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Abstract

Embedding small wireless sensors into the environment allows for
monitoring physical processes with high spatio-temporal resolutions.
Today, these devices are equipped with a battery to supply them with
power. Despite technological advances, the high maintenance cost and
environmental impact of batteries prevent the widespread adoption of
wireless sensors. Battery-free devices that store energy harvested from
light, vibrations, and other ambient sources in a capacitor promise to
overcome the drawbacks of (rechargeable) batteries, such as bulkiness,
wear-out and toxicity. Because of low energy input and low storage
capacity, battery-free devices operate intermittently; they are forced to
remain inactive for most of the time charging their capacitor before
being able to operate for a short time. While it is known how to deal
with intermittency on a single device, the coordination and commu-
nication among groups of multiple battery-free devices remain largely
unexplored. For the first time, the present thesis addresses this prob-
lem by proposing new methods and tools to investigate and overcome
several fundamental challenges. Specifically, we make the following
three main contributions:

• We present Shepherd, the first testbed with dedicated support for ex-
periments with groups of distributed battery-free devices. Shepherd
allows recording and replaying high-resolution voltage and current
traces of real energy environments synchronously and at high rates
across spatially distributed battery-free devices. It provides unprece-
dented visibility into energy environments across time and space,
and faithfully reproduces those conditions for the systematic deve-
lopment and evaluation of distributed battery-free applications and
services. We release Shepherd as an open-source tool, facilitating re-
search into time synchronization, wireless networking, and other
distributed algorithms for battery-free systems.



• We bootstrap battery-free wireless networks by presenting two new
mechanisms that enable battery-free devices to discover each other
quickly and efficiently. The first mechanism, Find, is a neighbor dis-
covery protocol enabling devices to wake up synchronously despite
a previous time offset by introducing random delays before becom-
ing active. When waking up synchronously, neighboring devices
can communicate and discover each other. At runtime, each de-
vice running Find dynamically adapts an optimized delay distribu-
tion to changes in its energy availability to maintain low discovery
latency despite changes in energy availability. The second mecha-
nism, Flync, is a hardware/software solution that phase-synchroni-
zes solar energy harvesting devices to the powerline-induced flicker
of state-of-the-art lamps; the proposed circuit draws only 5 µW of
power. Using Find together with Flync, devices can implicitly align
their activity phases to this external synchronization signal, dramat-
ically increasing their chances to be active at the same time. Experi-
ments with an open-source prototype built from off-the-shelf hard-
ware components show that our techniques reduce the discovery la-
tency by 4.3× (median) and 34.4× (99th percentile) compared with
a baseline approach without waiting.

• Finally, we present Bonito, the first connection protocol for battery-
free systems that enables reliable and efficient bidirectional commu-
nication between intermittently powered nodes. We collect and ana-
lyze real-world energy-harvesting traces from five diverse scenarios
involving solar panels and piezoelectric harvesters, and find that
the nodes’ charging times approximately follow well-known dis-
tributions. Bonito learns a model of these distributions online and
adapts the nodes’ wake-up times so that sender and receiver are
operational at the same time, enabling successful communication.
Experiments with battery-free prototypes demonstrate that our de-
sign improves average throughput by 10–80× compared with the
state of the art.
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1
Introduction

Cyber-physical Systems (CPS) deeply embed sensing, computing, stor-
age, and control in the physical world. Adding networking capabili-
ties to these systems enables humans and other devices to monitor and
control processes remotely. Outside the academic world, the collective
term internet of things (IoT) has emerged to describe such networked
CPS. The IoT currently connects more than 12 billion devices for appli-
cations ranging from industrial control systems [90] over smart farm-
ing [41] to implantable biologgers [119]. Because the devices are tightly
coupled to the physical world, they are often mobile, inaccessible or
widely distributed in remote areas. Sensor networks, for example,
monitor processes with high spatio-temporal resolutions by deploy-
ing tiny embedded computers equipped with one or more sensors in
an environment of interest. In such scenarios, laying cables for power
and communication is often unaffordable or impossible. Instead, de-
vices rely on local energy sources, like batteries, and send the collected
data over wireless networks. However, batteries have limited capacity
and after running out, the corresponding device stops working.
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FIGURE 1.1: In order to prolong their lifetime, battery-powered IoT devices
use duty cycling. They spend most of the time in a low-power sleep mode and
only become active for a short time. Nonetheless, eventually the battery runs

out and the device stops working.

Many IoT devices offer various levels of low-power operation where
parts of the system are powered off to reduce the power consumption
from tens of milliwatts when active to hundreds of nanowatts or less.
To prolong their battery lifetime, devices use duty cycling where the
system remains in a low-power mode for most of the time, conserv-
ing energy and only becomes active to read a sensor or communicate
with the network [140]. Duty cycling is illustrated in Figure 1.1. The
average duty cycle and exact wake-up times are set by the operator or
the application to trade off performance with battery lifetime. Despite
these efforts to conserve energy, batteries unavoidably run out, caus-
ing tons of hazardous waste and severe environmental problems [71].
Depending on the battery capacity and the power consumption of the
device, this may happen after a few weeks or months, already [3].
Many applications on the other hand require much longer lifetimes.
For instance, monitoring the restoration of former mining land with
wireless sensor nodes is a decade-long endeavor [73]. Such long-term
deployments would require frequent replacement of empty batteries,
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FIGURE 1.2: Architecture of an energy harvesting IoT device. The transducer
extracts energy from the environment. The energy management supplies the
system with the required voltage. Energy storage allows powering the sys-
tem when the consumption exceeds the power available from the transducer.

but this is prohibitively expensive. For example, replacing the batter-
ies of one single industrial IoT device can cost up to US$ 500 [5], much
more than the price of the hardware. As a result, large-scale sens-
ing applications with hundreds or thousands of individual battery-
powered devices are infeasible. In other applications, like wildlife
tracking with animal-borne devices [122], replacing batteries is not
possible at all.

To operate autonomously and to reduce the environmental impact of
disposable batteries, devices can instead use rechargeable batteries and
replenish them by harvesting renewable energy from the environment.
The ability for sustained operation without human intervention has fa-
cilitated some of the most influential applications of sensor networks,
like ZebraNET which provided researchers with insights into migra-
tional patterns of zebras [63]. After decades of research, energy har-
vesting based sensors are now also entering commercial contexts. For
example, the mOOvement global positioning system (GPS) ear tag [97]
uses solar energy to monitor the location, activity and health of cattle
and sends the recorded data wirelessly to a base station, from where it
is uploaded to a cloud for analysis. Relying on this unceasing source
of energy, the tag can operate for years without battery replacement -
a significant improvement over traditional battery-powered devices.

Figure 1.2 shows the architecture of an energy-harvesting device. The
transducer extracts energy from the environment and converts it to
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Harvesting technology Application scenario Power density

Solar cells Outdoors at noon 15 mW cm−2

Piezoelectric Shoe inserts 330 µW cm−3

Electromechanical Small microwave oven 116 µW cm−3

Thermoelectric 10◦ temperature gradient 40 µW cm−3

TABLE 1.1: Common technologies for energy harvesting devices [105]. Due
to its high energy density and wide availability, solar energy is the most used

energy harvesting source.

electrical energy. Table 1.1 lists common examples of transducers, ap-
plication scenarios and corresponding energy densities. Solar energy
remains by far the most popular source due to its high energy density
and wide availability. The power from a transducer varies and is often
not sufficient to power the system at all times. For instance, when har-
vesting energy from the vibrations of a car, the intensity of vibrations
changes with the road surface and the velocity of the car. To be able
to operate when the instantaneous harvesting power is lower than the
power consumption of the device, energy storage is required to accu-
mulate surplus energy when the harvesting power is higher than the
consumption. The energy management circuitry charges the energy
storage and provides the microcontroller, radio and sensors with the
required supply voltage.

With the advent of mobile consumer devices, rechargeable Lithium-
based batteries have become cheap and widely available, and are the
state-of-the-art energy storage element for commercial energy harvest-
ing devices. However, they have various crucial disadvantages: The
extraction of Lithium consumes large amounts of water and energy
and can lead to the release of toxic chemicals into sensitive environ-
ments [136, 31]. Their cathodes contain cobalt that is often mined un-
der catastrophic humanitarian and environmental conditions and fu-
els armed conflicts in the producing regions [10, 131]. Many other bat-
tery technologies have similar downsides. For example, all recharge-
able batteries are subject to aging and must be replaced after a few
hundred charging cycles [99]. They are also often the heaviest and
largest of all components of an IoT device [55].
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FIGURE 1.3: Our battery-free prototype is equipped with a capable MCU and
a BLE radio, and uses a sustainable 0.5 mm3 capacitor as energy storage.

1.1 Battery-free Devices

To overcome the drawbacks of rechargeable batteries, researchers start-
ed casting the vision of battery-free devices [112, 55]. Instead of storing
harvested energy in rechargeable batteries, these devices are powered
either directly from the harvester or use only tiny and eco-friendly ca-
pacitors as energy storage. Figure 1.3 shows a picture of our latest pro-
totype battery-free device. The printed circuit board (PCB) measures
only 2 cm2 and integrates all necessary harvesting and energy manage-
ment circuitry to charge and execute from the tiny 22 µF ceramic capac-
itor. The prototype is based on the popular nRF52832 microcontroller
unit (MCU), which combines a 64 MHz ARM Cortex-M4F central pro-
cessing unit (CPU) and a low-power bluetooth low energy (BLE) ra-
dio. The MCU is connected to a non-volatile memory chip that allows
retaining application data across power failures (see Section 1.3).

In addition to reducing the environmental impact of existing applica-
tions, battery-free devices can also enable applications where batteries
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are too expensive, too large or infeasible, such as sensing on live in-
sects [58], in vivo [109], or in space [33]. However, without significant
energy storage, the quality of service provided by a battery-free device
crucially depends on the energy availability; it can only sensibly be
used when its tasks coincide with the energy availability. In the sim-
plest case, the energy availability itself is the sensing signal, known
as energy harvesting based sensing [66]. One example is human ac-
tivity recognition with a battery-free device powered by human mo-
tion [114]. In other scenarios, the information signal and the energy
are from the same source, as could be the case in solar-powered vi-
sion systems [49, 35]. Finally, the utility and the energy source may
simply correlate like when tracking diurnal animal species with solar-
harvesting devices [125]. When neither of these conditions applies, the
only alternative is to artificially inject energy into the environment to
provide the sensor with energy when required. This approach, known
as wireless power transfer [139], is fundamentally different from ambi-
ent energy harvesting, because the system can dynamically control the
timing and extent to which the devices receive power.

1.2 Intermittency

Using rechargeable batteries, designers of energy-harvesting devices
can dimension the harvester and energy storage capacity to achieve
energy-neutral operation with a given duty cycle [18]. Alternatively, de-
vices dynamically adapt their duty cycle such that the average energy
consumption matches the average harvested energy [65, 45]. In both
cases, surplus energy is accumulated in the energy storage to keep
the device operational when energy is scarce. Figure 1.4 illustrates
energy-neutral operation of a device with variable energy input oper-
ating with a constant duty cycle.

A battery-free device on the other hand cannot store sufficient energy
in its small capacitor to compensate for low and fluctuating harvested
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FIGURE 1.4: Energy-neutral devices recharge their battery using energy har-
vested from the environment. They adjust their average duty cycle in order

to avoid depleting their battery.

FIGURE 1.5: Battery-free devices operate intermittently. They are forced to
remain inactive for most of the time and have limited control over their exact

wake-up times.
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energy. Instead, the device operates intermittently, as illustrated in Fig-
ure 1.5. While inactive, the device consumes little power in the or-
der of hundreds of nanowatts and accumulates charge until the ca-
pacitor voltage reaches a turn-on threshold. Then, the device becomes
active and starts to operate with a greatly increased power consump-
tion. After executing for a short time, the capacitor voltage falls below
the turn-off threshold and the battery-free device is forced to become
inactive. The activity phases of a battery-free device are often short
compared to the time it takes to recharge the capacitor. For example,
when harvesting energy from indoor light, our prototype battery-free
node shown in Figure 1.3 needs to stay off and recharge, on average,
for hundreds of milliseconds before it can operate for at most one mil-
lisecond.

Intermittency is in stark contrast to conventional duty cycling and
energy-neutral systems, where devices can become active at any point
in time subject only to an average duty cycle constraint to avoid run-
ning out of energy. Various technological parameters influence the ex-
tent to which a device is subject to intermittency:

Energy harvester. Provisioning a system with an energy harvester that
provides the power required to run the system at any point in time
avoids intermittency, but has significant drawbacks in terms of size,
weight and costs. For example, a device may consume only 10 µW on
average, but 10 mW when active, requiring to over-provision the har-
vester by a factor of 1000. In many practical scenarios, the harvestable
energy becomes zero for extended periods, for example, when har-
vesting energy from the vibrations of a car that stops and switches off
the engine at a red light. A system without significant energy storage
cannot become active during these times; It operates intermittently.

Energy storage. Despite efforts to formalize the design space of inter-
mittently powered devices [60, 96], up to date, there exists no clear
definition of the maximum capacity up to which a device operates
intermittently rather than under severe time-varying duty cycle con-
straints. When the instantaneous harvesting power is too low to power
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the system, the energy storage capacity must be high enough to sup-
port the largest atomic operation like, for example, sending a packet
with the wireless radio. Increasing the energy storage beyond the min-
imum may allow executing multiple operations without turning off
in between and thereby alleviate some challenges associated with in-
termittent operation [143]. But due to the low energy density of ca-
pacitors, a moderate increase in capacity comes with a relatively large
increase in cost, size and weight of the overall device. Beyond these
practical considerations, studying the lowest end of the storage capac-
ity spectrum also raises exciting research questions and substantially
pushes the boundaries of what is possible.

Energy consumption. While using lower power hardware, which,
for example, reduces the average power consumption in sleep mode
or for time-keeping can reduce the charging time, it does not gener-
ally avoid intermittency. This would require lowering also the active
power consumption of the system below the harvested power. Despite
significant progress over the past decades, transmitting and receiv-
ing remain among the most power-intensive tasks of an IoT device.
Low power wireless radios enable communication at data rates up
to 2 Mbit s−1 or ranges of multiple kilometers, but consume between
10 mA and 100 mA. The active current draw of the CPU instead is of-
ten less than 1 mA. By omitting the power-hungry oscillator on the
low-power device and instead modulating the radio frequency (RF)
signal from a carrier generator, backscatter can drastically reduce the
power consumption for transmission at the cost of reduced through-
put and range [83, 59, 92]. Wake-up receivers on the other hand use
an ultra low-power, low sensitivity radio to listen for incoming trans-
missions and only activate a more powerful receiver to decode the
data [43, 102]. This greatly reduces the power for idle listening, but
still requires sender and receiver to activate their high power radios
at the same time in order to be able to exchange data. These alternative
physical layers help to reduce the extent to which intermittency affects
a battery-free device by trading off throughput, range or autonomy for
lower power consumption and, as a result, increased active time.
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In summary, when designing a battery-free device for minimum cost,
size and weight, while maintaining practical capabilities, its active
power consumption often exceeds the harvested power. When the
device also does not have enough storage capacity to account for the
discrepancy, intermittency arises as a key challenge.

1.3 Intermittent Computing

The relevance of this challenge is reflected by the growing number of
works in the domain of intermittent computing. The majority of recent
literature assumes that a battery-free device powers off unpredictably
when reaching the turn-off threshold and studies the resulting chal-
lenges. For example, while powered off, the content of volatile mem-
ory and registers is not retained. To ensure forward progress of tasks
across power failures, the application state must be checkpointed to
non-volatile memory [91]. When recovering after a power failure, the
software has to establish memory consistency [88]. Similarly, reliable
timekeeping [56, 27] and retention of the state of peripherals [16, 89]
are challenging across power failures. A growing number of program-
ming abstractions [91, 69] and intermittent runtimes [141] aim to ab-
stract the challenges of programming devices operating under these
conditions.

A less well-studied approach to dealing with intermittency is to mon-
itor the supply voltage and signal an impending power loss to the mi-
crocontroller. Upon this signal, the microcontroller can checkpoint any
volatile application state to non-volatile memory and gracefully tran-
sition to a deep sleep mode instead of powering off completely [9, 61].
The associated energy overhead for monitoring the supply is often out-
weighed by the savings from not having to checkpoint preventatively
and by retaining peripherals and clocks across the off-periods.

Using these methods and supporting tools for debugging [21] and ex-
perimentation [52, 53, 121], this research has culminated in a number
of real-world applications of battery-free technology [79, 3, 28].
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1.4 Battery-free Networks

While these applications demonstrate impressive progress in the do-
main of intermittent computing, today’s potential scenarios for battery-
free systems are limited to individual devices. Shifting the focus to
multiple rather than individual battery-free devices would not only en-
able exciting new applications (e.g., swarms of nanosatellites [98]) but
may also offer a new perspective on the reliability issue; while an in-
dividual device may not be able to deliver sufficient quality of service
at all times, a group of battery-free devices might. Additionally, many
practical applications rely on direct device-to-device communication
for a variety of applications and services including time synchroniza-
tion [77], contact tracing [103], coordination of sampling [93] or multi-
hop communication, where messages are relayed between devices to
increase coverage, reliability and efficiency [76]. Despite being fre-
quently mentioned as one of the greatest barriers to the adoption of
battery-free devices [55, 142, 82], there has been little work on coordi-
nation and communication among groups of battery-free devices. This
is mainly due to three key challenges:

1. Without significant energy storage, the behavior of battery-free
devices is directly tied to the instantaneous energy availability.
While the energy availability and the behavior of a single battery-
free device have been studied extensively, there is little under-
standing of the spatio-temporal patterns of energy harvesting
and its implications on operating groups of distributed battery-
free devices.

2. To communicate successfully, two devices must be active at the
same time. Because the short activity phases of different nodes are
generally not aligned, it takes a long time until nodes wake up
simultaneously and can communicate. After an extended period
without energy input, battery-free devices lose track of time and
need to resynchronize.
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3. At every encounter, devices can only exchange a small amount
of data before being forced to power off again. Because of fluc-
tuating and different charging times between the nodes, they are
out of sync at the following wake-up. Having to resynchronize
before the exchange of every small chunk of data renders com-
munication extremely inefficient.

1.5 Contribution

This thesis addresses these challenges and enables battery-free devices
to efficiently exchange data, forming a basis for large-scale networked
applications. Specifically, we make the following contributions, which
are also illustrated in Figure 1.6.

FIGURE 1.6: Illustration of our contributions. Chapter 2 presents a tool for
experiments with groups of battery-free devices. Chapter 3 enables battery-
free devices to encounter each other for the first time. Chapter 4 proposes a

protocol for efficient data exchange over long-lasting connections.
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A testbed for battery-free devices (Chapter 2). Existing tools for ex-
periments with energy harvesting devices consider single devices only
[52, 53, 121]. Distributed testbeds for experiments with multiple bat-
tery-powered devices on the other hand have no notion of energy har-
vesting [81, 118]. We tackle challenge 1 and enable experiment-driven
research into the challenges and opportunities of operating groups of
battery-free devices by presenting an open-source tool that can record
and reproduce spatio-temporal characteristics of real energy environ-
ments.

Neighbor discovery (Chapter 3). To establish communication, two
devices need to discover each other during a first encounter, known
as neighbor discovery. Existing neighbor discovery protocols require
devices to be able to wake up at any point in time [37, 64, 8, 67] and
hence do not apply to battery-free devices. Addressing challenge 2,
we propose a method of how battery-free devices can arrange an ini-
tial encounter despite their short and interleaved activity phases. By
exploiting power line flicker in commonly used lamps as a synchro-
nization signal, we further reduce the time to the first encounter for
indoor light harvesting devices.

Efficient device-to-device communication (Chapter 4). Various MAC
protocols have been proposed for battery-powered [140, 32] and en-
ergy neutral wireless sensor networks [39, 2]. These protocols are
based on fixed communication schedules and excessive sampling of
the wireless channel, both of which do not apply to battery-free de-
vices. In response to challenge 3, we postulate that devices can exploit
the initial encounter to establish a connection that enables them to ex-
change data at every wake-up, dramatically increasing throughput.
We analyze the statistical properties of real-world harvesting traces
from diverse scenarios and devise a method of how devices can online
learn models of their wake-up times to select connection parameters
that work reliably and efficiently.





2
Shepherd: A portable testbed for the

batteryless IoT

Prelude. This chapter covers the paper with the same title co-authored
by Mikołaj Chwalisz and Marco Zimmerling that I presented at the
17th ACM Conference on Embedded Networked Sensor Systems in
2019 [44]. Motivated by the need to understand the challenges and
opportunities of operating groups of battery-free sensor nodes, the
paper presents Shepherd, a testbed for the battery-free IoT. Shepherd

allows recording synchronized energy traces with a resolution of 3 µA
and 50 µV at a rate of 100 kHz, and faithfully replaying these traces to
any number of sensor nodes to study their behavior. Shepherd is re-
leased as an open-source tool for the community, facilitating research
into time synchronization, wireless networking, and other distributed
algorithms for battery-free systems.
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2.1 Introduction

As the IoT grows to trillions of devices [124], sustainability and relia-
bility of this computing infrastructure become matters of utmost im-
portance. One possible path to sustainability is the adoption of battery-
less devices that buffer harvested energy in a capacitor, and execute
when there is energy available in the capacitor. Batteryless devices
promise to overcome the drawbacks of (rechargeable) batteries, such
as bulkiness, wear-out, toxicity, uncertain remaining charge, etc. The
limited energy capacity of capacitors, however, requires intermittently
executing the software, which may harm reliability [60] despite check-
pointing techniques [88, 13], platform support [23, 54], and dedicated
programming models [22].

Focusing on multiple rather than individual batteryless devices not
only enables exciting new applications (for example, swarms of nano-
satellites [98]), but may also offer a new perspective on the reliability
issue. Fault tolerance in conventional (i.e., continuously-powered) dis-
tributed systems often relies on exploiting redundancy [117]: If the
level of fault tolerance provided by a single server is unacceptable,
then multiple servers executing replicas must be used. From this ex-
perience, we may ask research questions like the following: Is it pos-
sible to operate a distributed collection of batteryless devices so that
the group is more reliable than each device alone? How would effi-
cient and reliable programming models, wireless communication pro-
tocols, and runtimes for collections of batteryless devices look like?
Can the cooperation of multiple distributed batteryless devices bring
about benefits in terms of overall efficiency and effectiveness, similar
to cooperation in multi-agent systems [108]?

Motivating example. To illustrate a possible way to investigate those
questions, Figure 2.1 shows real traces of harvesting current we syn-
chronously recorded at three devices with piezo-electric elements. The
devices are mounted at different locations of a car, and harvest energy
from the car’s vibrations as it drives through a suburban area. This
setting is akin to, for example, devices mounted on a large machine in
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FIGURE 2.1: Synchronized traces of kinetic harvesting current, recorded with
three Shepherd nodes mounted at different locations of a car. Shepherd can
replay such harvesting current and voltage traces to distributed batteryless

devices.

a factory (e.g., for predictive maintenance).

Considering any of the traces individually, we observe that the instan-
taneous energy availability of a device varies significantly and unpre-
dictably over time. This is indeed one of the key challenges in the
design of useful, reliable batteryless applications [85, 55]: In the ab-
sence of a large energy storage (e.g., a battery), fine-grained variations
in energy availability cannot be abstracted away. Rather, the matter of
when energy is available may be critical to the correct functioning of a
batteryless system, which is comparable to the crucial role of time for
the correctness of a cyber-physical system [34].

Looking at all three plots to the left together, we instead notice a sim-
ilar macroscopic shape of the traces. The spatial proximity of the de-
vices and systematic properties of the energy-harvesting environment
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result in a positive correlation between the time-varying energy avail-
abilities: If one device has energy, then the other two tend to have
energy as well. This also holds in other environments, such as in-
door solar energy harvesting (see Section 2.7). Although there are
non-negligible differences in energy availability across the devices, as
visible in the zoomed-in plots to the right, exploring ways to exploit
such correlations (e.g., for synchronizing and networking batteryless
devices) may eventually provide answers to the challenging research
questions posed above and elsewhere [20, 85, 55].

