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ABSTRACT 

According to the Texas Department of Transportation’s Texas Motor Vehicle Crash 

Statistics, Texas has had the highest number of severe crashes involving large trucks in the US.  

As defined by the US Department of Transportation, a large truck is any vehicle with a 

gross vehicle weight rating greater than 10,000 pounds. Generally, it requires more time and much 

more space for large trucks to accelerating, slowing down, and stopping. Also, there will be large 

blind spots when large trucks make wide turns. Therefore, if an unexpected traffic situation comes 

upon, It would be more difficult for large trucks to take evasive actions than regular vehicles to 

avoid a collision. 

Due to their large size and heavy weight, large truck crashes often result in huge economic 

and social costs. Predicting the severity level of a reported large truck crash with unknown severity 

or of the severity of crashes that may be expected to occur sometime in the future is useful. It can 

help to prevent the crash from happening or help rescue teams and hospitals provide proper 

medical care as fast as possible. To identify the appropriate modeling approaches for predicting 

the severity of large truck crash, in this research, four representative classification tree-based ML 

models (e.g., Extreme Gradient Boosting tree (XGBoost), Adaptive Boosting tree(AdaBoost), 

Random Forest (RF), Gradient Boost Decision Tree (GBDT)), two non-tree-based ML models 

(e.g., the Support Vector Machines (SVM), k-Nearest Neighbors (kNN)), and LR model were 

selected. The results indicated that the GBDT model performs best among all of seven models. 

Keywords: Large Truck Crash, Crash Severity Prediction, and Machine Learning Methods 
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CHAPTER 1 

INTRODUCTION  

1.1 Background of Research  

Improving traffic safety is one of the most serious topics for transportation engineers and 

politicians of any country. In the United States, large trucks, as a significant means of freight 

transportation, play a major role in the transportation system. According to the definition given by 

the U.S. Department of Transportation, a large truck is any vehicle with a gross weight rating 

greater than 10,000 pounds. Due to their size and weight, the operation of large tuck is often more 

difficult than passenger vehicles. Besides, there would be blind spots when large trucks making 

wide turns. All thesis conditions indicate that crashes involving large trucks often result in fatal 

injuries, severe property damage, and economic and social costs. Texas has had the highest number 

of fatal crashes involving large trucks in the U.S. since 1994 (Zhao et al, 2018). According to the 

Federal Motor Carrier Safety Administration, fatal crashes involving large trucks continue 

increasing, from 2016 to 2018, fatal crashes involving large trucks increased about 5.7 percent.  

Typically, depending on the number of vehicles involved, crashes can be categorized into 

two types: single-vehicle and multi-vehicle large truck crash. Under the above two categories, 

there are more specific crash types: rollover, jackknifing, head-on, and rear-end crash, and so on. 

There is a wide spectrum of risk factors contributing to crashes. Generally, the contributing factors 

can be categorized into driver-related contributing factors, roadway-related contributing factors, 

vehicle-related contributing factors, environmental-related contributing factors, and so on. In this 

study, all types of crashes were considered in the prediction of the severity of crashes considering 

a wide spectrum of contributing factors.  
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According to Highway Safety Manual, crash severity can be used for establishing the level 

of injury caused by a crash costs. KABCO scale is frequently used by law enforcement for 

classifying injuries. The definition of KABCO scale is: 

K- Fatal injury;  

A- Incapacitating injury;  

B- Non-incapacitating injury;  

C- Possible injury;  

O- No injury;  

In crash severity prediction researches, the response classes, also known as outcome classes 

can be categorized into two, such as AK level (A is the incapacitating crash, and K is the fatal 

crash) crashes and non-AK level crashes, three, four, or five (Fiorentini & Losa, 2020). The 

response classes are usually determined by the research objectives and data quality. Previous 

studies showed that it is relatively difficult to accurately predict five levels of severity than three 

levels of severity, in order to more accurately predict the severity range of a crash, therefore, in 

this study, the response classes (output class) will be categorized into three levels: accidents with 

Property Damage Only (PDO), Slight Injuries (SLIG), and accidents with Killed or Severe Injuries 

(KSEV), the detailed information concerning the datasets will be presented in Section 3.2. 

