side, the area is much larger (about 20%).
From the distribution, one can see that the numerical
simulation does not resolve the increase of the wear
area due to anterior–posterior movement.

The simulation also makes precise predictions about
the wear depth at each point on the tibial surface.
However, no comparison data were available.

Computational efficiency

The solver algorithm displays considerable efficiency
improvements compared to state-of-the-art solvers. As

Figure 7. Spatial distribution of wear for the Mebio implant for the three grid resolutions shown in Figure 1, with resolutions given
in Table 1 (left: coarsest; right: finest). Color denotes the wear depth.

Figure 8. Spatial distribution of wear for the Genius Pro implant for the three grid resolutions shown in Figure 2, with resolutions
given in Table 1 (left: coarsest; right: finest). Color denotes the wear depth.

Figure 6. Experimental versus simulated wear mass loss for the Mebio (left) and Genius Pro (right) implants. The experimental
results were taken at intervals of 1-million gait cycles. The geometry was adapted every nD = 53104 gait cycles.

Figure 9. Overlay of simulated and experimental wear for
Mebio implant after 5-million gait cycles, with the finest grid and
extrapolation step length nD = 53104.
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the time needed to evaluate Archard’s wear law (1) and
the geometry deformation were negligible compared to
solving the contact problems, our test focused on these
latter problems. Table 2 shows the wall time needed to
solve one contact problem on each of the six meshes of
Figures 1 and 2. Wall times are given for the nonsmooth
multigrid method as well as for the Ipopt solver,35 which
we used as a reference. Ipopt is a widely used interior-
point solver, that is, a penalty method with automatic
control of the penalty parameter. The nonsmooth multi-
grid method is consistently faster by a factor of 4–6.

When using a single processor (Intel Xeon E5-2680,
2.5GHz), the total simulation on medium-sized meshes
with 12,000–14,000 degrees of freedom in total took
16.3–19.2 h. By far, the majority of time was spent sol-
ving the contact problems.

As the 100 contact problems of a single gait cycle
can be computed independently from each other, it is
straightforward to distribute them across several pro-
cessors. The contact problems take the majority of the
run time, and therefore, we expect almost linear scaling
for up to 100 processors. Indeed, when repeating the
simulations with 10 processors, the simulation took
only between 2:5 and 2:9 h. This is a speed-up of about
6.5 compared to the single-processor run.

Discussion

While numerical simulations are not yet reliable enough
to completely replace in vitro pre-clinical testing, they
nevertheless have the potential to reduce the number of
tests in the design and pre-clinical phase, thereby reduc-
ing development costs and time-to-market.

As a particular example, note that the ISO 14243-1
document does not completely specify the initial mutual
positioning and orientation of the femoral and tibial
TKR parts, because, by necessity, they are somewhat
design dependent. However, the initial positioning is
something that even the manufacturer needs to deter-
mine by experimental testing. Here, numerical tests can
be of great help, as they allow to cheaply check whether
a given position is reasonable.

A standard ISO 14243-1 test simulating 5-million
gait cycles takes about 3months to complete. It is no
particular challenge to construct finite element models
that compute approximate wear marks and mass loss
in less time than that. Nevertheless, it is desirable to
have computer codes that are as fast as possible. The
less time is needed for an in silico estimation of the
wear behavior of a particular TKR, the better this
information can be integrated into the design process.
This is where our wear simulation algorithm excels. A
complete simulation with nD =53104 takes only about
22–30h on a single processor. Even better, it scales
almost linearly with the number of processors available
(up to 100, because that is the number of substeps in
the ISO 14243-1 gait cycle specification). As multi-
processor machines have become cheap and common-
place over the years, there is no problem to obtain wear
results for a complete test in even under half an hour.
As a further bonus, our nonsmooth contact algorithm
is guaranteed to produce the correct solution of the
mathematical model in all situations.18 No fine-tuning
of load-stepping parameters or similar human interven-
tion is necessary. The algorithm runs completely auton-
omous. This saves precious human resources.