Problem. Unfortunately, the research community lacks a tool that
enables such scientific endeavors. An appropiate tool needs to syn-
chronously record the rapidly changing energy conditions at different
points in space. Even having such traces, it is hard to accurately model
and predict the performance and behavior of a real batteryless system
because of the complex behavior of circuits exposed to an intermittent
power supply. To develop and compare novel designs, it is thus neces-
sary to experiment under the constraints of time-varying energy avail-
ability by faithfully reproducing energy environments from recorded
traces or spatio-temporal models.

Recording and replaying harvested energy is hard, and few solutions
exist for individual devices. For example, using a source measure
unit (SMU) one can profile and emulate a single harvester. However,
such equipment is expensive (i.e., thousands of USD per unit), while
the sampling speed may not be sufficient to capture rapidly changing
energy availability. To address this problem, Ekho [53] uses custom-
designed, affordable hardware to record and emulate an energy source
with limited accuracy and resolution.

Testbeds support synchronous recording of current draw [81] or en-
ergy consumption [118] at multiple distributed devices. Although this
is one piece of the puzzle, it is not possible to profile the complex be-
havior of an energy-harvesting system with existing testbeds by repro-
ducing an energy environment. The FlockLab testbed offers the possi-
bility to vary the supply voltage, emulating a discharging battery [81].
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However, as described in Section 2.2, an energy harvester has a char-
acteristic IV curve that determines the current flowing at a particular
voltage. Emulating this behavior requires an inherently different ap-
proach than what is found in existing testbeds.

Contribution. This paper presents Shepherd, a portable testbed for the
batteryless IoT that fills this gap. Shepherd’s main novelty is the com-
bined capability of accurately recording and replaying high-resolution
voltage and current traces synchronously and at high rates across spa-
tially distributed batteryless devices. With this, Shepherd provides un-
precedented visibility into energy environments across time and space
(see Figure 2.1), and faithfully reproduces those real-world conditions
for the systematic development and evaluation of distributed battery-
less applications and services.

Shepherd is a complement of hardware and software. Its modular hard-
ware architecture rests upon a powerful observer platform with a cus-
tom-designed analog frontend, deep local storage, and real-time pro-
cessing capabilities. Different harvesting sources, energy buffers, and
sensor nodes can be attached to an observer using well-defined inter-
faces. Shepherd’s software architecture tackles the challenges of tight
synchronization among observers that may be kilometers apart (e.g.,
batteryless LPWAN), and by providing reliable, high-throughput data
transfer subject to timing constraints.

Beyond record and replay, Shepherd’s harvesting traces may be ana-
lyzed offline or fed into simulators. Conversely, Shepherd can also re-
play traces generated in software or recorded with other tools, such
as Ekho [53], RocketLogger [121], or a SMU. Shepherd is affordable
(about 200 USD per observer) and portable (supporting mobile out-
door scenarios) as it does not rely on heavy infrastructure, yet it offers
all amenities of existing testbeds, including GPIO tracing, serial log-
ging, and remote programming.

To summarize our main contributions:

• We identify a workflow for the development and evaluation of
solutions for distributed batteryless devices, and derive the key
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requirements of a testbed that supports this workflow.

• We design and build Shepherd, the first testbed that meets those
requirements. We open-source Shepherd’s hardware/ software
stack together with extensive documentation and tools that aid
users during installation and experimentation.1

• We demonstrate Shepherd’s utility and capabilities using a real-
world distributed batteryless application scenario.

• We evaluate Shepherd’s performance and show, for example, that
it records traces with a resolution of 3 µA/50 µV at a rate of up to
100 kHz, it replays traces with a mean error below 0.1 %, while
ensuring a synchronization accuracy of 2.4 µs or better.

2.2 Background

This section provides some background on the device and energy-
harvesting architecture of batteryless systems.

2.2.1 Batteryless Device Architecture

In its simplest form, a batteryless device consists of a harvester and
a sensor node. The harvester is a transducer that converts some form
of ambient energy, such as solar radiation or movement, into electri-
cal energy. The sensor node operates from the energy extracted by the
harvester, and typically includes a MCU, sensors, volatile and non-
volatile memory, and a wireless radio.

In this configuration, the harvester must deliver the minimum volt-
age and power required to operate the sensor node (e.g., about 1.8 V
to operate the MCU and about 10 mW to send a packet over an active
IEEE 802.15.4 radio). Adding an energy buffer, usually a fixed-size ca-
pacitor, allows to decouple the node operation from the instantaneous
energy availability. While the node is inactive, energy accumulates in
the buffer. When the energy in the buffer reaches a threshold, the node

1https://shepherd.nes-lab.org

https://shepherd.nes-lab.org
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FIGURE 2.2: Characteristic IV curve of a solar cell. The voltage (V) on its
output depends on the current (I) that is drawn and vice versa. The maximum
power point (MPP) is the operating point where the extracted power reaches

its maximum.

operates and consumes the buffered energy. This way, the node can
operate although the voltage or power from the harvester is momen-
tarily insufficient.

2.2.2 Characteristics of Harvesting Source

An ideal voltage source provides unlimited current. Instead, a real
harvesting source has a distinctive IV characteristic: The voltage (V) on
its output depends on the current (I) that is drawn and vice versa. The
voltage together with the corresponding current determine the har-
vester’s operating point. Figure 2.2 shows the characteristic IV curve
(solid line) of a solar cell, illustrating that the extracted power (dashed
line) crucially depends on the operating point. The operating point
where the extracted power reaches its maximum is called maximum
power point (MPP). This has important implications for the extraction
of energy from the harvesting source.
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2.2.3 Energy-harvesting Architecture

There exist two fundamental approaches to extract energy from a har-
vester, converter-less and converter-based, each with their own stren-
gths that can be exploited for different batteryless applications.

Converter-less. As shown in Figure 2.3a, a converter-less architecture
consists of the energy-harvesting source, a diode, a capacitor, and the
load. The operating point of the harvester depends on the state of
charge of the capacitor as the harvesting voltage vh is the sum of the
capacitor voltage vcap and the diode drop Vf . This prevents effective
energy extraction as the harvester’s operating point can be far off its
maximum power point. Moreover, the harvester must be carefully se-
lected and dimensioned to ensure minimum voltage and power con-
ditions. Otherwise, the sensor node may never be able to operate, be-
cause the harvester delivers no current at a high enough voltage. For
example, a typical solar cell delivers current only up to a voltage of
about 600 mV, whereas a typical MCU needs at least 1.8 V to oper-
ate. Nevertheless, a converter-less approach requires only a minimum
number of components and is thus highly cost-efficient, robust, and
allows for extremely small form factors.

Converter-based. As shown in Figure 2.3b, a converter-based architec-
ture uses a DC/DC converter in order to operate the harvester at an
operating point different from the load: The harvesting voltage vh can
be set independently of the capacitor voltage vcap. Thus, with knowl-
edge about the IV characteristic of the source, the system can optimize
power yield by dynamically adapting the operating point of the har-
vester, which is known as maximum power point tracking. This allows
to efficiently harvest energy from a variety of low-voltage sources in-
dependent of the state of charge of the capacitor. Drawbacks of this
approach include increased complexity, size, and cost because adding
a DC/DC converter involves adding an integrated circuit and a hand-
ful of passive components.
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(A) Converter-less. (B) Converter-based.

FIGURE 2.3: Two fundamental energy-harvesting architectures.

(A) Recording.

(B) Emulation.

FIGURE 2.4: Essential components of Shepherd and their interactions during
Shepherd’s two main modes of operation.
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2.3 Requirements and Overview

Shepherd is the first testbed for distributed batteryless systems. This
section outlines the key requirements for such a testbed and provides
an overview of how Shepherd addresses them.

2.3.1 A Typical Workflow

We envision the following typical workflow for the development and
evaluation of distributed batteryless systems. A number of testbed
nodes equipped with the desired energy-harvesting technology are
deployed in the energy environment of interest. The testbed records
the harvested energy at each node for a user-defined period of time.
The user retrieves the data and analyzes them to gain an understand-
ing of the characteristics of the recorded energy environment. With
the help of the testbed, the user can then develop, test, and validate
ideas involving (one or) multiple batteryless devices by repeatedly re-
playing the recorded energy traces to the device(s). This enables re-
peatable, experiment-driven research into open problems such as time
synchronization, wireless networking, or distributed sensing and ac-
tuation using collections of batteryless devices [85, 54, 20]. A solution
can then be validated by deploying it to the testbed in the target RF en-
vironment and analyzing the behavior and performance of the system.
Replaying the same energy conditions allows to rigorously compare
different solutions.

2.3.2 Key Requirements

From this envisioned workflow we derive the following key require-
ments for a useful testbed for distributed batteryless systems.

High accuracy and resolution. Harvested energy must be recorded
and replayed accurately and precisely to be able to draw meaningful
conclusions. Typical voltages of harvesting transducers like solar cells
or piezo-electric elements range from hundreds of mV to a few V. Har-
vesting currents have an even wider range, typically from µA to tens
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of mA. Voltage and current draw of a common sensor node are in a
similar range. From these figures, we can derive our first two require-
ments: Current should be recorded with a resolution of 1 µA within a
range up to 50 mA, and voltage should be recorded with a resolution
of 1 mV within a range up to 3 V.

High sampling rate. Current and voltage need to be sampled at a rate
high enough to capture the fine-grained characteristics of a harvesting
source. For example, we found that a solar cell changes its voltage
within tens of µs in response to a light being switched on. A sampling
rate of at least 100 kHz is needed to capture such rapid changes in
energy-harvesting conditions.

Time synchronization. To record and replay the energy environment
and behavior of a batteryless network, the testbed nodes need to be
tightly time-synchronized. In particular, the synchronization error must
be significantly less than the sampling interval to unambiguously map
samples from different nodes on a common timeline. We therefore tar-
get a synchronization accuracy of 1 µs.

Debugging facilities. Next to remote programming, the testbed should
offer state-of-the-art debugging facilities such as synchronized tracing
of GPIO pins and serial logging (e.g., via printfs).

Portability, affordability, and customizability. A testbed for distri-
buted batteryless devices must be exposed to different energy envi-
ronments with unique characteristics and requirements. Thus, unlike
conventional testbeds that are installed at a fixed location, a portable
testbed is needed that users can afford to build and easily set up in
various locations, which poses strict limitations on infrastructure and
costs. This includes the ability to support new harvesting modalities
and node platforms with minimal effort.

2.3.3 Shepherd Overview

To meet the above requirements, Shepherd consists a network of Shep-
herd nodes that are synchronized and operate in two modes:
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• During recording (see Figure 2.4a), energy flows from the har-
vester to a dummy load, which is part of a powerful observer
platform. The observer measures current and voltage, and times-
tamps the data with respect to the testbed-wide timeline. The
timestamped data are first buffered locally on the observers, and
then shipped to a remote database.

• During emulation (see Figure 2.4b), data are sent from the data-
base to the Shepherd nodes from where they are fed into a harvest-
ing emulator that outputs the corresponding voltage and current
to an attached node. The data can be from previous recordings
with Shepherd or some other tool, or generated using, for exam-
ple, a spatio-temporal model of an energy environment. While
replaying, the observer also monitors the sensor node’s power
draw, samples the GPIO pins, and records any serial messages
from the node.

In the following two sections, we detail Shepherd’s hardware and soft-
ware architecture. Section 2.6 describes how users interact with Shep-

herd. Section 2.7 illustrates the capabilities and utility of Shepherd based
on a real-world use case, while Section 2.8 systematically evaluates the
performance characteristics of Shepherd’s hardware/software stack us-
ing a series of controlled experiments.

2.4 Shepherd Hardware

As shown in Figs. 2.5 and 2.6, a Shepherd node consists of an obser-
ver and three capelets, and measures 90 mm×55 mm×40 mm. The har-
vesting capelet hosts the harvesting transducer and all components re-
quired to operate it; the storage capelet hosts the energy buffer, usually
a capacitor with the desired size; and the target capelet hosts the sen-
sor node. The three capelets are connected to the observer through
well-defined interfaces, which makes for a modular design that users
can easily customize depending on their needs in terms of harvesting
modality, energy storage, and sensor node platform.
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FIGURE 2.5: A Shepherd node consists of a BeagleBone SBC, the custom Shep-
herd cape, and three attached capelets.

The observer includes a custom-designed analog frontend, the Shep-

herd cape, and a BeagleBone single-board computer (SBC). Multiple ob-
servers connect via their BeagleBones’ Ethernet ports with each other
and to a host that stores the data and runs a tool we provide for or-
chestrating a collection of distributed Shepherd nodes. The Shepherd

cape hosts all components and circuitry required for the recording and
replaying of energy-harvesting traces.

2.4.1 BeagleBone

The BeagleBone is responsible for time synchronization, hardware in-
terfacing, and data processing. We base our design on this platform
as it is a mature single-board computer with superb software support
and a living community. Two features make the BeagleBone particu-
larly suitable for our needs compared to similar platforms.

First, the Ethernet controller of the BeagleBone’s system-on-chip sup-
ports timestamping of Ethernet packets. As described in Section 2.5.2,
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FIGURE 2.6: A Shepherd node is 90 mm×55 mm×40 mm in size, including the
harvesting, storage, and target capelets.

we use this feature to tightly time-synchronize a collection of distribu-
ted Shepherd nodes using precision time protocol (PTP).

Second, the programmable real-time unit sub-system (PRUSS) of the
BeagleBone’s system-on-chip includes two deterministic RISC cores,
the programmable real-time units (PRUs), which we dedicate to time-
critical tasks, such as interacting with the analog-to-digital converter
(ADC) and the digital-to-analog converter (DAC) on the analog fron-
tend, as illustrated in Figure 2.5. Less critical tasks, such as storage and
networking, are instead handled by the high-throughput ARM Cortex-
A9. The PRUs and the ARM core can exchange data and control sig-
nals through shared memory and the system bus, which we use to
implement a bidirectional communication protocol (see Section 2.5.1).
The PRUs also have direct, low-latency access to some peripherals in-
cluding the GPIOs. This is essential to achieve a GPIO sampling la-
tency in the low µs range.
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Using expansion headers, the analog frontend is stacked onto the Bea-
gleBone as a cape (hence the name Shepherd cape), which in turn serves
as the base board for the capelets discussed next.

2.4.2 Capelets

Shepherd supports different harvesting sources, energy buffers, and
node platforms. To this end, we physically separate the Shepherd cape
(i.e., the analog frontend) from these components by introducing har-
vesting, storage, and target capelets, making it easy to exchange them
(modularity) without affecting the behavior of the Shepherd cape or the
BeagleBone (composability).

Target capelets. Target capelets are similar to adapter boards in Flock-
lab [81]: They provide a hardware interface that allows connecting a
specific sensor node to Shepherd. It essentially connects the node to
the capacitor-buffered output voltage of Shepherd’s DC/DC converter.
The well-defined connector includes all signals required to control and
monitor a wide spectrum of sensor nodes through Shepherd. For ex-
ample, serial wire debug (SWD) signals allow remote programming
and debugging of many modern ARM-based nodes. universal asyn-
chronous receiver transmitter (UART) pass-through allows program-
ming of targets with a serial bootloader (e.g., TelosB) in addition to
serial logging and injection of commands. Finally, four general pur-
pose input/output (GPIO) lines facilitate high-resolution monitoring
of logical program states.

We provide a nRF52840 capelet as reference implementation of a target
capelet. It interfaces the increasingly popular off-the-shelf nRF52840
dongle from Nordic Semiconductor with Shepherd. This target capelet
merely serves as an adapter to connect the pins of the dongle to the
16-pin target connector on the Shepherd cape.

Harvesting capelets. Harvesting capelets provide Shepherd nodes with
the energy-harvesting source of choice, such as a solar panel or piezo-
electric element. Harvesting capelets may have a small flash memory
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that can be used to store an ID and specific parameters for the mounted
type of harvester. We provide two harvesting capelets.

The solar capelet allows to mount a solar panel to a screw terminal,
directly connecting this DC source to Shepherd. Using a voltage di-
vider, the operating point of the maximum power point tracker of the
DC/DC converter (see Section 2.4.3) is set to 80 % of the open-circuit
voltage, which is typical for solar energy harvesting.

The kinetic energy harvesting (KEH) capelet is a more complex example of
a harvesting capelet. The AC voltage from the piezo-electric element
connected to the screw terminal is rectified with a full-bridge rectifier
before connecting it to Shepherd’s DC/DC converter. In contrast to so-
lar energy harvesting, the optimal operating voltage of a piezo-electric
harvester is often not derived from the open-circuit voltage, but set to a
fixed value. For this reason, the KEH capelet has a flash memory that
is used to inform Shepherd about the type of capelet and the desired
operating voltage.

Storage capelets. Storage capelets host a capacitor as energy buffer
that is directly connected to the DC/DC converter of the Shepherd cape.
We provide a storage capelet with a 150 µF ceramic capacitor.

2.4.3 Analog Frontend: The Shepherd Cape

During recording the observer measures the power extracted from the
harvester, and during emulation it replays (this or some other) power
trace to the sensor node while measuring the node’s consumption.
The custom-designed analog frontend hosts the circuitry and compo-
nents required to support these two modes of operation, node pro-
gramming and debugging, as well as ensuring a defined initial filling
level of the energy buffer before an experiment starts. Our design also
caters for use cases where Shepherd serves as a portable testbed for
non-harvesting sensor nodes.

DC/DC converter. Existing work on recording and emulating harvest-
ing traces considers converter-less systems [53]. Because the harvested
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(A) Current/voltage recorder.

(B) Current emulator.

FIGURE 2.7: High-level schematics of recorder and emulator.

energy depends on the load voltage in this case, as explained in Sec-
tion 2.2.3, the whole IV characteristic has to be sampled for every point
in time by rapidly altering the load voltage.

With Shepherd’s converter-based approach, the harvester can be oper-
ated at a defined point, independent of load behavior and capacitor
voltage. Therefore, it is sufficient to sample current and voltage at the
defined operating point for any single point in time, allowing orders
of magnitude faster sampling. During replay the DC/DC converter is
then forced into the very same operating point.

We use TI’s BQ25504, an industry-standard boost converter that char-
ges a storage element from a harvesting source with a voltage of 100 mV
or higher. It provides over- and under-voltage protection, and a storage-
voltage-in-operating-range signal that indicates whether the attached stor-
age element is in a configurable operating range. This signal changes
to high when the voltage on the storage element rises above the upper
threshold and changes to low when the voltage falls below the lower
threshold. An attached load, such as a sensor node, can use this signal
to schedule its activity based on the amount of energy in the buffer. We
also use it to control our dummy load, as explained in the following
paragraph.
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Dummy load. The DC/DC converter operates the harvester indepen-
dent of the state of charge of the capacitor, but this only holds within
certain limits. For example, the BQ25504 can only charge a storage
element up to 5.5 V. Above this threshold it switches off the regula-
tor so no more current is flowing from the harvester. Similarly, once
the voltage on the capacitor falls below 1.8 V, the BQ25504 operates
in cold-start mode, where a charge pump operates the harvester at
a fixed operating voltage with reduced efficiency. Thus, it is impor-
tant to keep the voltage on the storage element within these limits to
guarantee independence of the harvester’s operating point and the ca-
pacitor voltage during recording. To this end, we use a dummy load
that consumes the harvested energy from the capacitor when the volt-
age reaches a defined threshold (currently 2.8 V). We make use of the
storage-voltage-in-operating-range signal of the BQ25504 to switch on
an electric load consisting of two parallel light emitting diodes (LEDs).
This load remains on until the capacitor voltage falls below a lower
threshold (currently 2.3 V).

Harvesting recorder. The harvesting recorder measures voltage and
current flowing from the harvester to the DC/DC converter.

Accurately measuring current at high rates over a wide dynamic range
is challenging. The challenge lies in converting the range of current to
a range of voltage that matches the input range of the ADC without
negatively affecting the signal source and without introducing exces-
sive noise into the signal chain.

We use a shunt am-meter (RS and A1 in Figure 2.7a) that measures
the voltage drop as current flows through a resistor. Using a large re-
sistor results in a large voltage drop, effectively reducing the voltage
seen by the load (burden voltage). Conversely, a small resistor pro-
duces a small voltage drop, requiring significant amplification before
the ADC. Since the collective noise at the input stage of the ampli-
fier is also amplified this results in a lower signal-to-noise ratio (SNR).
The noise is usually broadband and can be reduced by downsampling;
however, this reduces the effective sampling rate.
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We use a small shunt resistor of RS = 1 Ω to keep the burden voltage
low. The voltage drop is amplified with an ultra-low noise instrumen-
tation amplifier (A1), keeping noise levels to a minimum. The ampli-
fied voltage is sampled using a high-resolution successive approxima-
tion register ADC that has a second-order low-pass filter on the input
to band-limit the noise entering the ADC.

Measuring voltage is relatively easy as typical harvesting voltages are
well within the range of commonly used ADCs. However, the input
impedance of the ADC is relatively low, allowing current to flow from
the harvesting source into the inputs of the ADC affecting the mea-
surement. Therefore, we use a low-noise op-amp with very low input
bias current as voltage buffer (A2 in Figure 2.7a).

Harvesting emulator. For replaying traces previously recorded or gen-
erated in software, we must independently set voltage and current at
the input of the DC/DC converter. The BQ25504 can be supplied with
a reference voltage to which it regulates the input. We use a high-
speed, high-resolution DAC to dynamically generate this reference
voltage according to the sequence of digital values in the recorded/ge-
nerated trace. We set the current using the precision high-side voltage-
to-current converter shown in Figure 2.7b. This circuit provides a cur-
rent to a ground-referenced load (RR) proportional to the voltage on
the input. This voltage is generated with a second DAC that is iden-
tical to the one used for the reference voltage. The resulting current
flows through resistor R1, causing a voltage drop. The amplifier A2

regulates the current through R2 such that the corresponding voltage
drop equals the voltage over R1, effectively setting iemu proportional to
the input voltage from the DAC.

Load recorder. To study the collective behavior of a group of harvest-
ing nodes running a distributed application, it is essential to monitor
their power draw. To this end, we provide a load recorder that measures
the voltage on the capacitor and the instantaneous current drawn by
the sensor node. The load recorder has similar requirements as the
harvesting recorder and is thus almost identical to the one shown in
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Figure 2.7a. The only difference is a slightly cheaper instrumentation
amplifier with a wider common-mode range supporting current mea-
surements at load voltages above 4 V.

Constant voltage source. We also add a constant voltage source that
can be dynamically enabled and disabled in software at runtime. The
voltage can be set to values in the range from 2.2 V to 3.3 V using a po-
tentiometer. The constant voltage source serves three main purposes:
(i) it supplies the sensor node with a stable voltage during program-
ming/debugging; (ii) it allows to pre-charge the energy buffer to a de-
fined initial filling level; (iii) it allows to use Shepherd as a portable
testbed for non-harvesting sensor nodes.

EEPROM. The Shepherd cape also features a 256 kB electrically erasable
programmable read-only memory (EEPROM) to store the name of the
cape, a unique ID, and hardware calibration parameters. Based on
the name of the cape, the software running on the BeagleBone can au-
tomatically configure peripherals; for example, it configures the cor-
responding GPIO pins as input. Storing calibration data on the cape
hardware also relieves the user from the task of keeping track of which
cape is mounted on which BeagleBone.

2.5 Shepherd Software

The Shepherd software stack consists of four main components: The
PRU firmware controls the hardware on the Shepherd cape. The kernel
module provides an interface between the PRU firmware and the user-
space code, and synchronizes the PRU clock to the Linux host clock.
The user-space code handles data storage and retrieval, and exposes a
high-level user interface to manage all underlying software and hard-
ware. Finally, the user interface provides a convenient way to start/stop
recording and emulation from the user’s machine on a collection of
distributed Shepherd nodes.
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2.5.1 Data Handling

The key challenges in Shepherd’s software architecture include time
synchronization and high-throughput data exchange among user-space
code, Linux kernel code, and the PRUs subject to timing constraints.
Our solution uses four mechanisms: (i) interrupts between the ARM
Cortex-A9 and the two PRUSS cores; (ii) the Linux remoteproc frame-
work that manages resources and controls the state of the PRUs; (iii)
the remote processor messaging (RPMSG) protocol, a standardized
messaging solution for communication with the PRUs; and (iv) shared
access to the main DDR RAM.