From a methodological perspective, a wide spectrum of modeling approaches has been 

adopted in the crash severity prediction. Both traditional regression models and the Machine 

Learning (ML) based have been applied for the crash severity analysis. These two types of 

modeling approaches have their advantages and limitations. The regression models have equations 

that explicitly link the independent variables (risk factors in this study) to the dependent variable 

(crash severity level), thereby it has a good capability in analyzing the impacts of independent 
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variables. However, they have difficulties in detecting and interpreting complex or high-order 

interactions among independent variables (Su et.al, 2008). Some ML-based methods like neural 

networks have been known for their strong prediction capabilities. However, they have been 

criticized for operating like a black box and unable to explicitly explain the impacts of independent 

variables on the dependent variables (Yu & Abdel-Aty, 2013). In recent years, the classification 

tree-based Machine Learning (ML), Support Vector Machine (SVM), and k-Nearest Neighbor (k-

NN) methods have been widely employed for crash severity prediction. There is a lack of studies 

on comparing the performance of different types of models including ML models and traditional 

regression models. Besides, even though a lot of modeling approaches have been adopted in crash 

severity prediction, few of them focus on large truck crashes. Therefore, it is important to find out 

that the performance of different models in predicting the severity levels of large truck crashes and 

provide some guidance for its modeling approaches.  

In order to develop a reliable prediction model, some attention has been paid to the 

selection of sample datasets for training or fitting classifiers. Some researchers believe that a 

training sample with skewed class distribution tends to make classifiers be overwhelmed by the 

majority classes and overlook the minority one (Kotsiantis et al. 2006). On the contrary, some 

researchers suggest that it is important to select a sample that has the same class distribution as the 

original population rather than ensuring the classes are balanced. Indeed, in crash severity 

prediction problem, the number of instances relating to AK level crash are generally far fewer than 

the number of instances relating to Property Damage Only (PDO) or non-AK level crash. Since 

relatively little attention has been paid to the data-imbalance issue in large truck crash prediction, 

and the effects of different resampling methods to different modeling approaches are still not clear. 

In this study, three resampling techniques, random undersampling, oversampling, and mix 
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sampling will be used to preprocess the original training dataset to testify the effects of resampling 

in model prediction performance. 

Predicting the severity level of a reported crash with unknown severity is useful. It can help 

rescue teams and hospitals provide proper medical care as fast as possible. 

1.2 Research Objective 

The introduction provided the background to define the objectives of this research, this 

research has two main objectives: 1) to testify the effects of class balancing techniques in model 

prediction performance using three resampling techniques: random undersampling, oversampling, 

and mix sampling; 2) comparison of the performance of four classification tree-based ML models 

(Extreme Gradient Boosting tree(XGBoost), Adaptive Boosting tree(AdaBoost), Random Forest 

(RF), Gradient Boost Decision Tree (GBDT)), two non-tree-based ML models (Support Vector 

Machines (SVM), and k-Nearest Neighbors (kNN)), and the traditional Logistic Regression model 

(LR) in crash severity prediction; 

The findings of this study can help to predict the severity of a reported truck crash with 

unknown severity. It can help rescue teams and hospitals provide proper medical care as fast as 

possible. 

1.3 Outline of the Study 

This thesis is comprised of five chapters. The first chapter provides a background of the 

problems, the research objectives, and the outlines of the study. The second chapter presents 

studies of the existing research on large truck crash severity prediction, different modeling 

approaches for crash severity prediction, and critical issues in developing crash severity models. 

The third chapter describes the data used in this study, introducing the Extreme Gradient Boosting 

tree (XGBoost), Adaptive Boosting tree (AdaBoost), Random Forest (RF), Gradient Boost 
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Decision Tree (GBDT)), Support Vector Machines (SVM), and k-Nearest Neighbors (kNN)), and 

the logistic regression model in details, introducing the oversampling, undersampling, and mix in 

detail, and describes the prediction evaluation measures. Then, the fourth chapter compares and 

discusses the results of the model prediction performances, and discusses the effects of data 

balancing techniques. Finally, the fifth chapter provides the study conclusions and 

recommendations for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

The literature review contains three perspectives to establish the context for the proposed 

research. First, the existing study focuses relating to crash severity prediction will be presented. 

Secondly, different types of models used to develop crash severity prediction models will be 

introduced, including the regression models and the machine learning models. Thirdly, critical 

issues in developing the crash severity prediction models are discussed. Finally, a summary of the 

existing studies will be discussed. 

2.1 Crash Severity Prediction 

Crash severity prediction falls into the scope of crash severity analysis, has the distinct 

advantage of including driver-related contributing factors and individual crash characteristics into 

severity analysis. The analyzed topics related to crash severity analysis are manifold. Previous 

studies have investigated the factors that affect the severity of crashes with a variety of focuses. 