Furthermore, rapid numerical simulations open new
possibilities even early in the design process. The impact
of different variants of the implant shape on the wear
behavior can be assessed without ever constructing a

Figure 10. Overlay of simulated and experimental wear for Genius Pro implant after 5-million gait cycles. The wear marks on the
edges of the implant are typical in this type. They are caused by anterior–posterior translations in the swing phase.

Table 2. Wall-time comparison between nonsmooth multigrid
solver and state-of-the-art interior-point solver Ipopt for the
time needed to compute the wear during one of the 100
substeps of the gait cycle of ISO 14243-1.

Mesh Assembly
time (s)

Solve
(Ipopt)

Solve
(nonsmooth
contact)

Mebio 1 0.8 1.2 1.1
Mebio 2 6.7 75.6 16.3
Mebio 3 21.2 687.3 103.3
Genius Pro 1 0.6 2.3 1.1
Genius Pro 2 2.3 19.6 5.7
Genius Pro 3 12.2 253.4 66.7

As the 100 substeps are all independent of each other, they can be

distributed across a multi-processor machine.

928 Proc IMechE Part H: J Engineering in Medicine 234(9)



physical prototype. Modern mathematical techniques
known as shape-optimization even allow to create opti-
mal shapes automatically.7,36 However, such methods
can only be used in practice if a fast and reliable simula-
tion tool for wear is available.

Evaluation of the numerical results is difficult
because only three data sets were available for each of
the two implant types. Even the different physical
results for a single implant type vary, which highlights
the sensitivity of the experimental studies to input
imperfections. At the same time, the assumptions of
linear stress–strain relationship for UHMWPE, fric-
tionless contact and Archard’s wear law are all fairly
restrictive. Therefore, only rough quantitative agree-
ment can be expected. The results show, however, that
a numerical simulation with the given simple model can
produce quantitative results of the wear on a TKR dur-
ing an ISO 14243-1 testing cycle that are close to the
results obtained by actual experiments.

While the model achieves a rough agreement with
experimental data, it is obviously too simple to explain
the observed effects in detail. A natural next step would
be to replace the elastic material of the tibial compo-
nent by an elastoplastic one, which may do away with
some of the wear mark discrepancies seen in Figures 9
and 10. Indeed, using recent results on solvers for elas-
toplastic materials,19 it should be natural to extend the
algorithm presented here also to wear simulations of
elastoplastic materials.

Archard’s wear law is the simplest one in a list of dif-
ferent models for mechanical wear. It is shown to give
reasonably accurate results in many situations.6,7 Other
wear laws try to take into account additional material
properties such as cross-shearing, creep or dependency
of the wear factor on contact pressure,8,9,37–39 but none
of them could be established as a standard so far.
O’Brien et al.9 compare six different wear models and
obtain good results using Archard’s law.

Our own results also show that Archard’s law is suf-
ficient to obtain reasonable estimates of the overall
wear rate. With this goal met, we can benefit from its
advantages. The most important one is that Archard’s
law contains only one unknown parameter, the wear
coefficient k. We were able to pick a good parameter
value from the literature, without any recourse to the
TKR experimental data available to us. More precise
values of the wear coefficient k also depend on factors
like the precise material and the method used to sterilize
it. However, in production situations, this is not a prob-
lem, as k can be measured easily in separate experi-
ments. More advanced wear laws would require
additional parameters, which are in general not easy to
obtain. Some laws additionally include internal states
for which separate differential equations need to be
solved. With such a wear law, we would lose the ability
to compute the hundred time steps of one gait cycle in
parallel, sacrificing a lot of computational performance.

Not surprisingly, Archard’s law does not reproduce
the observed effect that the experimental curves start

with a steeper slope that flattens after about 1-million
gait cycles. The presumed cause for this is that unused
implants have a rougher surface, which becomes
smoother after an initial number of cycles. Surface
smoothness could be integrated easily into our model
using an iteration-dependent wear coefficient k, rather
than keeping k fixed as in the classical Archard’s law.
In any case, the overall effect seems to be negligible.
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