In the following, we describe the data exchange during emulation as
the more general case that involves bi-directional data exchange: har-
vesting data is transferred from the database to the frontend, and load
recordings are sent from the frontend to the database. We use the re-
moteproc framework to allocate an area in the DDR RAM that can be
accessed from Linux and from the PRUs. We divide this memory into
64 buffers that can each store 10,000 current and voltage samples. The
user-space code starts by copying data from the database into memory,
buffer by buffer. After writing a complete buffer, the corresponding
index is sent to the PRU core that is responsible for data acquisition
(PRU1) as an RPMSG. The RPMSG communication is double-buffered
such that both sides can keep writing into the corresponding queues,
while the other side is busy. PRU1 retrieves the buffer index from the
queue and transfers the samples one by one to the DAC based on a
sampling trigger generated by PRU0. After sending one sample to
the DAC, it samples the ADC and overwrites the memory from which
the DAC sample was read. After processing a complete buffer, PRU1
returns the buffer index to the RPMSG queue. The user-space code re-
ceives the buffer index from the queue, copies the data to the database,
and fills the buffer with the next block of emulation data.

Database. We currently use the hdf5 file format to store data locally
on each Shepherd observer, using an SD card or USB flash storage. To-
gether with the raw data, we store calibration values retrieved from
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the EEPROM on the Shepherd cape. This approach allows to easily
share data that can be viewed and replayed independent of the hard-
ware it was recorded with. After recording, data can be conveniently
downloaded from individual nodes and merged into a single file us-
ing the command-line utilities we provide (see Section 2.6). Similarly,
for emulation, the corresponding data are uploaded to each Shepherd

node before the experiment starts.

2.5.2 Time Synchronization

Meaningful experimentation with a collection of batteryless, energy-
-harvesting devices requires that both the recording and the emula-
tion of harvested energy happens synchronously on all devices under
test. Similarly, recordings of load voltage and current have to be time-
synchronized in order to interpret node interactions.

We use an approach where each sample is scheduled at a defined point
in time. At a sampling rate of 100 kHz, samples are always taken at the
wrap of full 10 µs. This has two advantages: (i) While synchronized, all
nodes take the same number of samples on average. (ii) It is sufficient
to timestamp the first sample in any ’block’ of samples: The timestamp
of all following samples in that block can be derived from this first
timestamp using the sampling interval.

The goal of time synchronization is to take and replay samples at the
same specified time on a number of Shepherd observers with as little
jitter as possible. In essence, this means that the PRUSS cores on the
observers, which handle the direct interaction with the hardware on
the analog frontend, need to act in concert. We describe the synchro-
nization on two levels: (i) How to synchronize the Linux host clocks
of a number of Shepherd observers using (a) GPS and (b) PTP, and (ii)
how to locally synchronize the PRUSS cores to the Linux host clock.

GPS. Using GPS allows to globally absolutely synchronize clocks with
high accuracy: GPS fundamentally relies on accurate time-of-flight
measurements between the receiver and multiple satellites. For this
purpose, the receiver has to be tightly synchronized to the satellites.
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Many receivers output a pulse per second (PPS) signal, a sharp rising
or falling edge of an electrical signal with the wrap of every second.
Together with information about the global time of that second, it is
relatively easy to synchronize another node to the globally accurate
GPS time. Using gpsd and chrony, the host clock of the Linux OS run-
ning on the BeagleBone can be synchronized.

The advantage of using GPS is that the Shepherd nodes do not need to
be physically connected. For example, Shepherd can be used to explore
solar energy harvesting LPWAN networks where nodes can be kilo-
meters apart making physical connections infeasible. However, GPS
receivers can be expensive and always require line of sight to the satel-
lites, severely limiting deployment options.

PTP. As an alternative, we consider PTP, which is a time synchroniza-
tion protocol based on transmission time measurements over standard
Ethernet links. A number of slave nodes synchronize to a common
master, which can be elected automatically based on clock quality es-
timation. TI’s AM3358 SoC, the core of the BeagleBone, implements
hardware time-stamping of Ethernet packets, significantly improving
the achievable accuracy of PTP. PTP is readily available in Linux and,
combined with phc2sys allows to synchronize the Linux host clocks of
multiple Shepherd observers. When combining GPS and PTP, every
partition that does not have an Ethernet connection to all other nodes
must contain one GPS master to achieve global time synchronization
across all nodes.

PRUs. The last stage of the synchronization hierarchy is the synchro-
nization between the Linux host clock and the PRUs. To the best of
our knowledge, there exists no standard approach so we developed a
custom synchronization procedure.

At a fixed time in every interval (currently after 5 ms in a 100 ms in-
terval), the Linux kernel module timestamps the Linux host clock and
immediately sends an interrupt to one of the PRU cores (PRU0). On
reception, PRU0 immediately timestamps its own clock and requests
the corresponding timestamp from the kernel module. With these two
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values, the PRU estimates its offset from the host clock. By storing the
last pair of timestamps, it also estimates the clock drift with respect to
the host clock. This way, the PRUs can accurately schedule all samples
until the next synchronization interval.

2.6 Using Shepherd

Public testbeds expose an application programming interface (API) or
graphical user interface (GUI) to the user, while the underlying im-
plementation is only relevant to the testbed maintainers. By contrast,
users of Shepherd are exposed to the full hardware/software stack. We
anticipate two different types of users: The first group has no specific
hardware requirements and wants to get started quickly by using the
reference hardware and software we provide. Ideally, a user from this
group boots up the BeagleBones and runs the provided software to
record and emulate harvesting traces. The second group of users re-
quires dedicated hardware and/or software solutions to achieve their
goal. For this group of users, modularity and composability are key:
They must be able to quickly change parts at every level of the hard-
ware/software stack.

We aim for a flexible, yet robust solution that satisfies the needs of
both types of users. We implement Shepherd using standard Linux in-
terfaces and the most high-level programming language possible for
a given task. That is, only the SPI transfer routines are written in as-
sembly; we use C for the Linux kernel module and the firmware of
the PRUs; software running in user-space is written in Python. Users
interact with Shepherd in four ways.

1) Installation: After mounting the Shepherd cape onto the BeagleBones,
users download and flash the latest Ubuntu image to the SD cards by
following the instructions on the BeagleBone website. Then they log
into each node using the default credentials to set a unique hostname
and configure public/private key based ssh access. Finally, they de-
ploy the Shepherd software stack by installing two Debian packages,
which we provide as release artifacts on the Shepherd repository. These
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steps can be executed manually for each node or by running the pro-
vided Ansible playbook against all nodes with one command from the
user’s machine.

2) Calibration: Although Shepherd can work with default values de-
rived from the hardware specs, the recording and emulation accuracy
is greatly improved when applying per-node calibration, as evaluated
in Section 2.8. We provide one walk-through example on how to fully
automate the calibration process using a Keithley SMU, which can be
controlled remotely over Ethernet or USB. We also provide a second
example for users with access to a stock lab-bench power supply and
multimeter. The example guides the user through the calibration pro-
cess in a step-by-step manner, prompting the required reference values
on the command line. Using these scripts, the calibration procedure
takes roughly 10 minutes per node.

3) Usage: To record and replay harvesting traces, users invoke two
command-line utilities. shepherd-sheep is run locally on each Shepherd

observer node and provides a rich interface to start recording or emu-
lation, run a GUI webserver, or to start a remote procedure call (RPC)
interface. A user may use this interface to investigate the behavior of
a single battery-less node. Nevertheless, the key functionality of Shep-
herd is the ability to orchestrate a number of time-synchronized Shep-

herd nodes. To this end, users can run the shepherd-herd tool on any host
with ssh access to the network of Shepherd observers, which provides
similar functionality as shepherd-sheep but takes as an argument a list
of Shepherd nodes on which the corresponding commands should be
executed.

4) Development: We make Shepherd’s hardware and software available
as open source, and encourage users to provide feedback and develop
new features. We help users getting started with three measures: (i)
modularity and extensive documentation, (ii) a test suit for catching
software bugs early and showcasing functionality, (iii) automation of
build and deployment tasks using standard tools.
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2.7 Shepherd in Action

This section demonstrates the utility of Shepherd when testing a dis-
tributed algorithm for batteryless nodes in a real environment.

Scenario. We consider an indoor solar energy harvesting scenario. The
testbed comprises three Shepherd nodes. Each node consists of a Bea-
gleBone Green, the Shepherd cape, a 7 cm × 2 cm solar panel mounted
onto a solar capelet, a nRF52840 capelet, and a storage capelet that
hosts a 150 µF ceramic capacitor. The three Shepherd nodes are placed
on tables inside a room without windows, receiving only little light
through a glass door. Node 2 is slightly tilted, facing that glass door,
while nodes 1 and 3 are oriented horizontally.

We develop an example application for the nRF52840 that wakes up
from system-off mode when it sees a rising edge on the voltage-in-
operating-range pin of the BQ25504, which is triggered when the ca-
pacitor voltage exceeds 2.8 V. After initialization, the application senses
the supply (i.e., the capacitor) voltage every 125 ms. When the sup-
ply voltage reaches 3 V, it executes a task that involves sampling the
temperature sensor and transmitting the reading to a remote base sta-
tion by embedding it into BLE advertisement packets sent on the three
corresponding channels. The application continues to sample its sup-
ply voltage until the 3 V threshold is again exceeded or the voltage-in-
operating-range pin of the BQ25504 is pulled low as the supply voltage
falls below 2.3 V. The latter causes an interrupt that puts the nRF52840
into system-off mode from which it only wakes up on a rising edge
of the voltage-in-operating-range pin. The application indicates state
changes (system-off, sleeping, sampling supply voltage/ADC, trans-
mitting BLE advertisement packets) using GPIO pins. In this way, we
can track the logical state of each node with high resolution.

Recording. We record harvesting current and voltage for 60 seconds
synchronously on the three Shepherd nodes. Initially, the room lights
are switched off. After 30 seconds, we turn the room lights on and
keep recording for another 30 seconds.
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FIGURE 2.8: Voltage and current traces recorded by three Shepherd nodes in
an indoor solar energy-harvesting scenario. The plots on the right zoom into

the moment the room lights are switched on (marked in red on the left).

FIGURE 2.9: Capacitor voltage, current, and logical states when replaying the
traces from Figure 2.8 to three sensor nodes. The black dashed line indicates
when the lights are switched on. The plots on the right zoom into the time

marked with a red solid line.

Figure 2.8 plots the voltage and current recorded on the three nodes.
Initially, the voltages are low. The spikes at around 12, 30, 45, and 60
seconds are due to MPP tracking. To this end, the BQ25504 shortly
disconnects the harvester and samples the solar panel’s open-circuit
voltage. For the next 16 seconds, it regulates the voltage to 80 % of that
voltage. As soon as the light is switched on, the current sharply rises
on all three nodes, as shown in the zoomed-in plots to the right. How-
ever, the voltage remains low as the converter keeps it at the regulation
point. Only after the next MPP tracking at around 40 to 45 seconds, the
voltage is also increased to track the new MPP.

Emulation. We replay the recorded traces to the nRF52840 devices
running our example application, while recording capacitor voltage,
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current, and GPIO traces. Figure 2.9 shows that all three nodes start in
system-off mode. The small amount of energy extracted from the so-
lar panels is sufficient to slowly charge the capacitors while the nodes
are still powered off. Following the recorded harvesting traces, node 2
receives most energy and is thus the first to reach the power-on thresh-
old of 2.8 V. The wake-up causes a significant current spike and cor-
responding voltage drop, while the MCU initializes memory and pe-
ripherals. However, as long as the room lights are switched off, the
periodic sampling of the supply voltage using the ADC is not sustain-
able, leading to a decreasing capacitor voltage and eventually power-
off. After switching on the room lights, the nodes power up quickly
and accumulate enough energy to read out the temperature sensors
and send the readings to the base station. In the zoomed-in plots to
the right we see that the nodes execute the task at different times and
that the execution drains the capacitor voltage much faster than it rises
during charging.

Reproducibility. One of Shepherd’s strengths is its ability to emulate
spatio-temporal energy availability. Given a deterministic application,
this should also lead to a consistent behavior across successive emu-
lation runs with the same harvesting traces. To quantify this repro-
ducibility, we consider three parameters of our example application
that may be of interest to a developer: (i) #packets is the total num-
ber of packets sent by a node during a 60-second experiment with the
recorded traces from Figure 2.8; (ii) wake-up time is the time from the
start of an experiment until the node executes the sense-and-send task
for the first time; (iii) sleep time is the total time spent in sleep mode
(i.e., powered on and waiting for an interrupt).

We replay the traces ten times and measure the three application-level
parameters for all three nodes. Table 2.1 lists for each parameter and
node the mean and the error, defined as the maximum absolute differ-
ence between any two repetitions. The errors are very small across all
nodes and parameters. This demonstrates the ability of Shepherd to ac-
curately reproduce application behavior, which can greatly aid in the
development and evaluation of batteryless applications and system
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TABLE 2.1: Application parameters when replaying the same energy-
harvesting traces to three nodes ten times. The error is the max. absolute

difference between any two repetitions.

#packets Wake-up time Sleep time
Mean Error Mean Error Mean Error

Node 1 238.5 4 33.4 s 0.1 s 23.6 s 0.7 s
Node 2 177.1 6 32.8 s 0.3 s 36.3 s 0.8 s
Node 3 226.6 9 35.1 s 0.5 s 26.4 s 0.9 s

services. Overall, the observations and insights presented throughout
this section would be very difficult, if at all possible, to attain without
a tool like Shepherd.

2.8 Performance Evaluation

The previous section showed some of Shepherd’s capabilities, suggest-
ing that Shepherd meets the performance requirements from Section 2.3.
This section shows that this is indeed the case for the current hard-
ware/software stack by answering the following questions:

• What is the time difference between two nodes when taking or
replaying a sample at the supposedly same time?

• What are the electrical characteristics affecting the resolution, ac-
curacy, and sampling rate of voltage and current?

• What is the resolution, frequency, and synchronization with which
Shepherd can trace GPIO pin changes?

• Does the average power draw of a Shepherd node allow for ex-
tended experiments without mains power supply?

For reference, Table 2.2 summarizes the main performance character-
istics of our current Shepherd implementation.

2.8.1 Time Synchronization Accuracy

Ideally, we would measure synchronization accuracy by comparing
the times when the ADCs on two Shepherd nodes close their sample
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TABLE 2.2: Summary of Shepherd performance specification.

Sampling rate 100 kHz

Range

Harvesting voltage 100 mV-3 V
Harvesting current 0 mA-50 mA
Load voltage 0 V-4 V
Load current 0 mA-50 mA
Emulation voltage 100 mV-3 V
Emulation current 0 mA-50 mA

24 h DC Accuracy

Harvesting voltage 19.53 µV ± 0.01 %
Harvesting current 381 nA ± 0.07 %
Load voltage 19.53 µV ± 0.01 %
Load current 381 nA ± 0.01 %
Emulation voltage 11 µV ± 0.012 %
Emulation current 191 nA ± 0.025 %

RMS Noise (@1 kHz)

Harvesting voltage 50 µV (14 µV)
Harvesting current 3 µA (0.4 µA)
Load voltage 48 µV (10 µV)
Load current 4.5 µA (0.9 µA)

Bandwidth Recording channels 15 kHz

Risetime Emulation voltage 65 ms
Emulation current 19.2 µs

Max. burden voltage Harvesting recorder 50.4 mV
Load recorder 76.1 mV

Min. GPIO sampling rate 580 kHz

Avg. current draw 345 mA

Max. synchronization error 2.4 µs
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FIGURE 2.10: In setup A, two Shepherd nodes are synchronized to one PTP
master over a COTS Ethernet switch.

and hold switch. However, this switch is not accessible from out-
side. According to the datasheet, the ADC starts the conversion on
the falling edge of the SPI chip select (CS) signal. We thus measure the
delay between 10,000 consecutive falling edges of the SPI CS signal on
two nodes to determine the synchronization accuracy. There may be
jitter introduced by the circuitry inside the ADC/DAC, but we expect
it to be small. We consider two setups:

• Setup A (Figure 2.10): In this setup, we use two nodes that are
connected over an off-the-shelf Ethernet switch and synchronized
to a common PTP master within the same network.

• Setup B (Figure 2.11): We use four nodes in two separate Ether-
net networks. Each network consists of a Shepherd node acting as
PTP slave that is connected over Ethernet to a PTP master with a
GPS reference clock. The two networks are physically separated,
representing scenarios where nodes are mobile or too far from
each other for a direct, wired connection.

We plot the median and 25th/75th percentiles of the synchronization
error at the bottom of Figs. 2.10 and 2.11; the dots to either side of the
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FIGURE 2.11: In setup B, two Shepherd nodes are part of two separate Ether-
net networks with their own PTP master that is synchronized to global GPS

time.

whiskers are outliers. Even with the outliers, we find that the max-
imum synchronization error across both setups is as small as 2.4 µs:
91 % of the measurements are within our targeted synchronization ac-
curacy of 1 µs, also for setup B in which the Shepherd nodes have no
wired connection between each other (see Figure 2.11).

2.8.2 Electrical Characteristics

Zero-input root-mean-square (RMS) noise. The noise floor crucially
determines the effective resolution, that is, the smallest signal change
that can be differentiated. There are various sources of noise in the
signal acquisition chain, including switching noise from the DC/DC
converter and thermal noise from the shunt resistors. Assuming that
the noise has zero mean, is uncorrelated, and uncorrelated to the mea-
sured signal, the noise power can be reduced, for example, by a factor
of two by averaging over four consecutive samples at the cost of a de-
creased data rate.
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FIGURE 2.12: RMS noise against data rate for all four channels.

We use a Keithley SMU2604B SMU to apply a zero-input signal to each
of the four channels of a Shepherd node (i.e., harvesting voltage/current,
and load voltage/current) and sample for 10 seconds at Shepherd’s
fixed sampling rate of fS = 100 kHz. Figure 2.12 plots the RMS of all
four channels against the data rate fD after averaging over fS/ fD sam-
ples. We see that Shepherd’s voltage resolution is much better than the
required 1 mV, and that the current resolution is within the required
1 µA for data rates below 8 kHz.

Burden voltage. Measuring current with a shunt resistor introduces a
voltage drop between the source and the load. Similarly, the switches
used to select between recording and emulation for the harvesting

TABLE 2.3: Maximum burden voltage and impedance.

Channel Maximum burden voltage [mV] Impedance [Ω]

Harvesting 50.4 1.008
Load 76.1 1.342
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channel as well as between dummy load and sensor node for the load
channel also cause a voltage drop that would not be present in an ideal
system. To measure the burden voltage, we use the Keithley SMU from
before to perform a current sweep with a resolution of 1 mA. For every
value, we measure the resulting voltage drop over the measurement
circuitry and the control logic.

The results reveal a linear dependency between the burden voltage
and the current, and that the burden voltage is dominated by the re-
spective shunt resistor. Table 2.3 lists the maximum burden voltage
and the corresponding impedance. Because current and voltage on a
harvester typically correlate, the impact of losses due to burden volt-
age are small; for example, the loss is less than 2 % for the maximum
current and voltage supported by Shepherd.

Recording bandwidth. We use a 51 Ω resistor as load and an AIM-
TTI TG5011 function generator to measure the bandwidth of all four
recording channels by configuring it for an amplitude of 2 V and a lin-
ear frequency sweep of up to 50 kHz. We define the bandwidth as the
frequency at which the measured amplitude falls below −3 dB with
respect to the 2 V input. We find that the bandwidth of all four chan-
nels ranges between 15.1 kHz and 15.2 kHz, which corresponds to the
nominal bandwidth of the low-pass filter built into the ADC.

Emulation rise time. A critical parameter for the harvesting emulator
is the time it takes to change its operating point. We measure the rise
time for the current source by inserting a resistor between its output
and ground, and then applying a low-frequency square wave with an
amplitude from 0 A to 50 mA through the DAC. For the voltage emu-
lation path, we use a 220 µF capacitor and the dummy load, and apply
a constant current of 500 µA using a Keithley 2604B. We measure the
regulated voltage at the input of the DC/DC converter while applying
a low-frequency square wave with an amplitude from 100 mV to 3 V
through the DAC.

We measure the time it takes for the signal to rise from 10 % to 90 %
of its range with an Agilent MSO7104B oscilloscope. The 19.2 µs rise
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TABLE 2.4: DC accuracy in terms of mean absolute percentage error (MAPE)
without calibration and 24 hours after calibration. LSB represents the mea-

surement resolution.

MAPE
Channel LSB after 24 h [%] uncalibr. [%]

harv. rec. voltage 19.53µV 0.011 0.150
current 381nA 0.072 0.918

load rec. voltage 19.53µV 0.028 0.051
current 381nA 0.018 0.714

harv. emu. voltage 11µV 0.012 5.962
current 191nA 0.025 20.450

time of the current source is within expectations and short enough to
accurately emulate rapidly changing conditions. For the voltage chan-
nel, we observe a long rise time of 64 ms. A closer examination reveals
that the set-point voltage provided by the DAC rises to its value within
a few µs, but the BQ25504 only applies the reference voltage with its
internal duty-cycle of 64 ms. However, this is not critical as the volt-
age is regulated: it typically does not change in response to changing
conditions.

DC accuracy. DC accuracy quantifies how close a value measured or
emulated with Shepherd is to the true value. To measure it, we use the
Keithley SMU to do a sweep over the full range of the four recording
channels, and log the value measured with Shepherd together with the
corresponding reference value. For the two emulation channels (har-
vesting load/current), we reverse the setup and apply the sweep using
Shepherd. For the current source, we use a 91 Ω resistor as the load and
the SMU as amperemeter. For the voltage emulation path, we use a
220 µF capacitor and the dummy load, and apply a constant current of
500 µA to the SMU. We measure the regulated voltage at the input of
the DC/DC converter.

We do these measurements without calibration and then again 24 hours
after calibration. The mean absolute percentage error (MAPE) and the
least significant bit (LSB) indicating the measurement resolution are
shown in Table 2.4. We see that the calibration process described in
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Section 2.6 improves the DC accuracy considerably, in particular for
the two emulation channels. The MAPE values 24 hours after calibra-
tion are below 0.1 % across the board, demonstrating that Shepherd can
accurately record and replay harvesting traces.

2.8.3 GPIO Tracing Performance

Shepherd can sample and store the state of up to four GPIO pins during
recording and emulation. The state is continuously polled by the PRU
firmware. We measure the maximum polling interval by toggling a pin
within the corresponding routine and measuring the maximum delay
between two edges with a Saleae Logic 8 logic analyzer. The maximum
delay is 1.7 µs. This is the minimum time a pin must be high or low for
the change to be recorded. It is also the maximum delay between the
event and the recorded timestamp. The size of internal buffers limits
the maximum frequency to 163,840 events per second, where an event
represents the state change of at least one pin. As GPIO timestamping
is done with the same clock used for scheduling samples, the synchro-
nization error is in the same region as the results in Figs. 2.10 and 2.11,
that is, 2.4 µs at most.

2.8.4 Power Draw of a Shepherd Node

We expect Shepherd to be used in scenarios without mains power sup-
ply. We measure the current draw of a Shepherd node while record-
ing data using a Keithley 2604B SMU, supplying the node with 5 V
through the micro USB connector. The average current draw is 345 mA
with a peak current of 395 mA. Using a u-blox M8F GPS sensor for
time synchronization adds another 28 mA once the receiver has ac-
quired the first fix. This allows for a theoretical recording duration
of 19 h from a 10 000 mAh USB power bank.
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TABLE 2.5: Comparison of Shepherd with Ekho [53].

Ekho [53] Shepherd

Sampling rate 0.135 kHz/1 kHz 100 kHz
Nominal current resolution 10 µA 0.381 µA
Current emulation error 86.9(462)µA 0.51(29)µA

2.9 Related Work

Two areas of prior work are related to Shepherd: (i) tools to record and
emulate energy-harvesting environments, and (ii) testbeds for battery-
supported nodes, with or without energy-harvesting capabilities. De-
bugging techniques for intermittent systems, however, are orthogonal
to our work; for instance, the platform proposed in [21] may be in-
tegrated into Shepherd for energy-interference-free debugging of dis-
tributed batteryless applications. Shepherd deals with energy harvest-
ing across a collection of nodes, which is independent of the commu-
nication technology used to exchange data between nodes. By devel-
oping additional capelets, Shepherd can thus be used to experiment not
only with active radios, but also with ambient backscatter [83] or visi-
ble light transceivers [68].