Some studies focused on truck crashes, or passenger car crashes, and others focused on bicycle 

crashes. Some studies focused on certain types of crashes, such as rear-end crashes or rollover 

crashes, and others focused on certain locations where the crashes occurred. Besides, The 

dependent variables of existing crash severity models are typically either a binary response 

outcome (e.g., injury or non-injury, AK or non-AK) or a multiple response outcomes (e.g., three 

responses, four responses, and five responses). For research objectives, some researchers aim at 

investigating the factors that contribute to the severity of crashes, while others aim at predicting 

the severity of a crash. Overall, crash severity prediction is a promising research topic in the traffic 
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safety field. It can help to predict the severity that may be expected to occur for a crash, which 

helps rescue teams and hospitals provide proper medical care as fast as possible.  

2.2 Methodologies for Crash Severity Prediction  

From a methodological perspective, a wide spectrum of modeling approaches has been 

adopted in the crash severity analysis. Both traditional regression models (such as logistic 

regression model) and the ML-based methods (such as random forest, adaptive boosting, gradient 

boost decision tree, extreme gradient boost tree, and support vector machine) have been applied 

for the crash severity analysis. The traditional regression models and ML-based methods have their 

own advantages and limitations. These models’ capabilities in predict the severity level of large 

truck crashes need to be investigated.  

2.2.1 Regression Models  

For the traditional regression models, logistic regression models and ordered probit models 

have been widely used for crash severity analysis. For example, Chang and Mannering (1999) used 

nested logit models to analyze the severity of injuries for both truck-involved crashes and non-

truck-involved crashes. Khattak et al. (2003) used ordered probit models to identify the 

contributing factors, and the focus of their study was the large truck rollover crashes.  

Zhu and Srinivasan (2011) examined the factors that contributed to the severity of large 

truck crashes using the regression model basing on a dataset with a thousand crashes extracted 

from the Large Truck Crash Causation Study (LTCCS) from April 2001 and December 2003.  

Dissanayake and Roy (2014) conducted a crash severity analysis of single-vehicle crashes 

and run-off-road crashes. A binary logistic regression model was selected to perform the analysis. 

The model comprised of 72,181 crash records extracted from the Kansas Accident Reporting 

System database from 1999 to 2008. The results indicate that factors that significantly associated 
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with the severity of ROR crash included 1) driver-related factors; 2) road-related variables; 3) 

environment-related factors; 4) vehicle-related factors; and 5) trees and ditches as fixed types of 

objects. 

Besides the traditional logit models and ordered probit models, some advanced regression 

modeling techniques have been explored by previous studies. For example, Xie et al. (2009) 

conducted a motor vehicle crash injury severity analysis using Bayesian ordered probit (BOP) 

models. Pahukula et al. (2015) utilized random parameter logit models to examine the impacts of 

time of day on the injury severity of large truck-involved crashes. Al-Bdairi and Hernandez (2017) 

used an ordered random parameter probit model to analyze the injury severity of large truck-

involved run-off-road crashes in Oregon. Ahmed et al. (2018) explored the contributing factors to 

the large truck-involved crashes on rural highways in Wyoming using Bayesian binary logit 

models. 

2.2.2 Machine Learning Models  

For ML-based techniques, the techniques applied to crash severity prediction include 

classification tree-based models, neural networks, and support vector machine models. In recent 

years, the classification tree-based ML methods have been widely employed for crash risk 

prediction and identification of contributing factors. A classification tree-based ML method 

decides which crash risk factors should be chosen as the decision nodes and which features can 

provide more information or reduce more uncertainty about the severity of traffic crashes based 

on information gain and entropy. Chang and Chien (2013) used the classification and regression 

tree (CART) method to examine the impacts of the driver and vehicle-related factors on the 

severity of injuries in large truck crashes. The importance of factors was analyzed according to the 
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structure of the developed classification tree. The results showed that drunk-driving is the most 

significant factor that contributes to the severity of injuries in large truck crashes on the freeways.  

Yu and Abdel-Aty (2014) focused on developing crash severity analysis models by first 

selecting the most important variables associated with the severe crash occurrence using the 

random forest (RF) method. Then, three different types of models (fixed-parameter logit model, 

support vector machine model, and random parameter logit model) were developed to analyze 

crash injury severity. In some other studies on crash severity analysis, the RF method was also 

used for preselecting the independent variables for the regression models.  

Zeng and Huang (2014) proposed a convex combination (CC) algorithm to train a neural 

network (NN) model for crash injury severity prediction and a modified NN pruning for function 

approximation (N2PFA) algorithm to optimize the NN structure. According to the results of this 

study, the CC algorithm outperforms the traditional back-propagation algorithm both in 

convergence ability and training speed.  

Iranitalab and Khattak (2017) compared the performance of four statistical and machine 

learning methods including Multinomial Logit (MNL), Nearest Neighbor Classification (NNC), 

Support Vector Machines (SVM), and Random Forests (RF), in predicting traffic crash severity. 