Recording and emulation of energy sources. Ekho [53] records IV
curves of a harvester and recreates these characterstics in the lab as in-
put to a converter-less node. Ekho supports different harvesting tech-
nologies and can reproduce the energy environment of a single node,
but it cannot provide insights into the spatio-temporal energy environ-
ment and behavior of multiple distributed nodes. Shepherd, instead,
offers synchronized recording and emulation of multiple harvesters.
The performance of Ekho has not been characterized in terms of noise
levels, DC accuracy, or dynamic range, making a quantitative compar-
ison with Shepherd difficult. Nevertheless, Table 2.5 lists the perfor-
mance results provided in [53] along with the corresponding values
for Shepherd, obtained by computing the mean and standard deviation
of the absolute current emulation error across 24 hours based on the
measurements underlying Table 2.4. We find that Shepherd achieves
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orders of magnitude better sampling rate, nominal current resolution,
and current emulation error.

RocketLogger [121] is a hand-held device that enables in-situ mea-
surements across four voltage and two current measurement channels
with high accuracy and wide dynamic range. It also records tempera-
ture, illuminance, etc. to support the analysis of environmental statis-
tics. Similar to Shepherd, RocketLogger aims to bring the capabilities
of high-quality, expensive, wall-powered lab equipment into a com-
pact and portable measurement device. Unlike Shepherd, RocketLog-
ger cannot replay recorded or generated traces, and is only applicable
to single energy-harvesting devices.

Recent work aims at repeatable indoor testing of solar-powered nodes
by controlling the intensity of a light source (e.g., based on real illumi-
nation data) to induce a solar cell or panel to generate a desired level
of power [127, 52, 94]. Using enclosures for the node or photovoltaics,
it is possible to create repeatable light conditions. All solutions are
specifically designed for a certain battery-supported platform. By con-
trast, Shepherd’s design is platform-agnostic and applicable to battery-
less devices and different harvesting sources. Moreover, it can be used
to record the harvesting conditions, which is not possible with any of
the proposed solutions.

Testbeds for embedded wireless nodes. Testbeds for battery-sup-
ported nodes enable development, distributed debugging, and per-
formance measurements. The capabilities of existing testbeds range
from basic support for reprogramming and serial logging [36] through
synchronized GPIO tracing/actuation [81] and JTAG debugging [123]
to power profiling [81] and the generation of controllable Wi-Fi inter-
ference [118]. Shepherd is inspired by these testbeds and brings many
of their services to batteryless, intermittent systems. In addition, it
adopts a fundamentally different approach to provide services like
recording and emulation of spatio-temporal energy availability that
no existing testbed offers.

Indeed, a few papers outline the challenges and desired capabilities
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of a testbed for energy-harvesting [128] or transiently powered sen-
sor nodes [1]. The prototypes, however, lack even basic features such
as time synchronization and energy consumption measurements [1]
or record and replay of harvesting traces [128]. Shepherd provides a
more powerful solution that is available as an affordable, portable, and
open-source tool for the research community.

2.10 Conclusions

We have presented Shepherd, a testbed for collections of batteryless de-
vices that can accurately record and replay the spatio-temporal charac-
teristics of real energy environments. Shepherd’s modular design is ag-
nostic to harvesting source, energy storage, node platform, and com-
munication technology; it is affordable and portable; and our experi-
ments show that it provides adequate accuracy, resolution, sampling
rate, and time synchronization. We believe Shepherd can be a valuable
tool for the research community to investigate exciting questions that
have been out of reach so far.
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Postscript. Shepherd was developed out of a necessity for a tool to
approach the key problems of battery-free networks. Since its com-
pletion, it has proven indispensable and was a key enabler for the re-
search presented in Chapter 3 and Chapter 4 as well as research con-
ducted with our partners in the space of energy-harvesting based sens-
ing [113, 114].

Based on the feedback from users and our own experiences after three
years of using Shepherd we are currently developing an improved ver-
sion with the following new key features:

• Flexible recording frontend that allows sampling of voltage-cur-
rent surfaces and emulation of different harvesting architectures

• Virtual energy storage for experiments with variable capacities

• Configurable turn-on and turn-off thresholds

We plan to build on the success of existing testbeds [36, 123, 81, 118]
for battery-powered devices by operating a public instance of this im-
proved version testbed consisting of dozens of nodes that are con-
trolled remotely by users worldwide to conduct reproducible exper-
iments.



3
Bootstrapping battery-free wireless

networks: Efficient neighbor discovery
and synchronization in the face of

intermittency

Prelude. This chapter covers the paper with the same title co-authored
by Marco Zimmerling that I presented at the USENIX Symposium on
Networked Systems Design and Implementation in 2021 [46]. The pa-
per addresses the unsolved problem of efficient device-to-device com-
munication in the face of intermittency. It presents Find, the first neigh-
bor discovery protocol for battery-free wireless networks that uses ran-
domized waiting to minimize discovery latency. Additionally, it in-
troduces Flync, a new hardware/software solution that synchronizes
indoor light harvesting nodes to powerline-induced brightness vari-
ations of widely used lamps, which is exploited to further speed up
neighbor discovery.
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FIGURE 3.1: Because ambient power is often weak, a battery-free node must
buffer energy before it can wake up and operate for a short time period. This

is known as intermittent operation.

3.1 Introduction

Despite technological advances, the maintenance costs and environ-
mental impact of batteries remain a major threat to the vision of a
truly ubiquitous internet of things [6, 20]. Battery-free devices that store
energy harvested from light, vibrations, radio-frequency (RF) signals,
and other ambient sources in a capacitor are one of the most viable
alternatives today [115]. Capacitors store electrical energy in an elec-
trical field rather than in the form of chemical energy, and thus have
negligible aging effects and are sustainable [25, 11]. Moreover, their
favorable size, weight, and cost points enable new applications where
batteries would be inconvenient or infeasible [79].

Challenge. The power that can be harvested from ambient energy
sources can vary significantly across time and space [44], and is of-
ten too weak to directly power a battery-free node, such as a smart
sensor [83]. Thus, as illustrated in Figure 3.1 and further discussed
in detail in Section 3.7, a battery-free device first needs to buffer suffi-
cient energy in its capacitor before it can operate for a short period of
time; then the device turns off until the capacitor is sufficiently charged
again. As a result, battery-free devices operate intermittently.

Intermittency is in stark contrast to conventional duty cycling. While
duty cycling is intentionally introduced to save energy and thus pre-
dictable, intermittency is mainly dictated by uncontrollable environ-
mental factors and thus impacts the device operation in unpredictable
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ways. The resulting challenges in terms of, for example, reliable time
keeping [56, 27] or ensuring application progress and data consistency
[88, 16] have been widely studied in the recent literature.

The impact of intermittency on wireless networking has instead re-
ceived little attention. Just like in conventional battery-supported net-
works, direct communication between battery-free devices is desir-
able, for example, to increase the availability of the system [93], to en-
able novel applications [83, 59], and to reduce infrastructure costs [92].
However, to communicate with one another, sender and receiver must
be active simultaneously for at least the airtime of one complete packet.
This is challenging in battery-free networks for three reasons:

1. Battery-free nodes can only become active when they have accu-
mulated sufficient energy in their capacitors.

2. They may only be active for a short period, which renders exces-
sive sampling of the wireless channel infeasible.

3. Their duty cycles are often low and may change unpredictably
due to varying availability of ambient energy.

For example, our prototype battery-free node needs to charge its ca-
pacitor for hundreds of milliseconds to sustain 1 ms of activity when
harvesting from indoor light. Because the short activity phases of dif-
ferent nodes are generally interleaved, as shown in Figure 3.2a, it takes
a long time until nodes encounter each other. And this is not a one-
time endeavor: While nodes may attempt to synchronize their activity
phases at the first encounter, they lose track of time during extended
periods without energy [56, 27], which forces them to re-synchronize.

This challenge is fundamental and pertains to battery-free networks
regardless of the type of wireless communication: While backscatter
communication can lower the energy costs compared to active radio
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(A) Battery-free nodes may need a long time to discover each other due to low duty
cycles and the interleaving of short activity phases.

(B) Using Find, nodes randomly delay their wake-ups to avoid interleaving, thereby
discovering each other faster and more efficiently.

(C) Using Find+ Flync, nodes implicitly align their wake-ups to an external synchro-
nization signal, further accelerating discovery.

FIGURE 3.2: Illustration of the battery-free neighbor discovery challenge in
(a) and of our proposed mechanisms to address it in (b) and (c).
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communication, sender and receiver still need to have sufficient en-
ergy at the same time. Prior work on backscatter has primarily fo-
cused on pushing the envelope of communication range and through-
put, avoiding intermittency by evaluating the designs under high am-
bient energy availability [83, 59] or by powering the devices via USB
or batteries to not disturb the measurements [92]. To our knowledge,
direct radio communication between real battery-free devices has not
been explored so far, as the overhead due to intermittency is consid-
ered too demanding [93].

Contribution. We set out to bootstrap battery-free wireless networks
by presenting two mechanisms that enable battery-free nodes to dis-
cover each other quickly and efficiently.

The first mechanism, Find, is a neighbor discovery protocol. As illus-
trated in Figure 3.2b, the key idea behind Find is to address the inter-
leaving problem by introducing random delays after the devices have
sufficiently charged their capacitors before becoming active. We de-
velop analytical models to determine an optimized delay distribution
that minimizes discovery latency. At runtime, each Find node dynami-
cally adapts the delay distribution to changes in its energy availability.

The second mechanism, Flync, is a hardware/software solution that
further speeds up the discovery process. Flync phase-synchronizes
solar energy harvesting devices to powerline-induced flicker of state-
of-the-art lamps; the proposed circuit draws only 5 µW of power. As
shown in Figure 3.2c, using Find together with Flync, nodes can implic-
itly align their activity phases to this external synchronization signal,
dramatically increasing their chances to be active at the same time.

We prototype our mechanisms on a custom-designed ultra low-power
battery-free node. It is based on a state-of-the-art MCU with a 2.4 GHz
BLE radio, and buffers energy harvested via three small solar panels
in a tiny 47 µF ceramic capacitor.

We use 6 of our prototype battery-free nodes to conduct extensive ex-
periments and a contact-tracing case study. We summarize our key
findings as follows:
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• Find provides shorter discovery latencies than greedy and naı̈ve
random node activations. Find + Flync improves on greedy by
4.3× in terms of the median latency (141 s vs. 604 s); the 99th per-
centile improvement is 34.4×.

• Our hardware prototype works with 14 out of 19 fluorescent,
halogen, and LED lamps we tested, demonstrating that Flync is
broadly applicable in indoor environments. Flync provides a sta-
ble clock signal when nodes are deployed across different rooms,
carried around, or exposed to temporary shadowing.

• We conduct a contact-tracing case study in an open-air pub with
Find and in an office kitchen using Find + Flync. The median
time between consecutive encounters of the same two nodes is
1.5 s and 7.5 s in the outdoor and indoor environment, respec-
tively. This shows the potential of our battery-free designs for
real-world applications.

Overall, this paper makes the following contributions:

• Find, the first neighbor discovery protocol for battery-free net-
works. Find is agnostic to the energy harvesting modality and
the type of wireless communication.

• Flync, the first solution extracting a stable clock from solar har-
vesting current, whose amplitude changes due to powerline-ind-
uced flicker of state-of-the-art lamps. While we use Flync in tan-
dem with Find to speed up discovery in indoor scenarios, Flync is
useful for other purposes and also applicable to battery-suppor-
ted nodes.

• A novel battery-free node design including an implementation
of an efficient intermittent runtime.

• Empirical evidence that the proposed techniques work well un-
der a diverse set of real-world conditions.
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3.2 Battery-free Neighbor Discovery

This section presents the design of Find, the first neighbor discovery
protocol for battery-free wireless networks. Find empowers battery-
free nodes to quickly discover each other’s presence despite intermit-
tent operation and varying ambient energy availability. It is agnostic
as to how the nodes harvest energy (from solar, vibrations, RF, etc.)
and as to whether they communicate using backscatter or radio com-
munication.

The design of Find is based on the observation that the only way bat-
tery-free nodes can reliably avoid interleaving is to not wake up and
become active immediately after reaching the minimum energy level
required to do so. We refer to this as the greedy approach. Instead,
Find delays each wake-up for a random time. A crucial question is
how to choose this random delay to ensure fast and energy-efficient
discovery.

To answer this question, we devise a model that captures the impact
of key parameters, such as the charging time needed to reach the min-
imum energy level and the random delay, on the discovery latency
(Section 3.2.1). Using this model, we then determine an optimized
delay distribution that minimizes the discovery latency (Section 3.2.2).
Finally, we describe how these considerations materialize in the practi-
cal design of the Find protocol and its runtime operation (Section 3.2.3).

3.2.1 Modeling Discovery Latency

Suppose that a node needs to charge for c slots until it reaches the
minimum energy level required to be active for one slot. Let k0 denote
the first slot in which a node reaches the minimum energy level. Using
Find, a node waits for a random delay x in units of slots before it wakes
up and becomes active. We model x as a discrete random variable X
with probability mass function (pmf) pX(x). During an active slot, a
node fully depletes its energy storage. The probability that a node



62 Chapter 3. Bootstrapping battery-free wireless networks

becomes active for the first time in slot k is given by

pwk,0(k) = pX(k − k0) (3.1)

Afterward, a node needs to recharge for c slots before it can become
active again. The time of the second wake-up is the sum of the time
of the first wake-up, the charging time, and the second random delay.
The same reasoning applies recursively to all future wake-up times.
Because the random delay is independently chosen across all wake-
ups, we can use a recursive convolution to determine the probability
that a node wakes up for the n-th time in the k-th slot

pwk,n(k) = (pwk,n−1 ∗ pX) (k − c) (3.2)

By summing over n → ∞ we obtain the probability that a node is
active in slot k

pa(k) =
∞

∑
n=0

pwk,n(k) (3.3)

To model discovery latency, we consider a fully connected network
of N nodes (i.e., a clique of size N). Using a suitable sequence of
message exchanges in active slots (see Section 3.2.3), one of the M =

N(N − 1)/2 bi-directional links i ↔ j is discovered if nodes i and j
are active in the same slot while all other nodes in the network are
inactive. Otherwise, a collision occurs and no link is discovered, a typ-
ical assumption in neighbor discovery protocols [67]. The probability
that link i ↔ j is discovered within k slots is the complement of the
probability that the link is not discovered in slots 0, . . . , k:

ci↔j(k) = 1 −
k

∏
κ=0

(
1 − pa,i(κ) · pa,j(κ) · ∏

l ̸=i,j
(1 − pa,l(κ))

)
(3.4)

ci↔j(k) can be regarded as the cumulative distribution function (cdf)
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of the discrete random variable describing the slot in which link i ↔ j
is discovered. With pi↔j(k) denoting the corresponding pmf, we com-
pute the expected fraction of links discovered up to slot k by averaging
pi↔j(k) over all M links

d(k) =
1
M ∑

i↔j
pi↔j(k) (3.5)

If the nodes’ charging times are finite, d(k) is a valid cdf, and we define
the discovery latency as

Tnd =
∞

∑
k=0

(1 − d(k)) (3.6)

3.2.2 Optimized Delay Distribution

With the above model we are able to get a better understanding of how
nodes should delay their wake-ups to help discovery.

Example. Suppose two nodes i and j with the same charging time
of c = 100 slots, but different slots k0 in which they reach the mini-
mum energy level for the first time (i.e., initial offset). Using (3.3) we
plot in Figure 3.3a for both nodes the probability of being active in a
slot when they pick random delays from the discrete uniform distri-
bution X ∼ U[0, 30]. We see that in the first thousand slots there is
hardly any overlap in the activity of the nodes: Due to the initial off-
set, node i is likely active when node j is powered off, and vice versa.
The probability of being active smears out over time and converges
to an average duty cycle of 1/(c + E[X]) ≈ 0.0087. Figure 3.3b plots
the same when the two nodes pick random delays from X ∼ U[0, 60].
Compared to Figure 3.3a we find that the probability of being active
smears out sooner as nodes tend to choose more wide-spread delays.
However, as nodes also tend to pick longer delays, they have a lower
average duty cycle of 0.0077.

Figure 3.4 directly compares the two delay distributions by plotting
the cdf of the slot in which nodes i and j discover each other according
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(A) Random delay drawn from X ∼ U[0, 30].

(B) Random delay drawn from X ∼ U[0, 60].

FIGURE 3.3: Probability of being active in a slot for two nodes with identical
charging times but an initial offset in their wake-ups. The more wide-spread
the random delay, the faster nodes break up their interleaved wake-up pat-

tern at the cost of a lower average duty cycle.

FIGURE 3.4: Cumulative distribution function of the slot in which two nodes
discover each other, for the two delay distributions in Figure 3.3. A more
wide-spread delay performs better initially, but leads to lower performance

in the long run due to a lower average duty cycle.
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FIGURE 3.5: Discovery latency against scale parameter for three different
probability distributions. The geometric distribution performs best as it

yields delays with high randomness and low mean.

to (3.4). We observe that the more wide-spread delay induced by the
second distribution X ∼ U[0, 60] initially provides a higher probability
of discovery. In the long run, however, the higher average duty cycle
of the first distribution X ∼ U[0, 30] leads to a higher probability of
discovery.

Choosing a distribution. The above example suggests that a non-
negative delay distribution with high randomness and low mean is prefer-
able. Entropy is a commonly used measure of randomness. Maximiz-
ing the entropy of a general non-negative distribution with a given
mean yields the exponential distribution [100]. Thus, in Find, we draw
random delays from the geometric distribution, the discrete analogue
of the exponential distribution, with scale parameter 1/r and pmf (1−
r)kr for k ∈ {0, 1, 2, . . .}.

To confirm our reasoning, we compare the geometric distribution with
other well-known distributions, namely the discrete uniform distribu-
tion and the Poisson distribution. We sweep the scale parameter of
the three distributions and compute the discovery latency using (3.6)
for the two-node case, where nodes i and j have equal charging times
(25, 100, 500, or 1000 slots). We find that the geometric distribution
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achieves the lowest discovery latency across all charging times. Fig-
ure 3.5 shows the resulting curves for a charging time of 100 slots. The
differences in the minimum discovery latencies are relatively small.
One reason for this is that, according to the central limit theorem, the
probability that a node wakes up for the n-th time in slot k converges to
a normal distribution for large n, irrespective of the underlying delay
distribution.

Determining optimized distribution parameters. Having chosen a
suitable delay distribution, we now turn to the problem of determin-
ing the scale parameter that minimizes the discovery latency. To for-
mally state the optimization problem, we consider the worst case in
terms of discovery latency: all N nodes have the same charging time c,
and their initial wake-up times k0,i are all interleaved as in Figure 3.3,
that is,

k0,i = i · c + 2 E[X]

N
(3.7)

where i is the node index and E[X] is the expected delay. For specific N
and c, we minimize the discovery latency given by (3.6) and the initial
offsets given by (3.7)

min
r

Tnd(N, c) (3.8)

Numerical evaluation suggests that Tnd(N, c) is convex (see Figure 3.5)
and hence straightforward to optimize. We use Brent’s method [17] to
approximate the scale parameter 1/r∗ that minimizes the discovery
latency. The next section explains how we adapt the scale parameter
at runtime on a real node.

3.2.3 Practical Protocol Design

The above analysis makes a number of simplifying assumptions that
do not hold in practice. For example, the charging times are gener-
ally different across nodes and vary over time. A node typically only
knows its own charging time c and is unaware of the total number N
of nodes in the network.
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FIGURE 3.6: Discovery latency against network density ρ when optimizing
for the known density, for a fixed density of ρ = 1, and for a two-node net-

work. For ρ ≤ 2.5, all approaches perform similarly.

Nevertheless, prior work has shown that neighboring nodes have sim-
ilar energy availability because they harvest energy from the same am-
bient source(s) [44, 7]. Thus, in the absence of any prior information, a
reasonable approach for a node is to assume that its neighbors harvest
the same amount of energy and thus have the same charging time c
like itself.

Moreover, we found that knowledge of the number of nodes N is of-
ten not required: optimizing for the case of a two-node network yields
competitive performance across a wide range of network densities. In
other words, in practice, it is often sufficient for a node to assume that
it has only one neighbor (although over time it may discover that it
has many more). To understand why, we plot in Figure 3.6 the dis-
covery latency for a charging time of 25 slots when optimizing for (i)
the known network density ρ = N/c, (ii) a fixed network density of
ρ = 1, and (iii) a two-node network. We can see that for a network
density of ρ ≤ 2.5 the three approaches achieve almost the same per-
formance. For realistic charging times, the network density rarely ex-
ceeds this threshold. For example, based on the charging times and
beacon length in our real-world case study (see Section 3.6), a network
density of ρ = 2 would require a network of around 4000 fully con-
nected nodes.
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Runtime operation. Prior to each wake-up, a Find node samples a ge-
ometric distribution to determine the random delay. A node dynam-
ically adapts the scale parameter of the distribution to changes in its
charging time, under the assumption that it has one neighbor with the
same charging time, as explained above. To achieve an efficient run-
time operation, we store a look-up table of optimized scale parameters
in non-volatile memory and use inverse transform sampling to con-
vert samples from a uniform pseudo-random number generator to the
optimized, geometric distribution.

Frame structure. Taking inspiration from existing neighbor discovery
protocols for battery-powered sensor nodes [37, 8], we adopt the frame
structure shown in Figure 3.7. During each active slot, a node first
transmits a beacon, then listens for potential beacons from neighboring
nodes, and finally transmits another beacon at the end of the slot. The
second beacon ensures that nodes can discover bi-directional links in
one common active slot. Specifically, if the slot offset T between two
nodes (see Figure 3.7) is uniformly distributed between −Tslot/2 and
Tslot/2, where Tslot is the slot length, the probability that two nodes
successfully discover each other’s presence is

p = 1 − 2 · (Tta + Ttx)

2 · (Tta + Ttx) + Trx
(3.9)

Here, as depicted in Figure 3.7, Ttx, Trx, and Tta denote the times needed
to transmit a beacon, to listen for potential beacons, and to switch from
receive to transmit mode (or vice versa). In order to maximize the suc-
cess probability according to (3.9), Find keeps the beacon transmission
time Ttx as short as possible to maximize the listening window Trx.

3.3 Further Accelerating Neighbor Discovery

Find provides fast and energy-efficient neighbor discovery in battery-
free networks. Nevertheless, if the ambient energy availability is low,
discovery may still take a long time due to the low duty cycles. For
example, according to our model, under dim indoor light conditions
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FIGURE 3.7: Find’s frame structure specifying the sequence of beacon trans-
missions and the intermediate listening window during an active slot. Using
our prototype implementation, nodes can successfully discover each other if

the slot offset T is between 88 µs and 848 µs.

it takes on average 8 min until two of our prototype battery-free nodes
(see Section 3.4) discover each other. Similar observations are to be
expected when nodes harvest from weak RF signals or miniature vi-
brations [12]. The discovery latencies in those challenging energy en-
vironments can be prohibitively long for many applications.

This section introduces an approach that facilitates, according to our
model, a 10× speed-up in the above-mentioned scenario, allowing two
nodes to discover each other in 45 s on average instead of 8 min at an
additional cost of only 5 µW. The underlying idea is that neighboring
nodes harvest energy from the same ambient source(s) and may there-
fore have access to a common energy signal that can be used as a time
reference. In combination with Find, nodes can exploit this common
time reference to align their wake-ups, thereby increasing the chances
that nodes are active in the same slot.

To assess the potential of this idea, we focus in this work on harvesting
energy from indoor light. While this is a popular method for power-
ing battery-free nodes due to the ubiquity of interior lamps, the en-
ergy density of indoor light is significantly lower than that of sunlight.
As such, it represents both a challenging environment for battery-free
neighbor discovery and a highly relevant setting for real applications.
In the following, we provide answers to three key questions:
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FIGURE 3.8: Time and frequency domain of solar panel current when har-
vesting energy from light emitted by a UP-PL30120-45W LED panel. The

current varies with double the powerline frequency.

1. What common energy signal can nodes use? (Section 3.3.1)
2. How to efficiently extract a time reference? (Section 3.3.2)
3. How to exploit this for faster discovery? (Section 3.3.3)

3.3.1 Powerline Flicker in Solar Current

When harvesting energy from indoor light, we observed that the solar
panel current varies with double the powerline frequency (50 or 60 Hz
depending on the region). As an example, Figure 3.8 shows the solar
panel current when harvesting energy from an LED panel light found
in a typical office space.

Practically all indoor lamps are connected to mains power, which in-
duces phase-synchronized brightness variations (powerline flicker) of
the lamps through different effects. Despite their relatively high iner-
tia, the alternating current through the filament of incandescent and
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halogen lamps causes temperature and, as a result, brightness varia-
tions. A similar effect occurs in gas-discharge lamps like the ubiqui-
tous fluorescent lamps, where the alternating current through the gas
modulates the brightness. Due to the exponential relation between
forward voltage and brightness, voltage-controlled LEDs are also sen-
sitive to residual ripple of the rectified supply voltage. Because the
power available from a solar panel is proportional to the brightness of
the incident light, it also varies with double the powerline frequency,
as visible in Figure 3.8.

To assess the potential of using powerline flicker as a common energy
signal, we characterize the magnitude of powerline frequency induced
fluctuations of the solar panel current for a wide variety of lamps. To
compare lamps across diverse average brightness levels, we define the
flicker index FI as the ratio of the amplitude of the powerline frequency
component and the DC component of the solar panel current ip

FI =
Ip(2π · fpl)

Ip(0)
(3.10)

where Ip(ω) = F{ip(t)} is the Fourier transform of the solar panel
current and fpl is the powerline frequency.

We attach an IXYS SM141K06L solar panel to a Shepherd node [44] and
record 15 s of solar panel current at a sampling frequency of 100 kHz
from each of the 19 lamps in Figure 3.9. For each trace we compute the
flicker index using (3.10). The results in Figure 3.9 show that all lamps
we tested exhibit varying levels of powerline flicker. We observe that
all fluorescent and halogen lamps have a relatively large flicker index.
The results for the tested LED lamps are more ambiguous. We sus-
pect that highly integrated, bulb-shaped LED lamps tend to have high-
quality current-controlled drivers with little flicker, whereas commer-
cial panel-style LED lamps often rely on voltage-controlled drivers
with significant levels of flicker.

We conclude that most types of lamps exhibit significant powerline
flicker, which makes this an attractive common energy signal. Next,
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FIGURE 3.9: Flicker index for 19 tested lamps. The gray line marks the sensi-
tivity of our Flync prototype. The proposed circuit works with all fluorescent

and halogen lamps and the majority of LED lamps.

we present our design of Flync, a hardware/software solution that
extracts a frequency- and phase-synchronized clock signal from this
common energy signal on distributed battery-free nodes. The dashed
line in Figure 3.9 is the measured sensitivity (see Section 3.5.2) of our
Flync prototype, showing that the proposed design works with all flu-
orescent and halogen lamps and the majority of tested LED lamps.

3.3.2 Extracting a Clock from Solar Current

To be viable, Flync needs to provide a stable clock signal while keeping
the required energy costs as low as possible.

Hardware. We propose the circuit shown in Figure 3.10, which con-
verts the modulated current signal from the solar panel into a digital
clock signal that can be connected to a GPIO pin of a MCU. The current
through shunt resistor RS causes a voltage drop that is filtered with a
narrow-band bandpass filter to extract and amplify the powerline fre-
quency component. We tune the band-pass filter to a gain of 36 dB at
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FIGURE 3.10: Flync circuit to extract a clock signal from the powerline-
induced solar panel current variations (see Figure 3.8 for an example).

a center frequency of exactly double the powerline frequency, taking
into account the limited gain-bandwidth product of the low-power op-
erational amplifier. The resulting signal is connected to a comparator
directly and through a low-pass filter to convert it into a digital signal.

The TI TLV521 operational amplifier used in the band-pass filter has
a typical current draw of 350 nA, and the TLV7031 comparator has
a typical current draw of 315 nA. Including the losses over the 300 Ω
shunt resistor, the Flync circuit draws a total of around 5 µW under typ-
ical harvesting conditions. This is orders of magnitude lower than the
power draw of related approaches, using a light sensor and an ADC
(5.394 mW [80]) or an antenna to extract the signal from powerline ra-
diation (300 µW [110]).

Software. To achieve a stable clock signal, we use a phase-locked loop
(PLL) in combination with a proportional integral derivative (PID)
controller to synchronize the MCU’s real-time clock (RTC) to the pow-
erline frequency signal extracted with our proposed circuit. In Sec-
tion 3.4.2, we describe our software implementation of Flync in more
detail.

3.3.3 Exploiting the Clock for Faster Discovery

Using Flync, neighboring battery-free nodes have access to a common
clock. Nodes can use the phase information of this clock to implicitly
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agree on times at which they potentially become active. For the pow-
erline flicker, this could be the rising edges of the solar panel current
(see Figure 3.8).

When using Find without Flync, we set the slot length to the duration of
a node’s active period. When using Find with Flync, we increase the slot
length to 1/(2 · fpl) and let nodes only become active at the beginning
of a slot. This increases the probability that nodes become active in
the same slot. For example, consider two nodes that randomly and
uniformly wake up once within a 1 s time window. Using a slot length
of 1 ms, the probability that both nodes wake up in the same slot is
1/1000. With a slot length of 10 ms, this probability is 10× higher,
which speeds up the neighbor discovery process.

Flync exploits the well-behaved, widely available powerline flicker as
sychronization source, but the concept applies to any phase-synchro-
nized signal available on different nodes. Because the benefit in terms
of a shorter discovery latency stems from increasing the effective slot
length, the signal’s period must be longer than the duration of a node’s
active period. The lower the frequency, the longer the slot length and
the greater the potential benefit. If the period is longer than the charg-
ing time of a node, it can be divided down to avoid nodes wasting
energy while waiting for the next slot.

3.4 Prototype Implementation

This section describes the hardware and software components of our
prototype implementation.

3.4.1 Hardware

We design a low-power battery-free node that integrates the circuit
from Figure 3.10. The node is based on a capable Nordic Semiconduc-
tor nRF52840 MCU, which features a 64 MHz ARM Cortex-M4F and a
2.4 GHz radio with support for Bluetooth 5.2 and IEEE 802.15.4. The
node harvests energy using three 23 mm× 8 mm IXYS KXOB25-05X3F
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(A) Front (B) Back

FIGURE 3.11: Prototype battery-free node based on the nRF52840 MCU. Solar
panels on the back charge a tiny capacitor that powers the node.

solar panels. A TI BQ25505 DC-DC boost converter steps up the volt-
age of the solar panels and charges a 2 mm× 1.25 mm× 1.25 mm 47 µF
multilayer ceramic capacitor (MLCC). However, due to DC bias, the
capacitor has only an effective capacitance of around 17 µF at 3.3 V.
The BQ25505 implements a maximum power point tracking (MPPT)
mechanism that aims to operate the solar panels close to their opti-
mal voltage of around 80 % of the panels’ open-circuit voltage. The
MPPT circuit obtains a new reference voltage every 16 s by disabling
the charger for 256 ms and sampling the panels’ open-circuit voltage.
Once the capacitor voltage reaches a hardware-programmable thresh-
old of 3.3 V, the BQ25505 sets one of its pins high. This pin is con-
nected to a TI TS5A23166 analog switch that connects the MCU to the
capacitor-buffered supply voltage.

The two-layer PCB shown in Figure 3.11 measures 29 mm × 29 mm.
The total cost of all components is $13.89, including $8.11 for the rela-
tively expensive, highly integrated nRF52840 module. Comparing our
design to recently proposed battery-free platforms with similar capa-
bilities in Table 3.1, we see that our prototype is indeed one of the first
truly battery-free nodes in the sense that the energy storage is negligi-
ble in terms of cost, size, and environmental impact: The ceramic ca-
pacitor does not contain problematic materials, costs $0.024, and takes
up only 0.3 % of the PCB area.
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Platform Year Capacitor Communication

Pible [42] 2018 220 mF super-cap BLE
luxBeacon [62] 2019 1.5 F super-cap BLE
Sigrist et al. [120] 2020 520 µF MLCC BLE
Botoks [27] 2020 100 µF MLCC 868 MHz
This work 2021 47 µF MLCC BLE PHY

TABLE 3.1: Our battery-free prototype node has a sustainable ceramic capac-
itor that is significantly smaller and cheaper than the energy storage of other

recently proposed battery-free platforms.

3.4.2 Software

Next, we describe our implementation of an efficient runtime for bat-
tery-free nodes. We also detail the PLL implementation of Flync and
key configuration parameters of Find.

Efficient runtime. Many existing battery-free runtimes discharge the
capacitor until the voltage drops below the minimum and the MCU
is powered off [27, 54]. To avoid the high energy costs of frequent
hardware resets, we implement a different approach that we call soft
intermittency. During charging, the MCU enters the lowest possible
sleep mode, periodically waking up to sample the capacitor voltage
with the built-in ADC. In this mode, we measure a total average
power draw of 15 µW, including the power for the Flync circuitry and
software processing. When the capacitor voltage reaches a software-
defined turn-on threshold, the node arms the power-fail comparator, a
dedicated peripheral that raises an interrupt when the capacitor volt-
age drops below a software-defined turn-off threshold. Then the node
executes protocol and application code until it is notified by the power-
fail comparator upon which it immediately transitions to deep sleep,
drastically reducing its power draw until it has again buffered enough
energy. While this soft intermittency approach cannot prevent hard
resets when there is no energy input for several hundreds of millisec-
onds, it greatly increases the average efficiency without using addi-
tional comparators and switches.
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Flync PLL. The comparator at the output of the circuit in Figure 3.10
has a relatively small hysteresis, occasionally causing flickering at sig-
nal transitions. Furthermore, while MPPT obtains a new reference
value, the harvesting current approaches zero, causing the clock signal
to pause for hundreds of milliseconds. To provide a stable clock signal
despite these disturbances, we implement a PLL that synchronizes the
MCU’s RTC to the signal extracted with the Flync circuit. We config-
ure the GPIO peripheral to generate an interrupt on a rising edge at
the GPIO pin connected to the output of the comparator of the circuit.
After a reset, we wait for the first GPIO interrupt. Upon this interrupt,
we set up an RTC interrupt to reset the RTC counter after the nominal
powerline frequency interval. Ideally, all following GPIO interrupts
should coincide with that RTC interrupt. Thus, the counter value at
the time of the GPIO interrupt can be interpreted as phase deviation
between the external clock signal and the local timer. We implement a
control loop to continuously adjust the timer period in order to mini-
mize the phase deviation. In this way, we obtain a highly stable inter-
rupt that is phase-synchronized with the variations of the solar panel
current and works even during the MPPT sampling or other disrup-
tions.

Find settings. Each beacon in Find’s frame structure shown in Fig-
ure 3.7 consists of 2 B preamble, 3 B base address, 6 B payload, and
1 B cyclic redundancy check (CRC). When using the 2 Mbit BLE mode
of the radio, this corresponds to a beacon transmission time of Ttx =

48 µs. With 17 µF of capacitance, the time required to start the high-
frequency oscillator, and a turn-around time of Tta = 40 µs, we can
afford a maximum listening window of Trx = 800 µs. As a result, two
nodes can successfully detect each other if they wake up with an offset
T between 88 µs and 848 µs (see Figure 3.7).

3.4.3 Example Real-world Trace

Figure 3.12 shows capacitor voltage and activities over time while one
of our prototype nodes runs Find. We see that the node charges its ca-
pacitor until reaching the turn-on threshold of 3.3 V. It wakes up and
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FIGURE 3.12: Example trace from a prototype node running Find.

samples a random delay from Find’s optimized distribution. The nec-
essary computations cause a noticeable drop in the capacitor voltage
when transitioning from charging to waiting. After the random delay,
the node becomes active and quickly drains its capacitor below the
turn-off threshold of 2.8 V. The overview on the left side of Figure 3.12
also shows how the capacitor discharges during MPPT at around 1.5 s.
The detailed view on the right side shows the individual stages while
the node is active. We see that the node first starts the high-frequency
clock required to run the radio. Then it sends the first beacon and
starts to listen for potential beacons from other nodes. After listening
for 800 µs, the node sends the trailing beacon. The remaining energy
in the capacitor is assigned to the application that can run until the
capacitor voltage hits the turn-off threshold.

3.5 Evaluation

We manufacture six prototype battery-free nodes to evaluate Find and
Flync. We first look at their effectiveness in terms of discovery latency,
followed by a detailed characterization of Flync’s robustness and per-
formance. Section 3.6 reports on the results of a contact tracing case
study based on our techniques.
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FIGURE 3.13: Discovery latency of four different approaches in a network of
6 battery-free nodes. Our techniques outperform the comparison approaches

by up to 4.3× (median) and 34.4× (99th percentile).

3.5.1 Neighbor Discovery Performance

To fairly compare the neighbor discovery performance of our tech-
niques against baseline approaches, we conduct experiments under
controlled conditions. Section 3.6 reports on results when using Find

and Flync in uncontrolled environments.

Setup. All experiments are conducted in a darkened room with a con-
trollable light source. We place six prototype nodes next to each other
on a flat surface. The nodes are programmed to output the ID of any
discovered node over UART, while a logic analyzer logs the output of
every node. For each run, we let nodes wake up with a random initial
delay, and consider the measured time until all 15 bi-directional links
are discovered as the discovery latency. We compare Find and Find

+ Flync with a greedy approach, where nodes become active as soon as
their capacitor voltage reaches the turn-on threshold, and a uniform ap-
proach, where nodes randomly delay their wake-ups by a uniformly
distributed time. Overall, the measurement campaign took more than
4 days, in which we performed between 48 and 128 runs for each of
the four approaches.

Results. Figure 3.13 shows the measured discovery latency for each
approach, including the median, the 25th and 75th percentiles, and
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FIGURE 3.14: Interleaved activity phases of two nodes when using the greedy
approach. The zoomed in plots on the bottom show that, despite the distur-
bances caused by MPPT, the two nodes repeatedly wake up with the same

pattern, preventing successful discovery.

the 1.5× of the interquartile range. Clearly, the greedy approach per-
forms worst. This is mainly because of interleaved activity phases of
the nodes, as visible from the trace in Figure 3.14. If we zoom in on the
first three and the last three wake-ups in the trace, we notice that nodes
repeatedly wake up with the same pattern that prevents discovery de-
spite different charging times and MPPT intervals. In Figure 3.15, in-
stead, we see that when nodes use Find to randomly delay each wake-
up, they are more likely to be active at the same time. For instance, at
about 4.5 s, the nodes wake up with an offset of less than 848 µs and
are therefore able to successfully exchange beacons as shown in the de-
tailed plot on the right side of Figure 3.15. This explains the significant
reduction in median discovery latency from 604 s with greedy to 390 s
with Find, as visible in Figure 3.13. We also see that Find’s optimized
delay distribution performs slightly better than the uniform approach
(median of 431 s), which matches the magnitude of improvement pre-
dicted by our model (see Figure 3.5). Find + Flync achieves the lowest
median discovery latency of 142 s, which corresponds to an overall
improvement of 4.3× (median) and 34.4× (99th percentile) compared
with greedy.
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FIGURE 3.15: Using Find, nodes prevent interleaving by delaying each wake-
up by a small random time, enabling quick discovery.

3.5.2 Flync Sensitivity

To extract a clock signal, the Flync circuit requires a minimum magni-
tude of the powerline frequency component in the solar panel current.
We empirically determine the corresponding minimum flicker index
for our hardware prototype.

Method. The magnitude of the powerline frequency component is
proportional to the DC component and decreases with smaller panel
size and increasing distance from the light source. We define the worst-
case minimum flicker index as the flicker index sufficient to extract a
clock signal even at the lowest possible harvesting current. The latter is
defined by the minimum power requirements of our prototype when
running Find, the panel voltage, and the corresponding efficiency of
the DC-DC converter. Our solar panels have a typical panel voltage
of 1 V at the maximum power point. At this voltage, our DC-DC con-
verter has an efficiency of 80 %. Thus, the minimum harvesting current
to cover the power requirements of our prototype of about 37.5 µW is
50 µA.

We use a Keithley 2600B sourcemeter to generate a current signal with
a DC offset of 50 µA while sweeping the amplitude of the 100 Hz AC
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FIGURE 3.16: For a flicker index ≥0.008 Flync provides a stable clock.

component. The current is fed to the input of our prototype that is usu-
ally connected to the solar panel. By limiting the voltage at the output
of the sourcemeter to 1.25 V, the MPPT circuit regulates the input to
around 1 V. For every setting of the AC amplitude, we record 5 s of
clock signal with a mixed-signal oscilloscope. To quantify the quality
of the clock signal, we compute the correlation coefficient between the
signal and a phase-aligned 100 Hz reference. We repeat these measure-
ments for four of our prototype nodes.

Results. The results in Figure 3.16 show that there is a distinct thresh-
old at around FI = 0.008 beyond which all nodes begin to output a
clean clock signal. Comparing this with Figure 3.9, we conclude that,
with the exception of 5 LED lamps, our prototype works with the vast
majority of the lamps we tested.

3.5.3 Flync Robustness

We now assess the robustness of Flync when a node changes its posi-
tion and orientation relative to the light source, when the solar panels
of a node are temporarily covered, and when electrical loads are tem-
porarily connected to the same power strip. To this end, we experi-
ment with two nodes powered by a desk lamp and connect them to an
oscilloscope. We quantify robustness by measuring the time difference
between clock edges on the two nodes. As a benchmark, we note that
our implementation can tolerate a time difference of up to 848 µs.

Mobility. We keep one node static and attach the other one to the wrist
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FIGURE 3.17: Current signal and time difference between two nodes while
one node changes its distance and angle to the light source.

of a person. The person waves, changing distance and angle between
the node’s solar panels and the light source.

Figure 3.17 shows a period where the node moves closer and farther
away from the lamp. The changes in the amplitude of the current sig-
nal affect the time difference between the nodes. The comparator that
thresholds the sine wave uses a low-pass filter that reacts slowly to
changes in the average amplitude. As a result, the clock signal deteri-
orates temporarily, causing an increased time difference of up to 1 ms.
However, after a short while, the time difference recovers to previous
levels.

Shadowing. To investigate the impact of shadowing, we put both
nodes on a table and temporarily cover one of them by slowly moving
a hand between the lamp and the node.

Figure 3.18 shows that the time difference increases after covering the
panel as the PLL loses its reference signal. However, without signif-
icant energy input, the node does not reach the turn-on threshold,
which renders communication infeasible anyhow. As soon as the panel
is uncovered, the node quickly charges up again and, after less than a
second, the clock returns with a small time difference.

Electrical loads. We repeatedly switch on and off a drilling machine
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FIGURE 3.18: Capacitor voltage and time difference between two prototype
nodes while temporarily covering the solar panel of one node.

and a vacuum cleaner connected to the same power strip as the lamp.
We do not observe any noticeable effect of the loads on the time differ-
ence between the two nodes.

3.5.4 Flync Jitter

In a final set of experiments, we look at the time difference between
the clock signals of different nodes when these are: (i) powered by a
single light source, (ii) placed in different rooms, and (iii) powered by
different types of light sources.

Testbed. For these experiments, we built a distributed testbed of ob-
server nodes. The observer nodes are accurately time-synchronized to
within 479 ns, and record the clock signals of the attached prototype
nodes with a resolution of 62.5 ns.

Single light source. We place six of our prototype nodes in the same
room with a single halogen lamp. The experiments are conducted dur-
ing the day, and the nodes receive a mixture of natural sunlight and
artificial light from the lamp. Using our testbed, we record the clock
edges of all six nodes for 1 h.

Figure 3.19 shows the pairwise time difference between nodes. Be-
cause the phase offset resulting from propagation delays of light is
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FIGURE 3.19: Pairwise time difference between clock edges on different pro-
totype nodes when these are powered by a single light source.

FIGURE 3.20: Pairwise time difference between clock edges on prototype
nodes placed in different rooms with the same type of lamp.

negligible, the jitter must be introduced on each node. For example, a
slight difference in the offset voltage of the comparator can lead to a
significant mean difference of the resulting clock signal. Nevertheless,
with 95 % of the more than five million recorded pairs below 244 µs,
the jitter is well below the 848 µs tolerated by our Find implementa-
tion.

Different rooms. We conduct experiments in three rooms of an office
building equipped with fluorescent tubes. The rooms are located on a
long hallway with a distance of around 15 m between the middle room
and the other two. We place two nodes in each room, and record with
our testbed for 4 h while the nodes receive light from the tubes as well
as sunlight.

Figure 3.20 shows that there is a small offset between rooms 2 and 3
with 95 % of the recorded values being smaller than 700 µs. The offsets
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FIGURE 3.21: Pairwise time difference between clock edges on different pro-
totype nodes when these are powered by different types of lamps.

between rooms 1 and 2 and rooms 1 and 3 are centered around 3.3 ms.
While residential homes are often connected to a single phase, larger
apartment blocks or commercial buildings are typically fed by three-
phase power. Apparently, the lights in room 1 are connected to a differ-
ent phase than the lights in rooms 2 and 3, leading to a 60◦ phase and
3.3 ms time shift between the light intensity variations. Thus, when
nodes need to discover neighbors across rooms with lights potentially
connected to different power phases, they must be able to become ac-
tive not only at the edge of their own Flync clock signal, but also with
a 60◦ phase shift.

Different types of light sources. We plug an LED, a fluorescent, and
two halogen lamps into the same power strip. We place one node un-
der each lamp so that it only receives light from this lamp, and record
for 30 min with our testbed.

Figure 3.21 reveals large offsets between the clocks of nodes powered
by different types of lamps. These offsets are due to varying phase
shifts between the powerline voltage and the brightness variations of
the lamp. For example, although the current through an incandes-
cent lamp is in phase with the supply voltage, the filament may take
some time to heat up and cool down, leading to the observed phase
shift. Other types of lamps contain inductors or capacitive elements,
a switching power supply, or an electronic ballast that cause differ-
ent phase shifts. This shows that Flync does not work out of the box
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(A) Node on shirt. (B) Setup of experiment in an open-air pub.

FIGURE 3.22: Battery-free contact tracing.

when different nodes are powered by different types of lamps. The
static phase shifts would need to be measured during deployment or
learned at runtime. On the other hand, Flync may not work reliably
when individual nodes receive a mixture of light from different types
of lamps. The results from the previous experiments (see Figs. 3.19
and 3.20) show that Flync works well when nodes receive a mixture of
natural sunlight and artificial light from the same type of lamp.

3.6 Case Study: Contact Tracing

Automatic contact tracing is important to contain the spread of in-
fectious diseases (e.g., SARS-CoV2) in a scalable manner. It allows
to quickly identify contacts of an infected person and to quarantine
potentially infected individuals before they become contagious. To as-
sess the potential of our proposed designs for real-world battery-free
applications, we conduct a contact tracing case study with our proto-
type nodes.

Setup. We attach six nodes to the shirts of human participants, as
shown in Figure 3.22a. The nodes run the Find protocol, logging the
timestamp and ID of each discovered node to non-volatile memory.
As we are only interested in relatively close contacts that would allow
a virus to transmit from one person to another, we set the transmission
power of the beacons to −16 dBm. We run experiments indoors and
outdoors, as detailed below. After each run, we dump the content of
the non-volatile memory of each node to a computer for analysis.
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FIGURE 3.23: Charging times and rendezvous in coffee kitchen experiment.
Vertical markers show rendezvous with the respective person.

Indoor experiment: coffee kitchen. Two persons sit at a table in a
small coffee kitchen, roughly 1.5 m apart from each other. After 3 min
a third person enters the kitchen and prepares a coffee for 2 min. The
kitchen is equipped with fluorescent lamps, and we use Flync together
with Find.

Figure 3.23 plots the charging times and recorded rendezvous of the
three nodes over time. We see a total of 49 received beacons. All con-
tacts are logged successfully with low latency, despite the relatively
long charging times of hundreds of milliseconds. Specifically, the first
contact between persons 1 and 2 is detected after 43.9 s. When person
3 enters the kitchen, it takes 26.6 s and 17.9 s until the contacts with
persons 1 and 2 are detected, respectively. Overall, the median time
between rendezvous of the same two nodes is 7.5 s.