In this study, the effects of data clustering methods including K-means Clustering (KC) and Latent 

Class Clustering (LCC) were also investigated. The analysis used reported two-vehicle crash data 

from Nebraska from 2012 to 2015. The correct prediction rates and the proposed approach showed 

that the NNC had the best prediction performance in all levels of crashes and especially in more 

severe crashes. Data clustering did not affect the prediction performance of SVM, but KC 

improved the prediction performance of MNL, NNC, and RF, while LCC caused improvement of 

MNL and RF but weakened the performance of NNC. 
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Tang et al. (2019) proposed a two-layer stacking framework to predict crash injury severity. 

The first layer integrates the advantages of three base classification methods: RF, AdaBoost, and 

GBDT. The second layer completes the classification of crash injury severity based on a logistic 

regression model. 

2.3 Imbalanced versus Balanced Training Datasets  

In order to develop a reliable prediction model, some attention has been paid to the 

selection of appropriate sample datasets for training or fitting models. As we know, high imbalance 

datasets often occur in practical applications. In such cases, standard machine learning classifiers 

tend to be overwhelmed by the majority classes and overlook the minority ones (Kotsiantis et al. 

2006). The effects of class imbalance have attracted more and more attention in recent years. A 

number of solutions to the class-imbalance problem were previously proposed both at the data and 

algorithmic levels. At the data level, these solutions include many different forms of resampling 

to preprocess the data in order to balance datasets. At the algorithmic level, solutions include create 

new algorithms or modify existing ones. Compared with the algorithmic level approach, the data 

level approach (preprocessing approach) seems to be the more straightforward approach that has 

greater promise to overcome the class-imbalance problem (Thammasiri et al., 2014). For the data 

level approach, there are three resampling techniques affirmed to handle imbalanced datasets: 

oversampling techniques, undersampling techniques, and mixed techniques. Oversampling 

concerns techniques that balance the number of instances between classes through increase the 

number of minority classes until the dataset is balanced. Conversely, undersampling concerns the 

techniques to balance classes by reducing the number of instances from the majority class. Finally, 

mixed concerns the techniques that combine the above two techniques, integrating oversampling 

of minority class with undersampling majority class.  
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Chawla et al. (2002) proposed the synthetic minority oversampling (SMOTE) and 

compared the effects of different resampling approaches. SMOTE was tested on a variety of 

datasets, with varying degrees of imbalance and varying amounts of data in the training dataset. 

The results indicated that SMOTE approach can improve the accuracy of classifiers for a minority 

class. The combination of SMOTE and undersampling performed better than plain undersampling. 

The combination of SMOTE and undersampling also performed better, based on AUC score. The 

definition of AUC score can be found in Section 3.4. 

García et al. (2020) investigated and illustrated the effects of the resampling methods on 

the inner structure of a data set by exploiting local neighborhood information, identifying the 

sample types in both classes and analyzing their distribution in each resampled set. Experimental 

results indicated that the resampling methods that produce the highest proportion of safe samples 

(safe if at least 4 neighbors are from the same class) and the lowest proportion of unsafe samples 

correspond to those with the highest overall performance. This paper also explained why 

oversampling has been reported to be usually more efficient than undersampling. 

Algorithm level methods involve specific solutions dedicated to improving a given 

classifier. Within the algorithm level approaches, ensembles are quite often applied. Ensemble 

learning is a machine learning paradigm where multiple models (often called “weak learners”) are 

trained to solve the same problem and combined to get better results. Most of these ensembles are 

based on known strategies from bagging and boosting. Bagging, which often considers 

homogeneous weak learners, learns them independently from each other in parallel and combines 

them following some kind of deterministic averaging process. Boosting, which often considers 

homogeneous weak learners, learns them sequentially in a very adaptative way (a base model 

depends on the previous ones) and combines them following a deterministic strategy. Bootstrap 
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aggregating is one of the most famous “bagging” approaches that aim at producing an ensemble 

model that is more robust than the individual models composing it. Currently, there are various 

existing extensions of bagging and a lot of related works indicated the good performance of 

bagging extensions versus the other ensembles (Anyfantis et al., 2008). 

Błaszczyński and Stefanowski (2015) proposed Neighbourhood Balanced Bagging, where 

sampling probabilities of examples were modified according to the class distribution in their 

neighborhood. Two of its versions were considered: the first one keeping a larger size of bootstrap 

samples by hybrid oversampling and the other reducing this size with stronger undersampling. The 

results showed that the first version is significantly better than existing oversampling bagging 

extensions while the other version is competitive to Roughly Balanced Bagging. Besides, they 

demonstrated that detecting types of minority examples depending on their neighborhood may 

help explain why some ensembles work better for imbalanced data than others. 