Outdoor experiment: open-air pub. Three pairs of persons sit at op-
posite sides of three tables (see Figure 3.22b). Two tables are next to
each other; the third table is at a distance of around 4.5 m. We perform
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FIGURE 3.24: Histogram of the time difference between rendezvous of the
same two nodes in the open-air pub experiment.

the experiments in the morning of a slightly overcast day at an open-
air pub without direct sunlight. Receiving only natural sunlight, the
nodes do not make use of Flync. We conduct three consecutive 15 min
runs.

We measure a total of 4426 received beacons. All contacts between
persons on the same table are successfully recorded. More impor-
tantly, contacts between persons on different tables in close vicinity
are also reliably detected. Due to the low transmit power, we do not
see any rendezvous between the first two tables and the third remote
table, which is expected and in fact desirable because we only want to
trace contacts that are associated with an actual risk of virus transmis-
sion. Figure 3.24 shows the histogram of the time between consecu-
tive rendezvous between the same two nodes. As expected, the time
between rendezvous is approximately exponentially distributed, and
the mean is estimated between 2.61 s and 2.78 s with 95 % confidence.
This means, under the given conditions, we are able to detect contacts
with a resolution of around 2.67 s, allowing for fine-grained contact
tracing.

Summary. The results from our contact tracing case study show that
Find and Flync are also effective under uncontrolled real-world condi-
tions. Outdoors, energy availability is high and therefore Find alone
enables fast rendezvous and fine-grained contact tracing. Indoors,
Flync can compensate for the significantly lower energy density of inte-
rior light, providing decent performance even under these challenging
conditions.
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3.7 Discussion

We have presented two novel techniques that enable for the first time
efficient device-to-device communication in the face of intermittency.
By introducing random delays, Find breaks interleaved activity pat-
terns of battery-free devices to discover each other faster and more
efficiently. By tapping into the powerline-induced flicker of state-of-
the-art lamps, Flync phase-synchronizes devices that harvest energy
from indoor light. While we have exploited Flync to further speed up
discovery in battery-free networks, Flync is useful for other purposes
and also applicable to battery-supported devices.

Recent work tackles the intermittency problem on individual battery-
free devices in terms of, for example, computing and time keeping [56,
27, 88, 16]. We instead focus on communication between battery-free
devices that operate intermittently. Like prior work, our techniques
are relevant if intermittency makes traditional approaches inefficient
or unreliable. To understand the scope of our work, we discuss inter-
mittency and relevant impact factors below. Afterward, we discuss the
influence of built-in randomness on our proposed techniques.

3.7.1 When Does Intermittency Occur?

A battery-free device goes through periods with low power require-
ments (e.g., system-off and sleep modes) and high power requirements
(e.g., sensing, processing, and communication). Since the instanta-
neous power available from a harvester is often insufficient to support
a battery-free device during periods with high power requirements,
some form of energy storage is needed that buffers energy when the
device is inactive to support a high-power workload for a short period
of time.

The minimum size of the energy storage is determined by the de-
mands of the largest atomic operation that must not be interrupted.
For example, to transmit or receive a packet, the buffered energy needs
to be sufficient to power the radio for at least the airtime of one com-
plete packet; other examples of atomic operations include reading out
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a sensor or executing a checkpoint [60]. In our proposed Find pro-
tocol, the largest atomic operation is the frame sequence depicted in
Figure 3.7.

If a device with an active power draw higher than the harvesting power
is equipped with an energy storage that does not support executing
multiple iterations of the largest atomic operation from a single full
charge, it is forced to go through periods of inactivity—the device
is said to operate intermittently. Intermittency is in stark contrast to
duty cycling, which is intentionally used on devices with primary or
rechargeable batteries, yet the devices can become active at any point
in time subject only to an upper bound on the average duty cycle. By
contrast, intermittency prevents a device from becoming active at any
point in time, and when a device enters and exits the inactivity phases
is only partially controllable, at best.

3.7.2 What Factors Impact Intermittency?

Three key dimensions influence the extent of the intermittency prob-
lem: energy input, energy storage, and workload.

Energy input. An ambient energy source may exhibit intermittent be-
havior, including periods where it emits no energy. Clearly, a battery-
free device can only harvest energy when the ambient source emits en-
ergy. In this case, provisioning a device with a harvester that provides
the power required to continuously operate the device in high-power
mode prevents the intermittency problem. This, however, would come
with major drawbacks in terms of size, weight, and costs. For exam-
ple, a battery-free device may draw only 10 µW on average but 10 mW
when active, thus requiring to over-provision the harvester by a factor
of 1000. While such over-provisioning is in theory always possible, it
is severely limited in practice by the constraints imposed by the appli-
cation requirements.

Energy storage. If permitted by the application requirements, an en-
ergy storage larger than the minimum required to execute the largest
atomic operation may be used. For example, using a high-capacity
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rechargeable battery can prevent intermittency. Such batteries have
a high energy density, but their minimum physical dimensions are
typically orders of magnitude larger than those of capacitors. Batter-
ies are also more expensive and subject to aging, losing capacity over
time and eventually malfunctioning with excessive heat and leakage
of potentially toxic chemicals. By contrast, capacitors have low en-
ergy density, but are extremely cheap, readily available in sizes well
below 0.1 mm3, have negligible aging effects, and do not contain prob-
lematic materials (e.g., toxic chemicals). Thus, despite advances in
battery technology, alternative systems to store energy are being ex-
plored [6] and capacitors are widely regarded as a more sustainable
option [115, 20].

When a device is inactive, it accumulates charge until the capacitor
voltage reaches a turn-on threshold. The amount of energy that can
be stored depends on the turn-on threshold, which is limited by the
breakdown voltage of the capacitor and the device’s maximum op-
erating voltage. When a device is active, it discharges the capacitor
until the voltage reaches a turn-off threshold, which is dictated by the
device’s minimum operating voltage. Thus, for the same capacitor,
a device with a lower minimum operating voltage or a higher maxi-
mum operating voltage can increase the effective amount of buffered
energy that can be used. This allows to either use a smaller capacitor
or execute longer from a single full charge, potentially alleviating the
intermittency problem.

Workload. While lower-power hardware can reduce the average power
draw in sleep mode and thus the charging time, it does not generally
avoid intermittency. This would require pushing also the active power
below the harvesting power.

Reducing the transmission power of the radio can extend the time a
device can operate from a single full charge. While this may alleviate
the intermittency problem, it also reduces the communication range,
which may render device-to-device communication infeasible or re-
quire multi-hop networking.
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Similarly, using backscatter communication instead of active radio com-
munication may bring the active power draw of a device below the
harvesting power and thereby enable continuous operation. However,
backscatter requires the presence of an external carrier and may pose
limitations in terms of communication range and data rate. In par-
ticular, existing practical implementations of tag-to-tag backscatter re-
ceivers do not yet reach the point where the end-to-end power draw is
negligible (i.e., below sleep power of around 1 µW) [92, 104], thus leav-
ing a significant region in the design space of battery-free backscatter
devices where intermittency occurs.

3.7.3 Impact of Built-in Spatial Randomness

Find tackles interleaving by letting nodes randomly and independently
delay their wake-ups. This approach is particularly effective in scenar-
ios with little built-in spatial randomness, that is, when the harvested
energy exhibits limited variability between nodes, regardless of a po-
tentially high temporal variability in harvested energy. We believe this
holds for a broad class of battery-free application scenarios, because
nodes in a confined space often harvest energy from the same ambi-
ent source(s). On the other hand, a high built-in spatial randomness
may alleviate the interleaving problem. Although our case study ex-
periments exhibit built-in spatial and temporal randomness, it remains
an open question how built-in spatial randomness may influence the
choice of Find’s delay distribution and scale parameter as well as its
overall effectiveness.

3.8 Related Work

Battery-free device-to-device communication. Prior work on battery-
free wireless device-to-device communication is mainly theoretical [70,
145], studying the capacity limits for different energy scheduling, trans-
mission, and decoding policies. Understanding energy issues on the
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Work Type Sensing Signal Power

Syntonistor [110] frequency EM radiation 300 µW
Flight [80] frequency light sensor 5394 µW
Flync freq.+phase solar current 5 µW

TABLE 3.2: Compared with prior work using powerline frequency for syn-
chronization, Flync provides frequency and phase synchronization from the

solar panel current at significantly lower power draw.

receiver side [2] and the impact of intermittency have been open prob-
lems. On the other hand, practical work on tag-to-tag backscatter com-
munication has primarily focused on physical-layer issues and consid-
ers intermittency an orthogonal problem [83, 59, 92].

Rendezvous and neighbor discovery protocols. Blind rendezvous is
the process of establishing a communication link between nodes in a
distributed system without any prior information [51]. Neighbor dis-
covery protocols for wireless networks target a sub-class of the blind
rendezvous problem with the goal of optimizing the trade-off between
discovery latency and energy consumption. Deterministic protocols
let nodes wake up according to a schedule based on (co-)prime num-
bers [37, 64], a quorum [75, 74, 57], or by systematically traversing slots
[8, 135]. This way, they can provide guaranteed bounds on discov-
ery latency [67]. Probabilistic protocols are stateless, robust to varying
conditions, and offer low average discovery latency [19]. For example,
the influential birthday protocol [95] and follow-up work [134, 133] an-
alyze optimal transmit probabilities to maximize the fraction of links
discovered in a given time. However, none of the existing neighbor
discovery protocols are applicable to battery-free networks because
they require nodes to be able to wake up at arbitrary points in time,
not taking into account intermittency.

Powerline-based clock synchronization. We are not the first to ex-
ploit the powerline frequency signal for synchronization. The Synton-
istor extracts a stable clock signal from electromagnetic (EM) power-
line radiation using a large coil [110]. It draws 300 µW of power, 60×
more than Flync. Flight samples a light sensor to synchronize a node’s
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oscillator to the powerline-induced brightness variations of fluores-
cent lamps [80]. Using Flight, synchronization takes 100 ms at a power
draw of 5394 µW, 1000× more than Flync. As summarized in Table 3.2,
both approaches only synchronize the frequency of local clocks, elim-
inating the need to periodically compensate for clock drift, but do not
exploit phase information. They also use dedicated high-power sen-
sors, whereas Flync uses a low-power circuit to extract the signal from
the current of the solar panel.

Energy harvesters as sensors. Previous work has explored the use of
the harvesting current or voltage as a sensing signal for indoor posi-
tioning [107], gait recognition [87], gesture recognition [132], activity
classification [114], and transport-mode detection [113]. To the best
of our knowledge, we are the first to exploit context information from
harvested energy for synchronization. Furthermore, Flync is the first
design that extracts the sensing signal from current variations of a so-
lar panel that is simultaneously used to power the system.

Visible light communication. Flync exploits the powerline-induced
brightness variations as an intrinsic property of ubiquitous types of
lamps. When modifying existing lighting infrastructure, it is possible
to encode arbitrary data into the brightness variations. This opportu-
nity has been used for downlink communication [106], indoor posi-
tioning [72], and battery-free duplex visible light communication [78].
By modulating light with a well-defined synchronization signal, the
efficiency and applicability of Flync could be further improved. Also,
our approach to harvest energy while simultaneously demodulating
encoded signals from the same panel may reduce the size and power
of existing visible light communication receivers.

3.9 Conclusions

Leaving batteries behind allows for building cheap, tiny, and mainte-
nance-free devices that can be embedded into smart textiles, intelligent
surfaces, or even the human body. In this paper, we have addressed
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the problem of enabling efficient battery-free device-to-device com-
munication. Experiments with a prototype platform and implemen-
tation show that our proposed techniques empower battery-free de-
vices to quickly and efficiently discover each other despite their unpre-
dictable intermittent operation. By bootstrapping battery-free wireless
networks, we believe that our work provides a stepping stone for fu-
ture research toward full system and communication stacks for this
emerging kind of networked system.

Availability

Artifacts are available to the public under a permissive MIT license
at https://find.nes-lab.org/. These include a Python implementa-
tion of the Find model from Section 3.2, which can be used to repro-
duce the analytical results in Figs. 3.3 to 3.6, as well as the hardware
design files and the firmware of our prototype implementation from
Section 3.4, which we used for the experiments and case study de-
scribed in Secs. 3.5 and 3.6.
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Postscript. For the first time, Find provides the ability to exchange
data between intermittently powered battery-free devices. Its versatil-
ity and low overhead make Find easy to implement, and we have used
it as a stepping stone for the connection protocol Bonito presented in
Chapter 4. Similarly, the key method of delaying device wake-up to
change the wake-up offsets between two devices was adopted for Boni-
to. Flync further reduces the discovery latency for the specific applica-
tion scenario of indoor light harvesting devices with sufficient flicker.
Both methods are well suited to establish the initial encounter, but they
are inefficient as sole communication primitive because devices need
to wait for the duration of the discovery latency between the exchange
of two consecutive messages. Chapter 4 demonstrates that communi-
cation efficiency can be significantly increased when devices use the
initial encounter to exchange data and establish a connection.





4
Learning to Communicate Effectively

Between Battery-free Devices

Prelude. This chapter covers the paper with the same title co-authored
by Marco Zimmerling that I presented at the USENIX Symposium on
Networked Systems Design and Implementation in 2022 [47]. The pa-
per presents Bonito, the first connection protocol for battery-free sys-
tems that enables reliable and efficient bidirectional communication
between intermittently powered nodes. As part of this work, we col-
lected real-world energy-harvesting traces from five diverse scenarios
involving solar panels and piezoelectric harvesters. The analysis re-
veals that the nodes’ charging times approximately follow well-known
distributions. Bonito learns a model of these distributions online and
adapts the nodes’ wake-up times so that sender and receiver are op-
erational at the same time, enabling successful communication. Ex-
periments with battery-free prototype nodes built from off-the-shelf
hardware components demonstrate that the approach improves the
average throughput by 10–80× compared with the state of the art.
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FIGURE 4.1: Because ambient power is often weak, a battery-free node must
buffer energy before it can wake up and operate for a short time period. This

is known as intermittent operation.

4.1 Introduction

The last few years have seen rapid innovation in battery-free systems
[115], culminating in a number of real-world applications [3, 28, 79].
These systems pave the way toward a more sustainable IoT [20] by
enabling small, cheap, and lightweight devices to perform complex
tasks (e.g., DNN inference [48]) off ambient energy while using tiny,
environmentally friendly capacitors as energy storage [115]. However,
to replace today’s trillions of battery-powered IoT nodes, battery-free
devices must learn to communicate.

Challenge. The power that can be harvested from solar, vibrations,
or radio signals is typically insufficient to continuously operate a de-
vice. A traditional energy-neutral device buffers harvested energy
in a rechargeable battery and can freely control its average duty cycle
to avoid power failures. Instead, a battery-free device cannot avoid
power failures, and has very limited control over when the power fail-
ures begin and end. Figure 4.1 illustrates this so-called intermittent op-
eration. After executing for a short time, a battery-free device is forced
to become inactive and wait for a long, fluctuating time until its capac-
itor is sufficiently charged again. For example, when harvesting en-
ergy from indoor light, our prototype battery-free nodes need to stay
off and recharge, on average, for hundreds of milliseconds before they
can operate for at most 1 ms.
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(A) Because of their short and interleaved activity phases, battery-free devices often
need a long time with hundreds of wake-ups until they encounter each other. Even
after an initial encounter, the devices quickly get out of sync, rendering communica-

tion inefficient and unreliable.

(B) With Bonito, devices learn and exchange statistical models of their charging times
and agree on a connection interval that ensures that both devices have sufficient
energy at the same time. Maintaining a connection over multiple encounters enables

efficient and timely communication.

FIGURE 4.2: The challenge of efficient battery-free device-to-device commu-
nication in (a) and our proposed protocol in (b).

Many techniques have been developed to deal with intermittency on a
single battery-free device [91, 16, 27], but how to communicate between
intermittently powered devices is one of the most pressing problems
yet to be solved [55, 142, 82]. This is due to the fact that device-to-
device communication is a fundamental building block for a variety
of network and system services, including optimal clock synchroniza-
tion [77], ranging and localization [24, 50], sensor calibration [116], dis-
tribution and coordination of sensing and computing tasks [86], col-
laborative learning [138], and efficient and reliable wireless network-
ing [76]. Realizing these services across battery-free devices has the
potential to enable novel and more sustainable IoT and sensor net-
work applications, from automatic contact tracing to planetary-scale
environmental monitoring.

To be able to communicate, sender and receiver must be active and
have enough energy for at least one complete packet transmission at
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the same time. However, since the nodes’ activity phases are gener-
ally interleaved and short compared to their charging times, as visible
from the real-world trace in Figure 4.2a, it often takes thousands of
wake-ups until two nodes encounter each other and communication
becomes possible [46]. Moreover, after an encounter, the nodes quickly
get out of sync if they become active immediately after a recharge, as
stipulated by the state of the art [23, 88] and apparent in Figure 4.2a.
This is because ambient energy varies across time and space [7], which
leads to fluctuating and different charging times between the nodes.

Besides establishing a first encounter [46], active radio communication
has been considered too demanding for battery-free devices [93]. Con-
versely, work on backscatter communication has focused on physical-
layer issues, such as improving range and throughput, purposely con-
sidering high-energy environments, batteries, or cables to continuously
power the devices in the experiments to avoid intermittency [144, 111,
92, 83]. However, when running off ambient energy, duty cycling
of the backscatter transceivers becomes necessary [83, 126, 30]—and,
without a battery, the intermittency problem occurs.

Contribution. This paper presents Bonito, the first connection protocol
for battery-free wireless networks. Bonito provides reliable and effi-
cient bi-directional communication despite the time-varying intermit-
tency of battery-free devices.

The real-world trace in Figure 4.2b illustrates the high-level protocol
operation. Unlike the state of the art, Bonito enables two battery-free
nodes, after an initial encounter, to maintain a connection across multi-
ple consecutive encounters. To this end, Bonito continually adapts the
connection interval, which is the time between the end of an encounter
and the beginning of the next encounter. A shorter connection interval
provides more communication opportunities in the long run. How-
ever, a connection interval that is shorter than any of the nodes’ charg-
ing times breaks the connection and requires the nodes to wait for a
long time until they encounter each other again. Thus, the challenge
is to keep the connection interval as short as possible without losing
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the connection, which is difficult in the face of time-varying charging
times.

One of our key insights is that, depending on the scenario and energy-
harvesting modality, the charging time of a battery-free node approxi-
mately follows well-known probability distributions. We leverage this
insight in Bonito by letting each node continuously learn and track the
parameters of a model that approximates the distribution of locally
observed charging times against non-stationary effects (e.g., changes
in mean or variance). Then, to maintain an efficient and reliable con-
nection, the nodes exchange at every encounter their current model
parameters and jointly adapt the connection interval.

We implement Bonito on a custom-designed ultra low-power battery-
free node. Our prototype is built from off-the-shelf components, in-
cluding an ARM Cortex-M4 microcontroller unit and a 2.4 GHz BLE
radio. The node harvests energy from a solar panel or a piezoelectric
harvester, using a 47 µF capacitor as energy storage.

To evaluate Bonito through testbed experiments and fairly compare it
against two baselines, we use up to 6 Shepherd observers [44] to record
and replay real-world energy-harvesting traces from 5 diverse scenar-
ios. Our results show, for example, that Bonito maintains connections
for hundreds of consecutive encounters, and that it outperforms the
state of the art by 10–80× in terms of throughput. We also conduct
a case study that demonstrates the utility of Bonito for accurate and
timely occupancy monitoring in homes and commercial buildings.

Overall, this paper contributes the following:

• We collect 32 h of energy-harvesting traces from 5 different sce-
narios. Our analysis of these traces provides new insights into
spatio-temporal intermittency patterns.

• We design the Bonito protocol. Bonito enables, for the first time,
reliable and efficient communication between intermittently pow-
ered battery-free devices.

• We demonstrate an efficient implementation of Bonito on a pro-
totype node with a 3.1 mm3 ceramic capacitor.
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FIGURE 4.3: The top plot shows an example trace of real kinetic harvesting
power during jogging (see picture in Figure 4.4a). The middle and bottom
plots show the corresponding energy stored in the capacitor and the resulting

charging times of a simulated battery-free device.

• Results from testbed experiments and an occupancy monitoring
case study provide evidence that Bonito performs well under a
diverse range of real-world conditions.

4.2 Motivation

While previous work on intermittency has focused on individual bat-
tery-free devices [88, 16, 27] or discovery of neighboring devices [46],
reliable and efficient device-to-device communication is still an open
challenge. By device-to-device communication we mean the regular ex-
change of application data between two battery-free devices after they
have successfully discovered each other through a first encounter [46].
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(A) Runner with full measurement setup
for the jogging dataset.

(B) Washing machine with partial setup
for the washer dataset.

FIGURE 4.4: Pictures from two of the five scenarios in which we use synchro-
nized Shepherd nodes [44] to record energy-harvesting traces.

Dataset Energy Source Harvester Part # Duration #Devices #Links #Wake-ups Model

Jogging Human motion S128-J1FR-1808YB 1 h 3 10 13252 Exponential
Outdoor solar KXOB25-05X3F 2 119127 Normal

Stairs Outdoor solar KXOB25-05X3F 1 h 6 15 359002 Normal
Office Indoor light SM141K06L 1 h 5 10 98324 GMM
Cars Car vibrations S128-J1FR-1808YB 2 h 6 15 8517 Exponential
Washer Machine vibrations S128-J1FR-1808YB 45 min 5 10 22224 Normal

TABLE 4.1: Overview of energy-harvesting datasets we record in a variety of
scenarios.
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To motivate the need for our work, we consider the scenario of battery-
free wearables. Figure 4.3 shows real-world data from a piezoelectric
energy harvester that is attached to the ankle of a person (see Fig-
ure 4.4a). The upper plot shows the harvesting power while the per-
son is jogging, recorded by a Shepherd node. Shepherd is a measure-
ment tool that records time-synchronized voltage and current traces
from one or more energy-harvesting nodes with high rate and resolu-
tion [44]. The power spikes correspond to when the foot strikes the
ground, with significantly lower harvesting power during the rest of
the stride cycle. Based on trace-driven simulations, the middle plot
shows the corresponding amount of harvested energy stored in an
ideal 17 µF capacitor powering a battery-free device that turns on when
the capacitor voltage exceeds 3 V and turns off when the capacitor volt-
age falls below 2 V. We see that when the device powers up, the stored
energy is quickly consumed, forcing it to turn off already after about
1 ms. While powered off the harvesting power exceeds the standby
power, so energy is accumulated and the capacitor voltage rises again.
Compared to the short activity phases, the time needed to charge the
capacitor, shown in the bottom plot of Figure 4.3, is much longer and
varies significantly over time.

The variability of a node’s charging time is a function of its location
and the associated energy environment, that is, how much power the
harvester delivers at any given time. Thus, two battery-free devices,
even when they are physically close to each other, have a different
energy environment and therefore experience different charging times.

As an example, Figure 4.5 plots the charging times of two devices dur-
ing jogging over one hour. One device is powered by a piezoelectric
harvester attached to the left ankle of a person, while the other device
is powered by the same type of harvester attached to the right ankle
of the person (see Figure 4.4a). Each point in Figure 4.5 indicates the
charging times of both devices when they begin to charge their 17 µF
capacitors at the same time from the same initial charge. We observe
that in many instances the two nodes have vastly different charging
times. This means that if nodes become active as soon as they reach
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FIGURE 4.5: Charging times of two battery-free devices powered by kinetic
harvesters attached to a jogger’s ankles (see Figure 4.4a). Using the greedy
approach, the devices communicate successfully only in 0.04 % of the cases

in which the charging times are almost identical.

the turn-on threshold, which is the state-of-the-art approach, called
greedy and illustrated in Figure 4.2a, the nodes often wake up with an
offset that prevents communication, despite a successful encounter at
the previous wake-up. Indeed, the success rate for the two nodes in
Figure 4.5 is less than 0.04 %. This leads to poor communication relia-
bility and efficiency as the nodes more often than not fail to exchange
their data.

To assess the generality of these observations, we record distributed
energy-harvesting traces in diverse scenarios using multiple Shepherd
nodes [44]. Table 4.1 lists the main characteristics of the five datasets
we collected:

• The full jogging dataset comprises traces from two participants,
each equipped with two piezoelectric harvester at the ankles and
a solar panel at the left wrist (see Figure 4.4a). The two partici-
pants run together for an hour in a public park, including short
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FIGURE 4.6: Success rate of greedy approach in trace-driven simulations, av-
eraged across all pairs of devices (i.e., links) in a given dataset.

walking and standing breaks.
• For the stairs dataset, we recorded traces from six solar panels

that are embedded into the surface of an outdoor stair in front of
a lecture hall. Over the course of one hour, numerous students
pass the stairs, leading to temporary shadowing effects on some
or all of the solar panels.

• The office dataset comprises traces from five solar panels moun-
ted on the doorframe and walls of an office with fluorescent lights.
During the one-hour recording, people enter and leave the office
and operate the lights.

• The cars dataset contains traces from two cars. Each car is equip-
ped with three piezoelectric harvesters mounted on the wind-
shield, the dashboard, and in the trunk. The cars drive for two
hours in convoy over a variety of roads.

• The washer dataset includes five traces from piezoelectric har-
vesters mounted on a WPB4700H industrial washing machine,
as shown in Figure 4.4b, while the machine runs a washing pro-
gram with maximum load for 45 min.

Figure 4.6 plots for each dataset the average success rate across all
pairs of devices (i.e., communication links) in the scenario. Even in the
most favorable scenario, stairs, where the solar panels receive a fairly
constant and similar energy input from natural sunlight, we find that
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the greedy approach succeeds in only 16 % of the cases. In all other sce-
narios, the success rate ranges below 3.5 %. Our experiments on real
battery-free nodes in Section 4.5 confirm these trace-driven simulation
results.

4.3 The Bonito Protocol

This section describes the Bonito protocol. The Bonito protocol en-
ables two battery-free devices to stay connected after a first encounter,
which can happen either coincidentally or with the support of a neigh-
bor discovery protocol [46].

4.3.1 Overview

Bonito aims to make nodes repeatedly encounter each other so they
can exchange application data reliably and efficiently, as shown in
Figure 4.2b. To ensure that nodes wake-up with a time offset small
enough for a successful encounter, they agree at every encounter on a
new connection interval TC. This is the time between the end of the cur-
rent encounter and the beginning of the next (i.e., planned) encounter.

Main idea and approach. For two nodes i and j with known charging
times ci and cj, the shortest possible connection interval T∗

C is simply
the maximum of their charging times

T∗
C = max(ci, cj) (4.1)

If a shorter connection interval TC < T∗
C is used, then one node does

not reach the required energy level to become active by TC. Thus, the
encounter fails, preventing the nodes from agreeing on the next con-
nection interval—the connection is lost. A lost connection entails that
the nodes often need to wait for a long time until they encounter each
other again to resume communication. However, choosing a longer
connection interval TC > T∗

C to mitigate the risk of a lost connection
adds unnecessary delay as nodes, after having reached the required
energy level, are forced to wait before they wake up at TC.
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The key challenge is to determine the connection interval TC such that
both nodes have enough energy while introducing only minimal delay.
This is difficult as the charging times ci and cj are unknown and time-
varying, as discussed in Section 4.2.

Using a probabilistic approach, we address this problem as follows.
Let p be the probability that nodes i and j have sufficient energy to
become active after a connection interval TC. This corresponds to the
probability that the nodes’ charging times, ci and cj, are shorter than
the connection interval TC. Modeling ci and cj as random variables
with a strictly monotonically increasing joint cdf Fi,j, this translates
into

p = Fi,j(ci = TC, cj = TC) (4.2)

Solving for TC yields the minimum connection interval that guaran-
tees, with a user-defined probability p, a successful encounter of the
two nodes at their next wake-up

TC = F−1
i,j (p) (4.3)

where F−1
i,j is the inverse joint cdf of ci and cj.

Base protocol. In practice, the joint cdf Fi,j is rarely known a priori.
Moreover, Fi,j can only be estimated online by the nodes based on full
knowledge of each other’s charging times. Unfortunately, this requires
frequent communication between battery-free nodes—precisely what
Bonito intends to enable.

To circumvent this chicken-and-egg problem, we assume that the charg-
ing times, ci and cj, are statistically independent. In this case, the joint
cdf Fi,j is the product of the marginal cdfs Fi and Fj. The marginal cdfs
can be estimated locally by each node from observations of their own
charging times.

Based on these insights, we propose the following main steps of the
Bonito protocol:
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1. Each node i continuously estimates the marginal cdf Fi of its
charging time based on local measurements.

2. When two nodes i and j encounter each other, they exchange
their current estimates of Fi and Fj.

3. Using the same inputs (i.e., the marginal cdfs Fi and Fj and the
user-defined probability p), both nodes compute the same new
connection interval TC according to (4.3).

4. Both nodes become active and communicate after the new con-
nection interval TC, and continue with step 2.

In this way, Bonito adapts the connection interval to changes in the en-
ergy environment, effectively enabling battery-free nodes to stay con-
nected across several hundreds of subsequent encounters, as demon-
strated by our experiments in Section 4.5.

To achieve this performance, we first need to answer the following key
questions in our design of Bonito:

• How to compactly represent and exchange the marginal cdfs Fi

and Fj in the face of limited energy (Section 4.3.2)?
• How to learn and track online an accurate estimate of Fi against

a changing energy environment? (Section 4.3.3)
• How to efficiently compute the inverse joint cdf F−1

i,j (p) to obtain
the connection interval TC? (Section 4.3.4)

4.3.2 Modeling Charging Time Distributions

Because of the small energy storage, battery-free devices can only ex-
change a limited amount of data during an encounter. Thus, the mar-
ginal cdfs Fi and Fj must be represented in a compact form in order to
be able to exchange them.

Unlike the common belief that the duration of a recharge is completely
random [85, 27], we make the empirical observation that, in the scenar-
ios we considered, the nodes’ charging times can be faithfully modeled
by well-known distributions. The rightmost column of Table 4.1 lists
the models we use for each dataset. To illustrate, Figure 4.7 plots rep-
resentative charging time distributions and the corresponding models



112 Chapter 4. Learning to Communicate Effectively

(A) Stairs dataset, normal distribution. (B) Cars dataset, exponential dist.

(C) Office dataset, Gaussian mixture model.

FIGURE 4.7: Charging time distributions of individual nodes. The nodes’
charging times can be modeled by well-known distributions.

for the stairs, cars, and office datasets. Non-stationary effects like a
time-varying mean are removed in the plots as these are effectively
handled by our online learning approach detailed in Section 4.3.3.

We observe in Figure 4.7a that when harvesting energy from outdoor
solar with a constant harvesting voltage, the charging time can be
modeled by a normally distributed random variable. The intuition is
that temporary environmental effects, such as shadowing and change
in incidence angle, let the charging time vary around a certain value.
Figure 4.7b shows that an exponential distribution is often a good fit
when harvesting kinetic energy. This can be explained by the decay-
ing response of a piezoelectric harvester to the distinct impulses of a
car during driving (e.g., acceleration, breaking, bumps) or a person
during jogging (see Figure 4.3). In the washer scenario, instead, we
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find that the continuous shaking of the industrial washing machine
over long periods induces approximately normally distributed charg-
ing times. Looking at Figure 4.7c, we see that in the office scenario the
charging times are mostly distributed around a certain value. How-
ever, the MPPT of the DC-DC converter used in this scenario, which
periodically disconnects the charger for a short time, leads to a sec-
ond peak. We approximate this distribution with a Gaussian mixture
model (GMM).

These observations motivate us to model the marginal cdf Fi of a node’s
charging time in the scenarios we considered through the parameters
of a normal distribution (2 parameters), an exponential distribution
(1 parameter), or a GMM (6 parameters for two Gaussians and two
weights). The last column of Table 4.1 lists the corresponding model
for each of the datasets. The jogging dataset contains traces from dif-
ferent types of harvesters: We use an exponential distribution to model
the charging times of kinetic harvesting nodes and a normal distribu-
tion for the solar harvesting nodes. During an encounter, a node only
needs to share the type of model and the current estimates of the model
parameters.

4.3.3 Learning Distribution Parameters Online

We now turn to the problem of estimating the parameters of a given
charging time distribution based on local observations. Given a sam-
ple of n independent and identically distributed observations, the log-
likelihood L(θ | x) and the corresponding maximum likelihood esti-
mator θ̂ are given by

L(θ | x) = ln

(
n

∏
i=1

fθ(xi)

)
=

n

∑
i=1

ln fθ(xi) (4.4)

θ̂ = arg max
θ

L(θ | x) (4.5)

where fθ(xi) is the conditional probability to observe xi if the underly-
ing distribution is parameterized with θ.



114 Chapter 4. Learning to Communicate Effectively

FIGURE 4.8: Varying mean and standard deviation over a moving window
of one of the trace from the stairs dataset reveal non-stationarity. Using SGD,

the changing distribution parameters are tracked online.

Unfortunately, vanilla maximum likelihood estimation is not viable in
our setting. First, the observations of the charging time become avail-
able only one by one at runtime, yet the nodes do not have enough
memory and energy to recompute the estimator with every new obser-
vation. Further, the charging time distributions are non-stationary. For
instance, the dashed lines in Figure 4.8 reveal trends in the mean and
standard deviation of a node’s charging time from the stairs dataset.
Thus, an approach is needed that dynamically adjusts the parameter
estimates to changing energy harvesting conditions.

To address these problems, Bonito learns the distribution parameters
online using stochastic gradient descent (SGD), which has become a
popular method for training a wide range of machine learning mod-
els [15]. Compared to a sliding window based approach, SGD is less
computationally demanding as the parameter update is only computed
for the current observation rather than for a set of past observations
that also have to be kept in memory. If the gradient of L(θ | x) is
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known, one solution to (4.5) is to iteratively adjust θ̂ along the gradi-
ent, known as gradient descent

∇L(θ | x) = ∇
n

∑
i=1

ln fθ(xi) (4.6)

θ̂ = θ̂ + η · ∇L(θ̂ | x) (4.7)

By pulling the ∇ operator in (4.6) into the sum, the update step in (4.7)
can be split into a series of updates for every individual observation
xi. This yields the update equation of SGD

θ̂i = θ̂i−1 + η · ∇L(θ̂ | xi) (4.8)

Section 4.9 derives the gradient equations required to solve (4.8) for
the normal, exponential, and Gaussian mixture models. By keeping
the learning rate η constant, Bonito implicitly reduces the weight of
old observations relative to more recent observations. This way, de-
vices dynamically learn changing properties of the charging time dis-
tribution locally, without information exchange with other devices.

Example. Figure 4.8 illustrates how Bonito learns and tracks mean and
standard deviation of a non-stationary normal distribution. To ob-
tain ground truth, we sample charging times (i.e., observations) from a
known normal distribution, whose mean and variance change dynam-
ically over time. We extract these changes from one of the traces in the
stairs dataset using a 2 min moving average filter. We can see in Fig-
ure 4.8 that the parameter estimates of Bonito converge from their ini-
tial values (zero mean and unit standard deviation) to the true ground
truth parameters within less than a minute. Then the estimates closely
follow the changes of the underlying distribution.

4.3.4 Computing Inverse Joint CDF Efficiently

Having shared the type of model and the current estimates of the
model parameters during an encounter, Bonito needs to compute the
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new connection interval TC from the inverse joint cdf F−1
i,j for a user-

defined probability p. This is difficult since there exists no closed-form
solution for most bivariate distributions, let alone for joint cdfs of dif-
ferent distribution families (e.g., when a solar and a kinetic energy har-
vesting node in the jogging scenario want to communicate). Instead,
we have to solve (4.3) numerically, while taking into account the en-
ergy and compute constraints of battery-free devices.

We are interested in the connection interval TC where the joint cdf is
equal to the user-defined target probability, that is, Fi,j(TC) = p. This
yields the following objective function

f (TC) = Fi,j(TC)− p = Fi(TC) · Fj(TC)− p = 0 (4.9)

Note that f (TC) has a single root—the sought solution—as Fi,j is strictly
monotonically increasing. Bonito solves this problem using the well-
known bisection method, which iteratively finds the root of any con-
tinuous function that has its root inside a bracket (i.e., search interval).
Indeed, we can derive such a bracket based on the inverse cdfs of our
marginal distributions, which either have a closed form solution (ex-
ponential and normal) or are easy to approximate (GMM).

To derive a lower bracket, we first note that F(x) < 1 for any cdf F. It
follows that Fi,j(x = z, y = z) = Fi(x = z) · Fj(y = z) < min(Fi(x =

z), Fj(y = z)) and therefore the lower bracket

F−1
i,j (p) > max

(
F−1

i (p), F−1
j (p)

)
(4.10)

Next, to obtain an upper bracket, we introduce q =
√

p and c =

max(F−1
i (q), F−1

j (q)). Let Fm be the marginal cdf (i.e., either Fi or Fj)
such that F−1

m (q) = c, that is, the marginal cdf that reaches q later. Let
Fn be the other marginal cdf that reaches q sooner. From Fn(c) ≥ Fm(c)
follows Fi,j(c) = Fm(c) · Fn(c) ≥ Fm(c) · Fm(c) = q2 = p. Finally, be-
cause Fi,j(c) is monotonically increasing, we obtain the upper bracket

F−1
i,j (p) ≤ max(F−1

i (q), F−1
j (q)) (4.11)
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FIGURE 4.9: Bracketing the inverse joint cdf based on the inverse cdf of the
marginal distributions enables efficient computation of the connection inter-

val on resource-constrained battery-free devices.

Example. Figure 4.9 shows an example, where (4.10) and (4.11) are
used to determine an initial bracket for F−1

i,j (p = 0.75). The resulting
bracket [0.61, 0.77] is already relatively tight, and therefore we find the
solution F−1

i,j (p = 0.75) = 0.88 with a tolerance of 0.01 after only three
bisection steps.

4.3.5 Impact of Target Probability

The target probability p is a key parameter of the Bonito protocol that
must be set by the user. It specifies the probability that both devices
have accumulated enough energy in their capacitors to become active
after a connection interval TC. A high target probability requires a long
connection interval TC, increasing communication delay and lowering
throughput.

To illustrate how the choice of p impacts communication reliability and
efficiency, we run trace-driven simulations as detailed in Section 4.2 on
the traces from the datasets in Table 4.1. We use two metrics to quan-
tify the performance of Bonito: As a proxy for communication reliabil-
ity, we define the success rate as the ratio of successful encounters with
Bonito to the total number of wake-ups. As a proxy for communication
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FIGURE 4.10: Trace-driven simulations reveal that the rate of successfully
arranged encounters matches the user-defined target probability. The price
to pay in terms of latency depends on the model of the underlying charging

time distribution.

efficiency, we consider the relative delay as the median of all successful
connection intervals with Bonito divided by the median of the opti-
mal clairvoyant solutions according to (4.1). Figure 4.10 plots for each
dataset success rate and relative delay averaged across all links. We
can observe the following:

• A higher target probability p leads to a higher success rate, which
demonstrates the plausibility of our approach. In most cases, the
success rate is even slightly higher than requested, presumably
due to small model errors.

• Since connection losses are costly, a higher target probability is
preferable in practice. Figure 4.10 shows that the price to pay
in terms of a higher relative delay depends on the scenario. For
the cars and jogging datasets, where most or all links include
at least one node with approximately exponentially distributed
charging times, the relative delay increases exponentially with
p, due to the heavy tail of the distribution. For GMM (office),
the increase is moderate, whereas it is hardly noticeable for the
normal distribution (washer and stairs).
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FIGURE 4.11: Prototype battery-free node based on the nRF52805 MCU. A
sustainable 3.1 mm3 ceramic capacitor is used as energy storage.

4.4 Implementation

In this section, we describe the hardware and software components of
our prototype implementation.

4.4.1 Hardware

We design an ultra low-power battery-free node based on the popular
Nordic Semiconductor nRF52805 MCU. This particular MCU features
a 2.4 GHz BLE radio and a state-of-the-art 32-bit 64 MHz ARM Cortex-
M4, which is powerful enough to complete also more demanding com-
putations in a short time, benefitting overall system efficiency. To en-
able low-power timekeeping between wake-ups, the MCU is equip-
ped with a 32 kHz crystal with ±20 ppm frequency tolerance. A TI
BQ25504 step-up converter charges a 2 mm× 1.25 mm× 1.25 mm 47 µF
MLCC from a connected solar panel or a piezoelectric energy har-
vester. Once the capacitor voltage reaches a hardware-programmable
threshold of 3.3 V, the BQ25504 sets one of its pins high. This pin is
wired to a TI TS5A23166 analog switch that connects the MCU to the
capacitor-buffered supply voltage.

Due to its DC bias characteristics, the capacitor has an effective capac-
itance of only 17 µF at 3.3 V. This allows for a maximum active time of
around 1 ms per wake-up. A larger capacitance would increase the
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FIGURE 4.12: Packet format. Using Bonito, nodes exchange between 5 B and
25 B carrying model type and parameters during an encounter.

active time per wake-up and the charging time between wake-ups.
To minimize the physical dimensions and the price of the node, we
choose the minimum capacitance that allows the nodes to remain ac-
tive for long enough to compensate for clock drift accumulated over a
connection interval of 5 s (see Section 4.4.2).

The node also integrates a circuit to measure the current flow from the
harvester, which can be used as a sensing signal [114]. The two-layer
PCB shown in Figure 4.11 measures 20 mm × 20 mm. The total cost of
all components is $8.73.

4.4.2 Software

We implement Bonito and the Find neighbor discovery protocol [46] on
our battery-free nodes. Find is used to establish an initial encounter
after a connection loss or a power failure.

Bonito protocol settings. We use the 2 Mbit s−1 BLE mode and the
frame structure depicted in Figure 4.12. Depending on the model type,
encoded by one byte, a packet carries 1, 2, or 6 model parameters rep-
resented by 32-bit floating point values.

To jointly agree on the next connection interval, Bonito requires nodes
to exchange messages bi-directionally during an encounter. The exact
sequence of packet exchanges is subject to application requirements
and can be flexibly configured. We implement the packet sequence
shown in Figure 4.13. When two nodes encounter each other using
Find, one of the nodes receives the first beacon and replies with an
acknowledgment. At all following encounters, the node that received
the first beacon starts to listen at the time agreed on using Bonito.
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FIGURE 4.13: After the initial encounter, nodes use Bonito to agree on a con-
nection interval. At the next encounter, one of the nodes starts to listen and
the other node transmits its packet after a grace period to account for clock
drift due to the long charging times. After receiving this packet, the listening

nodes replies with its own packet.

Due to the small energy buffer, a node can keep the radio on for at most
Twdw = 1 ms. Thus, the maximum listening time is Tl,max = Twdw −
Ttx − Tta = 820 µs, where Tta ≈ 40 µs is the time it takes to switch from
receive to transmit mode and Ttx = 140 µs is the airtime of a packet
with 6 model parameters and 4 B of application data. To increase the
robustness to clock drift in the face of long charging times and hence
long connection intervals, we let the node that sends first transmit its
packet after a grace period of Tg = 0.5 · Tl,max − 1.5 · Ttx = 200 µs.
We can thus tolerate an offset of up to ±200 µs between the clocks of
the two nodes, which corresponds to a maximum connection interval
of 5 s when taking into account the frequency tolerance of the 32 kHz
crystal oscillator. Upon receiving the packet, the other node switches
to transmit mode and sends its own packet.

In our current implementation of Bonito, the devices consider a con-
nection as lost whenever a planned packet exchange fails, for example,
due to fading, external interference, or when one of the two devices
does not reach the turn-on threshold by the end of the connection in-
terval. In this case, they return to discovery mode and use Find to
re-establish the connection.

Runtime support. In addition to Bonito and Find, we implement an
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efficient soft intermittency runtime, where the MCU is gracefully sus-
pended to an ultra low-power mode before an impeding power fail-
ure [46]. This reduces the costs associated with a cold start after a
hardware reset and allows to keep track of time between consecutive
wake-up events using the built-in RTC. To this end, a node periodi-
cally samples the capacitor voltage during charging with the built-in
ADC until the capacitor voltage reaches a software-defined turn-on
threshold. Then the node executes protocol and application code until
it is interrupted by the power-fail comparator, upon which it imme-
diately transitions back into low-power mode to replenish its energy
buffer.

Although our runtime tries to prevent hardware resets, after multi-
ple seconds without any energy input, the sleep current drains the re-
maining charge from the capacitor and the node eventually powers off.
While powered off, the on-board SRAM is subject to decay, that is, bits
that were set to one may flip and become zero after some time. To still
retain the trained model of a node’s charging time distribution across
short power failures, we store it in a dedicated section of the SRAM.
After every model update, we compute a checksum over this section
and store it next to the model parameters. If the recomputed checksum
after a hardware reset does not match the checksum stored in mem-
ory, we conclude that the memory is corrupted and restart training the
model with the initial parameters.

4.5 Evaluation

This section uses testbed experiments to evaluate Bonito on real battery-
free nodes under realistic, repeatable conditions. We start by showing
in Section 4.5.2 how Bonito dynamically adjusts the connection inter-
val to changes in the nodes’ charging times to maintain long-running
connections. Next, in Section 4.5.3, we compare Bonito against two
baseline approaches. Finally, in Section 4.5.4, we quantify the runtime
overhead of Bonito. Our experiments reveal the following key find-
ings:
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• Bonito establishes connections that outlast on average hundreds
of consecutive encounters even between nodes that harvest from
different types of energy sources.

• Bonito improves the throughput by 10–80× compared with the
current state of the art. It achieves this by consciously keeping
the connection interval as short as possible while maintaining a
high success rate that agrees to within 1 % of the requested target
probability.

• Depending on the distribution model, Bonito consumes between
4 % and 25 % of the energy available per wake-up on our nodes.
The energy cost of losing a connection is 1000× higher than the
energy overhead of Bonito.

4.5.1 Testbed and Settings

We connect two battery-free nodes (see Figure 4.11) to two Shepherd
observers [44]. In addition to recording spatio-temporal harvesting
traces (see Section 4.2), Shepherd can also replay previously recorded
traces and monitor the behavior of connected battery-free devices. The
observers synchronously replay for all 60 links in our datasets (see Ta-
ble 4.1) the two corresponding energy-harvesting traces. At the same
time, the observers log the serial output and GPIO events of the at-
tached nodes, which we use to compute performance metrics. In total,
we collect measurements from 218 hours of testbed experiments.

For the stairs, office, and washer scenarios, we replay the recorded
energy-harvesting traces as is. When using the original traces from the
cars and jogging scenarios, however, we were not able to collect suffi-
cient data points. The reason is that the piezoelectric harvesters were
selected and tuned for the frequency and amplitude of the washer sce-
nario, which led to a relatively low harvesting power in the cars and
jogging scenarios, as evident from the small number of wake-ups in
Table 4.1. Because it can take thousands of wake-ups until two nodes
encounter each other, we had to scale the cars and jogging traces by a
factor of five to allow for a meaningful evaluation. Note that this does
not change the dynamics and shape of the charging time distributions,
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FIGURE 4.14: Real-world trace from testbed experiments showing the charg-
ing times of two nodes from the cars dataset. By dynamically adjusting the
connection interval, Bonito maintains a connection for 37 min until the cars
leave the highway and enter stop-and-go traffic; the charging times increase

dramatically and the connection breaks.

nor does it affect relative performance when comparing different ap-
proaches.

In all experiments, we configure Bonito with a target probability of p =

0.99. We use a learning rate of η = 0.01 for the normal and exponential
models and η = 0.001 for GMM, which we found to perform well in a
wide range of scenarios.

4.5.2 Maintaining Long-running Connections

We begin by looking at how well Bonito can maintain a connection
between battery-free devices. As an illustrative example, Figure 4.14
shows the charging times of two nodes from the cars dataset and the
connection interval determined by Bonito over the course of 55 min.
Bonito successfully maintains the connection for more than half an
hour by dynamically adjusting the connection interval based on the
continuously updated models of the nodes’ charging time distribu-
tions. Then, after around 37 min, the two cars driving in convoy exit
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(A) cdf of connection duration in terms of number of encounters.

(B) cdf of connection duration in terms of time.

FIGURE 4.15: Bonito maintains connections over hundreds of encounters
even in challenging scenarios with different types of energy sources.

the highway and enter stop-and-go traffic. As a result, the charg-
ing times increase suddenly and exceed the connection interval—the
connection is lost. At this point, the nodes switch over to executing
the Find neighbor discovery protocol and successfully reconnect after
roughly 10 min. Afterward, Bonito takes over and again maintains a
connection for several minutes.