In recent years, several studies were related to crash severity analysis with data balancing 

techniques. For example, Mujalli et al. (2016) used three different data balancing techniques: 

undersampling, oversampling, and a mix technique that combines both to balance the traffic 

accident data collected on urban and suburban roads in Jordan from 2009 to 2011. Then, different 

Bayes classifier models were developed based on the imbalanced and balanced datasets. The 

results indicated that using the balanced data sets, especially those created using oversampling 

techniques, with Bayesian networks improved classifying a traffic accident according to its 

severity and reduced the misclassification of killed and severe injuries instances. 

Jeong et al. (2018) used five classification learning models (Logistic regression, Decision 

tree, Neural network, Gradient boosting model, and Naïve Bayes classifier) to classify the levels 

of injury severity and the classification performance was improved by two training-testing 
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methods including Bootstrap aggregation and majority voting. To account for the imbalanced 

classes, under-sampling and over-sampling were used. The results showed that the effect of 

treatments for the imbalanced data was maximized when under-sampling was combined with 

bagging. 

Schlögl et al. (2019) conducted a comparison of statistical learning methods for deriving 

determining factors of accident occurrence from an imbalanced high resolution dataset. A series 

of statistical learning techniques (including all four types of logistic regression, tree-based 

ensemble methods, the BRNN, and the Pegasos SVM) were compared with respect to their 

predictive performance. A combination of synthetic minority oversampling and maximum 

dissimilarity undersampling was used to balance the training dataset. Findings substantiated that a 

trade-off between accuracy and sensitivity was inherent to imbalanced classification problems. 

Results also showed satisfying performance of tree-based methods which exhibit accuracies 

between 75% and 90% while exhibiting sensitivities between 30% and 50%. 

Rivera et al. (2020) assessed five classification algorithms: Classification and Regression 

Tree (CART), Naïve Bayes, kNN, Random Forest, and Support Vector Machine (SVM)on a class-

imbalanced benchmark; this challenging issue was dealt with via five sampling algorithms: 

synthetic minority oversampling technique (SMOTE), borderline SMOTE, adaptive synthetic 

sampling, random oversampling, and random undersampling. The results indicated that the 

imbalance between both classes (the class was binarized as ‘traffic accident’ and ‘not traffic 

accident’) negatively affected the performance of both classifiers. Besides, random oversampling 

obtained the most encouraging results among the sampling algorithms tested. 

Abou Elassad et al. (2020) designed an ensemble fusion framework founded on the use of 

various base classifiers that operate on fused features and a Meta classifier that learns from base 
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classifiers’ results to acquire more performant crash predictions. In this study, a resampling-based 

scheme, including Bagging and Boosting, was conducted to generate diversity in learner 

combinations comprising Bayesian Learners (BL), k-Nearest Neighbors (kNN), Support Vector 

Machine (SVM), and Multilayer Perceptron (MLP). Then, to ensure that the proposed framework 

provides powerful and stable decisions, an imbalance-learning strategy was adopted using the 

Synthetic Minority Oversampling Technique (SMOTE) to address the class imbalance problem as 

crash events usually occur in rare instances. The findings showed that Boosting depicted the 

highest performance within the fusion scheme and can accomplish a maximum of 93.66% F1 score 

and 94.81% G-mean with Naïve Bayes, Bayesian Networks, k-NN, and SVM with MLP as the 

Meta-classifier. The definition of performance measures can be found in Section 3.4. 

Abou Elassad et al. (2020) developed a proactive decision support system for predicting 

traffic crash events. Modeling approaches that rely on Random Forest, Support Vector Machine, 

and Multilayer Perceptron machine learning techniques were applied to establish efficient crash 

predictions. This study also compared different data balancing techniques in improving the 

predictive performance through three balancing techniques: oversampling, undersampling, and 

synthetic minority over-sampling (SMOTE). The highest performances were acquired using 

SMOTE strategy as MLP achieved a 94.5% precision, 94.2% f1-score, 93.7% AUC and 95.3% 

recall, while SVM achieved a 91.5% g-mean. A more detailed explanation of these performance 

measures can be found in Section 3.4. 

2.4 Summary 

From the various literature references mentioned above, two aspects of conclusions were 

reached. First, various modeling approaches have been used to predict crash severity, both 

traditional regression models and ML-based methods. Among these models, the Logistic 
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Regression model was among one of the most frequently used regression models. Besides, 

classification tree-based ML models (e.g., Extreme Gradient Boosting tree(XGBoost), Adaptive 

Boosting tree(AdaBoost), Random Forest (RF), Gradient Boost Decision Tree (GBDT)), and the 

Support Vector Machines (SVM), k-Nearest Neighbors (kNN) are ones of the most popular ML 

techniques that have been used for crash severity prediction. However, there is a lack of studies on 

comparing the performance of different types of models including ML models and traditional 

regression models. Moreover, few studies have considered the tree-based ML models as a group 

and compare them with other equally popular ML method. Several questions remain open and 

need further exploration. Therefore, this study aims to compare the predictive performances for 

crash injury severity analysis between six machine learning models and one logistic regression 

model. 

Secondly, although a wide variety of modeling approaches have been adopted to study 

injury severity of truck-involved crashes, relatively little attention has been paid to the data-

imbalance issue, and the effects of different data balancing methods on different modeling 

approaches are still not clear. To fill this gap, three most commonly used resampling techniques, 

random undersampling, oversampling, and mix sampling will be used to preprocess the original 

training dataset to testify the effects of resampling in model prediction performance. 
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CHAPTER 3 

METHODOLOGY 

This chapter is to present the overall study design procedure of the research. To accomplish 

the research objectives, e.g. predict the severity level of the large truck crash, this study is designed 

in four aspects: 1) study approaches, 2) data description, 3) methodology for severity level 

prediction, and, 4) prediction evaluation measures.  

3.1 Data 

3.1.1 Data Description 

A large and comprehensive truck crash dataset used in this research was developed based 

on the crash records collected from the Texas Crash Records Information System (CRIS). It 

contained the truck crash records of the entire state of Texas from 2016 to 2019. A large truck, as 

defined by the U.S. Department of Transportation, is any truck with a gross weight rating greater 

than 10,000 pounds. Different types of crashes were indiscriminately collected for this study. In 

the CRIS, each record has more than 170 attributes, including information about the drivers, 

vehicles, characteristics of the crashes, roadway conditions, and environmental conditions. The 

attributes used in this research will be carefully selected from over 170 attributes of the large truck 

crash data based on their categories, their correlations between each other, their relationship to the 

dependent variable, and the quality of the data. The detailed information of attribute selection, 

known as independent variables selection will be discussed in the following section. Finally, the 

dataset will be divided into a training dataset, which covers the years 2016 to 2018, and a dedicated 

test dataset, which covers the year 2019 for evaluation purposes. 



17 

 
 

3.1.2 Dependent and Independent Variables 

The dependent variable in this analysis was the severity level of large truck crashes. It was 

categorized into three levels: accidents with Property Damage Only (PDO) (y = 0), Slight Injuries 

(SLIG) (y = 1), and accidents with Killed or Severe Injuries (KSEV) (y = 2). In the training dataset, 

as shown in Figure 2. (a), there were 72.45% of PDO level crashes, 22.84% of SLIG level crashes 

and 4.71% of KSEV level crashes. In the testing dataset, as shown in Figure 2. (b), there were 

73.36% of PDO level crashes, 22.27% of SLIG level crashes and 4.37% of KSEV level crashes. 

As we can see, three levels of severity distribution of the testing dataset are highly consistent with 

the training dataset. Besides, a class distribution with an imbalance ratio less than 1.5 can be 

considered to be balanced (Fernández et al. 2008), in this consideration, the training and testing 

datasets are imbalanced. 

 (a) Training dataset 
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 (b) Testing dataset 

Figure 1. Distribution of Large Truck Crash Injury Severity in Training and Testing dataset 

The independent variables were carefully selected from over 170 attributes of the large 

truck crash data based on their categories, their correlations between each other, their relationship 

to the dependent variable, and the quality of the data.  

At first, different types of variables related to the roadway, environment, and driver’s 

characteristics were derived and classified into different categories. Then, the correlations between 

these variables were analyzed. Some of these variables were highly correlated. For example, road 

surface conditions (dry, wet, and ice-covered) and weather characteristics (clear, rain, and snow) 

were highly correlated factors. To avoid the collinearity problem, the weather characteristic factors 

were kept in the model, while the surface-condition factors were removed, since the weather 

characteristic factors were more correlated to dependent variable than the surface-condition factors. 

In addition, most of the independent variables were categorical variables, and they were all 

converted to the dummy variables, as shown in Table 1. It can be seen that the variables in the 

same category were highly correlated. Taking the “Lighting Conditions” category as an example, 

the lighting conditions included the “daylight”, “dark no light”, “dawn”, “dark light”, and “dusk”, 

which was a complete list, and the lighting condition of a crash must be one of these five conditions. 
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Thus, if we included all these dummy variables, their sum would be equal to 1. To avoid the 

dummy variable trap, one baseline variable was identified for each category and was excluded 

from the model (Greene, 2000). Furthermore, some factors did not have a very clear causal 

relationship with the dependent variable. For example, the factor “number of lanes blocked by the 