Figure 4.15a plots for all datasets the cdf of the connection duration
in terms of the number of encounters, while Figure 4.15b plots it in
terms of time for the unscaled datasets (see Section 4.5.1). Overall,
we find that in 90 % of the cases, the nodes stay connected for at least
30 consecutive encounters, and 40 % of the connections last for 800
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encounters or more. This demonstrates that Bonito enables, for the
first time, reliable and efficient communication between intermittently
powered nodes.

4.5.3 Bonito versus Baseline Approaches

We now compare Bonito against two baseline approaches:

• Greedy: This is the current state of the art. Using Greedy, nodes
wake up and attempt to communicate as soon as they reach the
minimum required energy level. Greedy is the prevalent execu-
tion model in the intermittent computing literature [23, 88] as it
maximizes the effective duty cycle of a battery-free device.

• Modest: As a complementary approach to Greedy, we design Mod-

est. Using Modest, each node keeps track of the maximum ob-
served charging time cmax. During an encounter, two nodes i and
j share their current maximum charging times cmax,i and cmax,j,
and agree to meet again after a common connection interval of
TC = max(cmax,i, cmax,j).

Our comparison uses two end-to-end metrics that also account for pe-
riods where Find runs to establish a first encounter after a connection
loss or power failure. Throughput is the number of packets delivered
from one node to another node per time unit. Note that traffic is al-
ways bi-directional, that is, the same number of packets is also deliv-
ered in the other direction (see Figure 4.13). Latency is the time between
two consecutive packet exchanges. We also consider success rate, which
is the ratio of successfully arranged encounters to the total number of
trials when using Greedy, Modest, or Bonito.

Figure 4.16 plots for each dataset the throughput gains of Bonito and
Modest over Greedy. We see that Bonito improves the throughput by
10–80×. For example, for the stairs dataset, Bonito achieves a through-
put of 15.18 pkt s−1 versus 0.33 pkt s−1 with Greedy. Modest outper-
forms Greedy across the board, too, but often falls far short of Bonito’s
throughput.
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FIGURE 4.16: Throughput improvement over Greedy. By maintaining con-
nections over many wake-ups, the average number of encounters with Bonito

is at least an order of magnitude higher than with Greedy.

(A) Success rate (B) Latency

FIGURE 4.17: Detailed comparison of performance metrics for the stairs sce-
nario. Bonito achieves a high success rate that is on a par with the Modest

approach, while providing a significantly lower latency.
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To understand the reasons for the significant performance differences
among the different approaches, we plot in Figure 4.17 success rate
and latency for the stairs dataset. As the charging times vary across
time and space, Greedy achieves a low success rate of only 11.48 % (see
Figure 4.17a). This means that in 9 out of 10 cases the nodes lose the
connection right after the first encounter. Every time the connection
is lost, the nodes cannot communicate until they reconnect, causing
excessively long latencies as visible in Figure 4.17b. Instead, Modest

chooses the connection interval highly conservatively, which leads to
a high success rate of 99.92 % but also long latencies. Bonito provides
much shorter latencies at almost the same high success rate, which
agrees to within 1 % of the requested target probability. By aiming
to keep the connection interval short and to avoid the latency asso-
ciated with reconnecting after a connection loss, Bonito significantly
increases the end-to-end throughput compared with the two baseline
approaches.

FIGURE 4.18: Distribution of execution times on our battery-free node when
computing the inverse joint cdf. The execution time depends on the number
of model parameters and varies with the number of bisection steps needed to

satisfy the required tolerance.

4.5.4 Bonito’s Runtime Overhead

Next, we evaluate the runtime overhead of Bonito based on the logs
from the testbed experiments. The overhead can be broken down into
three components: (i) updating the model parameters using SGD, (ii)
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FIGURE 4.19: The energy overhead of Bonito ranges between 4 % and 25 % of
the energy available per wake-up on our nodes. In absolute terms, the cost to

recover from a lost connection is 1000× higher.

exchange of the model parameters over wireless during an encounter,
and (iii) computing the inverse joint cdf to obtain the connection inter-
val.

The time required to update the model is constant: 1.3 µs for expo-
nential, 3.2 µs for normal, and 28.8 µs for GMM. This constitutes up to
2.8 % of the around 1 ms active time per wake-up. Similarly, the air-
time to exchange 4, 8, or 24 bytes of model parameters is fixed and
determined by the bitrate of the BLE radio. By contrast, Figure 4.18
shows that the time to compute the inverse joint cdf varies depending
on the number of bisection steps required to reach the desired toler-
ance.

In terms of energy, our battery-free nodes have an energy budget of
27.5 µJ per wake-up. Figure 4.19 shows for each model the median per-
centage of energy budget spent by Bonito. We can see that the required
energy mainly depends on the number of model parameters and the
computational complexity of evaluating the inverse joint cdf. In the
worst case, for GMM, Bonito consumes 7.1 µJ, which amounts to about
25 % of the available energy per wake-up. To set this into perspective,
Figure 4.20a plots for all datasets the time it takes for two nodes to
synchronize with the Find neighbor discovery protocol [46] in terms of
the number of wake-ups, while Figure 4.20b plots it in terms of time
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(A) Discovery latency in terms of number of wake-ups.

(B) Discovery latency in terms of time.

FIGURE 4.20: Synchronizing two devices with the Find neighbor discovery
protocol takes a long time and consumes significant energy. Using Bonito,
devices can establish long-running connections to periodically exchange data

without the need to resynchronize.

for the unscaled datasets (see Section 4.5.1). On average it takes 283
wake-ups, or 7782.5 µJ, to synchronize after a lost connection—1000×
more than the energy required by Bonito to maintain a connection. This
demonstrates that, overall, the absolute energy costs of Bonito are well
spent.

4.6 Case Study: Occupancy Monitoring

Occupancy monitoring is essential to save energy in homes and com-
mercial buildings [26, 38]. Recently, it has also become an impor-
tant tool to manage the spread of infectious diseases, such as SARS-
CoV2 [101]. To assess the potential of Bonito for real-world battery-free
applications, we conduct an occupancy monitoring case study with
our prototype nodes.
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(A) Person entering the room: τ > 0

(B) Person leaving the room: τ < 0

FIGURE 4.21: The shadow of a person passing ambient light harvesting de-
vices on a doorframe causes a distinct temporal pattern in the solar panel
current. By comparing the times of the onset of the shadowing on the two

nodes, we can determine the direction of movement.

Occupancy sensor. To efficiently count the number of people in a
room, we use the solar panel as a sensor [66, 114] to detect when a
person enters or leaves the room. Figure 4.21 shows the solar panel
current of two nodes mounted next to each other on a doorframe (see
Figure 4.22), when a person enters the room in Figure 4.21a and when
a person leaves the room in Figure 4.21b. To detect the direction of
movement, the nodes record the time when they detect the onset of
the shadowing by the person. Then the nodes exchange the recorded
times and compute the time difference τ. The sign of τ indicates the
direction.

Setup. We mount two battery-free nodes, each equipped with one
IXYS SM141K06L solar panel next to each other on the doorframe at
the entrance of an office room, as shown in Figure 4.22. The nodes sam-
ple the solar panel current with a sampling rate of 1 kHz, and record
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FIGURE 4.22: Two of our battery-free nodes are attached to the doorframe
and harvest energy from ambient light. Thanks to Bonito, the nodes can com-
municate in a timely and reliable fashion, allowing them to count the number

of people entering and leaving the room.

the time when the solar panel current falls below 87.5 % of its aver-
age value. The nodes run Bonito and insert the timestamp of detected
events into the packets. Together with logging information (charging
time, connection interval, etc.) every packet carries 26 B of application
data.

Because the clocks of the two nodes are not synchronized, timestamps
are transmitted relative to the start of the corresponding packet. To
this end, nodes measure the time between the detected event and the
start of the transmission and insert the result into the packet. The re-
ceiving node timestamps the reception of the packet and converts the
contained relative timestamp to its local clock. Finally, by relating a
received timestamp to the timestamp of the corresponding event that
was recorded locally, the nodes compute the time difference τ.

The nodes transmit the result over wireless to an nRF52840 develop-
ment board that serves as a base station. We configure the base station
to timestamp the reception of packets containing a detected event and
button presses of two on-board push buttons, one for each direction.
Four participants randomly enter and leave the room one by one. An-
other person records ground truth by pressing the corresponding but-
ton on the nRF52840 board precisely when a person passes through
the doorframe.
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Ground truth
In Out No event

Recorded
In 30 0 1
Out 0 31 0
No event 1 0 0

TABLE 4.2: By collaborating, the battery-free nodes classified people entering
and leaving the room with an average accuracy of 96.83 %.

FIGURE 4.23: Due to the low communication latency provided by Bonito, the
system reported detected events both timely and accurately.

Results. The confusion matrix in Table 4.2 shows that the system cor-
rectly classified 60 out of 61 events, corresponding to an accuracy of
96 %. It missed just one in-event, and falsely reported an in-event and
an out-event for a single in-event.

Figure 4.23 plots the latency in terms of the time between a button
press and the reception of the detected event at the base station. The
median latency was 1.2 s and all events were reported within less than
2 s. Over the course of the experiment, the two nodes successfully ex-
changed 10.56 kB of application data for an application-level through-
put of 28.38 B s−1.

Figure 4.24 shows a ten-second excerpt from the experiment. The
markers indicate the charging times of the nodes. Solid vertical lines
indicate button presses (ground truth); dashed vertical lines indicate
when an event was received at the base station. We can observe that,
right after the received out-event, node 1 reports an exceptionally high
charging time of 210 ms. This happens when the shadowing by a per-
son occurs while a node charges its capacitor: The shadowing reduces
the energy input for a short time, which prolongs the recharge. Nev-
ertheless, by keeping the connection interval at around 700 ms, Bonito
provides a stable connection despite such dynamics.
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FIGURE 4.24: Example trace from the occupancy monitoring case study. The
system correctly classifies and reports events to the base station. With Boni-
to, the connection interval is chosen large enough to sustain outliers of the

charging time in response to transient shadowing.

4.7 Discussion

Bonito is the first connection protocol for battery-free devices. It en-
ables two devices to communicate efficiently and reliably by dynam-
ically adapting the connection interval to changes in the devices’ en-
ergy availability. In this section, we discuss limitations and opportu-
nities for extending Bonito.

From connections to networks. The ability to efficiently and reli-
ably exchange data between two devices is the fundamental building
block required to form large wireless networks consisting of multiple
battery-free devices. A number of trade-offs and challenges arise from
each of the possible approaches to move from the two-node setting to
larger networks, which could be explored by future work. For exam-
ple, devices may sequentially connect with their neighbors or devices
may try to establish Bonito connections with one common connection
interval between multiple devices.
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Communication with battery-powered devices. While we focus on
communication between two battery-free devices, Bonito is also useful
for effective communication from battery-free to battery-powered de-
vices. For example, a battery-free tag may want to transmit data to a
user’s smartphone or to a battery-powered gateway in a wireless sen-
sor network. Because battery-powered devices are in control of their
wake-up times, any connection interval works for them. Thus, instead
of computing the inverse joint cdf of the charging time distribution of
both devices, it is sufficient to compute the inverse cdf of the charg-
ing time of the battery-free device in order to determine a connection
interval that works for both devices.

Model accuracy. The goodness-of-fit of the learned charging time mod-
el critically affects the performance of Bonito. With perfect knowledge
of the underlying distribution, Bonito would compute the minimum
connection interval feasible for the requested target probability. Over-
estimating the real distribution leads to increased delay, while under-
estimation reduces reliability. If the distribution is so complex that a
large number of model parameters or a non-parametric model (e.g.,
a deep neural network) would be required to accurately capture this
complexity, then the limited resources on a battery-free device may not
be sufficient to learn the model online.

Exploiting statistical dependence. In the current implementation, Bo-
nito assumes statistical independence of the nodes’ charging time dis-
tributions to compute a connection interval without prior knowledge
of the statistical properties of the joint charging time distribution. Af-
ter establishing a connection, the devices can record observations of
the joint distribution and could attempt to exploit statistical depen-
dence between their charging times, possibly improving communica-
tion efficiency and reliability.
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4.8 Related Work

Intermittent computing. The thriving research area of intermittent
computing has made great strides in recent years, including the first
real deployments of battery-free sensors [3]. This achievement rests
upon techniques that ensure forward progress [91], consistent periph-
eral state [16], and a reliable notion of time [27] despite frequent and
random power failures. This line of research is highly relevant but
completely orthogonal to our work as it deals exclusively with inter-
mittency issues on individual devices and, if at all, considers commu-
nication with continuously powered base stations [120].

Battery-free device-to-device communication. Prior work on battery-
free wireless device-to-device communication is mainly theoretical [70,
145, 84], studying the energy trade-offs for different scheduling, trans-
mission, and decoding policies. Recent work discusses middleware
and applications for networks of intermittently powered devices, yet
explicitly leaves the question of how to communicate between the de-
vices as an open problem [142, 82]. A simulative study also acknowl-
edges the sheer difficulty of sychronizing the wake-up times of inter-
mittently powered devices and proposes to communicate an energy
state via an always-on backscatter radio, without demonstrating a real
implementation or experiments [130]. Similar to Bonito, a recent theo-
retical work proposes to let nodes agree on a future point in time when
they become active to increase communication throughput [137]. This
time is computed based on a moving average of previous charging
times, whereas Bonito lets the user explicitly trade reliability against
delay by taking into account the charging time distributions.

In terms of practical work, tag-to-tag backscatter communication has
mainly focused on physical-layer issues and considers intermittency
an orthogonal problem [144, 111, 92, 83]. Instead, the Find neighbor
discovery protocol explicitly addresses the intermittency problem and
shows that by delaying wake-ups by a random time battery-free nodes
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can encounter each other faster [46]. We use Find to bootstrap effi-
cient and reliable device-to-device communication with Bonito. Con-
currently to our work, a protocol was proposed and implemented that
lets devices “die early” when no packet is received to preserve energy
and maximize the number of wake-ups [29].

Delay-tolerant networking (DTN). DTN studies networks that are
only intermittently connected because of, for example, node failures,
mobile users, and power outages [14, 40]. Both DTN and Bonito have
the same high-level goal: effective communication in intermittently
connected networks. However, DTN and Bonito address orthogonal
problems toward the same end goal. While DTN is concerned with
forwarding, routing, naming, in-network storage, and optimization of
node trajectories to generate encounters in the spatial domain, Bonito
aims to generate encounters in the time domain between nodes that
are spatially close to each other. Whether concepts from the DTN lit-
erature could be applied on top of Bonito is an interesting question for
future research.

Energy-aware MAC protocols. Numerous MAC protocols have been
proposed for ad-hoc and sensor networks [32]. These protocols turn
the radio off most of the time, and power it up only to send or receive
a packet. The goal is to achieve a desired network lifetime by maintain-
ing a certain average duty cycle. A fundamental assumption of these
protocols is that the radio can be powered up at any point in time, which
is exploited to reduce idle listening by flexibly scheduling communi-
cation among nodes. This is, however, not possible in a battery-free
system, where devices are unavailable whenever the capacitor volt-
age is below a certain threshold, which renders existing energy-aware
MAC protocols ineffective.

4.9 Conclusions

We have presented Bonito, a connection protocol for wireless battery-
free devices. By adapting the connection interval to the different and
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time-varying charging times of intermittently powered nodes, Bonito
maintains long-running connections that provide significantly better
throughput, latency, and reliability than the state of the art. We have
evaluated Bonito by implementing it on a battery-free prototype, con-
ducting testbed experiments with real energy-harvesting traces from
diverse scenarios, and demonstrating its utility in an occupancy mon-
itoring case study. With Bonito, we contribute a prime communica-
tion primitive, device-to-device unicast, that brings the capabilities
of battery-free systems one step closer to those known from today’s
battery-supported systems.

Availability

The data described in Section 4.2 and a Python implementation of the
Bonito protocol from Section 4.3 are available under a permissive MIT
license at https://bonito.nes-lab.org/.
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Appendix: Gradient Equations

Exponential distribution. The derivative of the log-likelihood func-
tion is given by:

https://bonito.nes-lab.org/
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L(λ) = log (λ · exp(−λx)) = log λ − λxi (4.12)

∇L(λ) = 1
λ
− xi (4.13)

Calculating the natural gradient by defining the step size in terms of the
Kullback-Leibler divergence in the distribution space has been shown
to speed up convergence in many cases [4]. We obtain the natural gra-
dient by multiplying the regular gradient from (4.13) with the inverse
of the Fisher Information Matrix of the exponential distribution Mexp:

Mexp = λ−2 (4.14)
∂L
∂λ

=
[
Mexp

]−1 · 1
λ
− xi = λ − λ2 · xi (4.15)

Gaussian mixture model. We adopt the gradient equations from [129]:
Let f (xi, µ, σ2) be the probability density function of the standard nor-
mal distribution. The responsibility function r(xi, k) quantifies the con-
tribution of the k-th component to the model:

r(xi, k) =
ρk · f (xi, µk, σ2

k )

∑K
l
(
ρl · f (xi, µl, σ2

l )
) (4.16)

The update equations for the model parameters for the k-th component
are then:

∂L
∂ρk

= r(xi, k)− ρk (4.17)

∂L
∂µk

=
1
ρk

· r(xi, k) · (xi − µk) (4.18)

∂L
∂σ2

k
=

1
ρk

· r(xi, k) · (xi − µk)
2 − σ2

k (4.19)
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Normal distribution. We consider the special case of a gaussian mix-
ture model with a single component and also use the equations from
[129]:

∂L
∂µ

= (xi − µ) (4.20)

∂L
∂σ2 = (xi − µ)2 − σ2 (4.21)

Postscript. The methods presented in Chapter 3 are suitable to estab-
lish communication without prior synchronization, but the low thro-
ughput prevents their use as a data transport layer. With significantly
increased throughput, Bonito instead allows efficient exchange of ap-
plication data between two intermittently powered devices. Prelimi-
nary simulations confirm that Bonito can indeed be used as the com-
munication primitive for large-scale battery-free mesh networks.



5
Conclusions

Wireless sensors yield valuable insights into physical processes that
were previously impossible to observe. From building automation to
habitat monitoring these insights help to optimize energy consump-
tion, improve human well-being and deepen our understanding of the
environment. Powering billions of such devices with batteries, how-
ever, is unsustainable and severely limits the duration and scale of de-
ployments. Replacing batteries with energy harvesters and tiny ca-
pacitors reduces the environmental impact of the devices and enables
large-scale deployments that have the potential to operate maintenance-
free for decades. Establishing and operating such vast infrastructure
requires coordination and communication among the devices. This is
extremely challenging, because battery-free devices operate intermit-
tently, i.e., they are forced to remain inactive for long, varying times
before becoming active for short durations.

5.1 Contribution

As a result, the challenges and opportunities of operating groups of
battery-free devices have so far remained largely unexplored, despite
being frequently mentioned as one of the most urging gaps in the
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space of battery-free systems. There were no dedicated tools and few
practical approaches to connecting battery-free devices with each other.
The contributions presented in this thesis have radically changed this
and have enabled the end-to-end evaluation of first applications that
rely on battery-free device-to-device communication.

Testbed. One of our key hypotheses was that understanding real-
world spatio-temporal energy availability is key to developing prac-
tical methods for battery-free networks. This hypothesis was con-
firmed once Shepherd enabled us to record and analyze high resolution
spatio-temporal energy harvesting traces. The ability to test different
approaches against realistic, repeatable energy conditions has signif-
icantly accelerated the design, implementation and evaluation of the
protocols presented in this thesis. By making hardware and software
open-source, we provide a tool for the community that helps to ad-
vance the field of battery-free communication beyond our own work.

Neighbor Discovery. In contrast to traditional battery-powered net-
works, where neighbor discovery is done once at the beginning of a
deployment or after the rare event of a node failure, battery-free de-
vices need to resynchronize and rediscover after every extended pe-
riod without energy input. Thus, to optimize this critical aspect, we
have presented Find, the first neighbor discovery protocol for battery-
free networks. Find adds random wake-up delays before devices be-
come active to break up interleaving patterns between the wake-up
times of two devices. It is agnostic to the energy harvesting modality
and the type of wireless communication. To further accelerate neigh-
bor discovery in indoor light harvesting scenarios, we have developed
Flync, the first solution extracting a stable clock from solar harvesting
current, whose amplitude changes due to powerline-induced flicker of
state-of-the-art lamps. While we combine Flync with Find to speed up
neighbor discovery, Flync is useful for applications beyond neighbor
discovery and battery-free networking.
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Connection protocol. While Find and Flync provide devices with an
initial encounter, they are not efficient when used as the sole means of
communication. To improve on this aspect we have designed Bonito,
the first connection protocol that exploits the opportunity of the first
encounter to enable two battery-free nodes to establish a connection
that lasts across multiple consecutive encounters. We collected 32 h
of energy-harvesting traces from 5 different scenarios and our anal-
ysis revealed that, depending on the scenario and energy-harvesting
modality, the charging time of a battery-free device approximately fol-
lows well-known probability distributions. With Bonito, devices con-
tinuously learn and track the parameters of a model that approximates
the distribution of locally observed charging times against non-sta-
tionary effects (e.g., changes in mean or variance) and exchange at ev-
ery encounter their current model parameters to jointly adapt the con-
nection interval. Bonito enables, for the first time, reliable and efficient
communication between intermittently powered battery-free devices.
By sharing the extensive datasets recorded with Shepherd, we encour-
age the community to build upon our work.

Our central findings are that . . .

• . . . contrary to popular believe, direct wireless communication
between battery-free, intermittently powered devices is possible
even with tiny energy storage capacity and highly limited energy
availability.

• . . . efficient communication requires understanding and incorpo-
rating spatio-temporal energy availability in the design of net-
work protocols.

• . . . introducing dynamic wake-up delays is an effective method
to control and synchronize the wake-up times of battery-free de-
vices.
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5.2 Future directions

Our research has not only provided answers to some of the most ur-
gent issues on the path to battery-free networks, but has also raised
exciting new research questions.

Deeper understanding of energy environments. With Shepherd we
developed the necessary tool to collect and analyze real-world har-
vesting traces. Our data analysis was driven by network protocol de-
sign and has focused on the charging times of devices which are a
derivative of the harvested energy. Analyzing statistical properties of
the actual harvesting data may yield additional starting points for net-
working battery-free devices. For example, in Bonito, we assume that
charging times of devices are independent, but preliminary evalua-
tion suggests that energy harvested on close-by devices often corre-
lates. Periodic data exchange allows devices to track and exploit such
spatio-temporal correlations online and may lead to more informed
decisions, improving communication efficiency and reliability. Fur-
thermore, we are convinced that data collected with Shepherd presents
an invaluable source of information beyond the specific problems that
we considered. For example, devices placed in a common energy en-
vironment share access to a secret that may be used for securing data
and communication.

Battery-free mesh networks. With Find, Flync and Bonito we have con-
tributed the communication primitives to efficiently and reliably ex-
change data between two devices. This is the fundamental building
block required to form large wireless networks consisting of multiple
battery-free devices. A number of trade-offs and challenges arise from
each of the possible approaches to move from the two-node setting
to larger networks, which could be explored by future work. For ex-
ample, devices may use Find to sequentially connect with their neigh-
bors and establish pair-wise Bonito connections. By relaying packets
from other nodes, they could form mesh networks that would allow
sending messages far beyond the communication range of individual
nodes. A different approach to larger scale networks could use Flync



5.2. Future directions 145

to establish a common time-grid where devices wake up randomly in
each slot or according to a global schedule in order to exchange data
with their neighbors. Owing to the statistical analysis in the context
of Bonito, we now have a basic understanding of the protocol perfor-
mance in the two node case. The effectiveness of forwarding realis-
tic data traffic across multiple hops instead is not easily derived, yet
highly relevant for practical applications.

Integration with application requirements. When communicating
with continuously powered basestations, previous work on battery-
free devices had little timing constraints for scheduling communica-
tion tasks. When communicating between battery-free devices instead,
timing becomes critical. In our work, we put communication first and
assigned whatever energy was left to the application. Clearly, this
isn’t feasible in many practical settings, where application tasks might
have strict timing or energy constraints. Co-scheduling communica-
tion and application tasks under the severe constraints imposed by
energy availability and storage capacity is a challenge and will open
up the field to exciting new research.
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