crash” was not the cause of a severe crash but was determined simultaneously with the crash 

severity level when a crash occurred. Therefore, this type of variable should also be removed from 

the model to avoid the endogeneity problem (Duncan et al., 2004). Finally, by carefully examining 

all the factors in different categories, only 40 independent variables were finally selected, as listed 

in Table 1, and the distributions of variables are presented in Table 2. After deleting the crash 

records that contained missing information, the final dataset contained records of 83,148 large 

truck crashes. 
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Table 1  

Variables and Descriptions 
Traffic Control Weather Characteristics 

none 1 if no traffic control, 0 otherwise (Baseline) clear  1 if clear, 0 otherwise(Baseline) 

stopsign 1 if traffic control is stop sign, 0 otherwise rain 1 if raining, 0 otherwise 

signallight 1 if traffic control is signal light, 0 otherwise snow 1 if snowing, 0 otherwise 

yieldsign 1 if traffic control is yield sign, 0 otherwise blowing 1 if blowing sand, 0 otherwise 

flashinglight 1 if traffic control is flashing light, 0 otherwise fog 1 if fog, 0 otherwise 

markedlane 1 if traffic control is markedlane, 0 otherwise sleet 1 if sleet, 0 otherwise 

signal camera 1 if traffic control is signal camera, 0 otherwise severcrosswinds 1 if severe crosswinds, 0 otherwise 

Light Characteristics Median Type 

daylight 1 if incident occurred when daylight, 0 otherwise(Baseline) mediannone 1 if no median, 0 otherwise(Baseline) 

dawn 1 if incident occurred when dark not lighted, 0 otherwise unprotected 1 if median type is unprotected, 0 otherwise 

darknolight 1 if incident occurred when dawn, 0 otherwise positivebarrier 1 if median type is positive barrier, 0 otherwise 

darklight 1 if incident occurred when dark but lighted, 0 otherwise onewaypair 1 if median type is one-way pair, 0 otherwise 

dusk 1 if incident occurred when dusk, 0 otherwise curbed 1 if median type is curbed, 0 otherwise 

Roadway Functional System Road Alignment 

rintersatehighway 1 if rural interstate highway, 0 otherwise (Baseline) strailevel 1 if road alignment is straight level, 0 otherwise(Baseline) 

uinterstatehighway 1 if urban interstate highway, 0 otherwise straigrade 1 if road alignment is straight grade, 0 otherwise 

rprincipalarterial 1 if rural principle arterial, 0 otherwise straihillcrest 1 if road alignment is straight hillcrest, 0 otherwise 

uotherprincipalarterial 1 if urban other principle arterial, 0 otherwise curlevel 1 if road alignment is curve level, 0 otherwise 

uminorarterial 1 if urban minor arterial, 0 otherwise curgrade 1 if road alignment is curve grade, 0 otherwise 

rminorarterial 1 if rural minor arterial, 0 otherwise curhillcrest 1 if road alignment is curve hillcrest, 0 otherwise 

Location of First Harmful Event Base Type 

onroad 1 if crash occurred on road, 0 otherwise(Baseline) soil 1 if base type is soil, 0 otherwise(Baseline) 

onshoulder 1 if crash occurred on shoulder, 0 otherwise granular 1 if base type is granular, 0 otherwise 

onmedian 1 if crash occurred on median, 0 otherwise asphalt 1 if base type is asphalt, 0 otherwise 

offroad 1 if crash occurred off road, 0 otherwise concrete 1 if base type is concrete, 0 otherwise 

Shoulder Type Left Curb Type Left 

shoulderlnone 1 if no left shoulder, 0 otherwise(Baseline) curblnone 1 if no left curb, 0 otherwise(Baseline) 

shoulderleft 1 if left shoulder exists, 0 otherwise curbleft 1 if left curb exists, 0 otherwise 

Shoulder Type Right Curb Type Right 

shoulderrnone 1 if no right shoulder, 0 otherwise(Baseline) curbrnone 1 if no right curb, 0 otherwise(Baseline) 

shoulderright 1 if right shoulder exists, 0 otherwise curbright 1 if right curb exists, 0 otherwise 

Road Type Crash Contributing Factors 

2 lane, 2 way 1 if road type is 2 lane, 2 way, 0 otherwise(Baseline) fatigue 1 if driver under influence of fatigue, 0 otherwise 

4 ormore,divided 1 if road type is 4 ormore,divided, 0 otherwise drug 1 if driver under influence of drug, 0 otherwise 

4 or more,undivided 1 if road type is 4 ormore,undivided, 0 otherwise alcohol 1 if driver under influence of alcohol, 0 otherwise 

Lane Width and Shoulder Width Numerial variables 

Lanewid The width of travel lanes in feet Adt_Adj_Curnt_Amt Adjusted average daily traffic for the current year for crashes located on the road 
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Shldr_Width_Left The width of left shoulder in feet Crash_Speed_Limit Speed Limit 

Shldr_Width_Right The width of right shoulder in feet Trk_Aadt_Pct Adjusted average daily traffic percent for trucks for crashes located on the road 

  Nbr_Of_Lane Number of lanes, not including turning and climbing lanes, for crashes located on the road 

         Table 2  

        Distribution of the Variables 

Variable 
Crash Injury Severity 

Total Percent 
Variable Crash Injury Severity 

Total Percent 
PDO SLIG KSEV PDO SLIG KSEV 

Traffic Control  Weather Characteristics 

none 6587 1819 275 8681 10.44% clear  43087 13219 2764 59070 71.04% 

stopsign 2679 915 273 3867 4.65% rain 6333 1978 332 8643 10.39% 

signallight 7271 2081 253 9605 11.55% snow 133 26 5 164 0.20% 

yieldsign 938 262 28 1228 1.48% blowing 36 13 8 57 0.07% 

flashinglight 283 96 32 411 0.49% fog 422 188 90 700 0.84% 

markedlane 31653 10224 1872 43749 52.62% sleet 153 35 9 197 0.24% 

signal camera 116 33 5 154 0.19% severcrosswinds 159 40 11 210 0.25% 

Light Characteristics  Median Type 

daylight 45662 13980 2326 61968 74.53% mediannone 17147 5482 1639 24268 29.19% 

dawn 828 276 84 1188 1.43% unprotected 5882 1818 368 8068 9.70% 

darknolight 6667 2249 894 9810 11.80% positivebarrier 11128 3634 720 15482 18.62% 

darklight 6534 2150 480 9164 11.02% onewaypair 103 18 1 122 0.15% 

dusk 448 139 39 626 0.75% curbed 675 220 27 922 1.11% 

Roadway Functional System Road Alignment  

uinterstatehighway 21967 6639 829 29435 35.40% strailevel 46507 14148 2729 63384 76.23% 

rprincipalarterial 5766 1958 733 8457 10.17% straigrade 6265 2161 516 8942 10.75% 

uotherprincipalarterial 17158 5611 769 23538 28.31% straihillcrest 1799 741 150 2690 3.24% 

uminorarterial 2348 680 139 3167 3.81% curlevel 3304 999 265 4568 5.49% 

rminorarterial 2853 963 438 4254 5.12% curgrade 1947 652 152 2751 3.31% 

rintersatehighway 6567 1769 538 8874 10.67% curhillcrest 449 121 26 596 0.72% 

Location of First Harmful Event Base Type 

onroad 52128 16415 3226 71769 86.31% soil 372 133 42 547 0.66% 

onshoulder 764 190 130 1084 1.30% granular 34451 10964 2561 47976 57.70% 

onmedian 1873 641 115 2629 3.16% asphalt 788 223 50 1061 1.28% 

offroad 5653 1608 373 7634 9.18% concrete 24821 7534 1191 33546 40.34% 

Shoulder Type Left  Curb Type Left 

shoulderlnone 4725 1254 586 6565 8.39% curblnone 3211 1162 197 4570 27.43% 

shoulderleft 51941 16290 3459 71690 91.61% curbleft 9225 2518 348 12091 72.57% 

Shoulder Type Right  Curb Type Right 

shoulderrnone 5813 1964 755 8532 10.19% curbrnone 3754 1239 234 5227 29.12% 

shoulderright 54458 17180 3573 75211 89.81% curbright 9721 2636 368 12725 70.88% 
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Road Type Crash Contributing Factors 

2 lane, 2 way 9890 3310 1185 14385 17.30% fatigue 804 386 129 1319 1.59% 

4 ormore,divided 43114 13338 2202 58654 70.54% drug 100 84 88 272 0.33% 

4 or more,undivided 7355 2189 454 9998 12.02% alcohol 348 235 167 750 0.90% 
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3.2 Study Design Approaches 

This research was designed to predict the severity level of the large truck crash based on 

the comparison of different classification models. For this purpose, a historical crash data analysis 

was conducted. At first, historical crash records for the entire texas state from 2016 to 2019 were 

extracted from Texas Crash Record Information System (CRIS); After that, the final dataset used 

in the study was determined by carefully conducting variable selection, data cleaning, and data 

preprocessing based on the originally extracted dataset; Then the cleaned dataset was divided into 

a dedicated training dataset (contains records from the year 2016 to 2018), and a dedicated testing 

dataset (contains records of the year 2019). As shown in Figure 1, the cleaned dataset is named the 

training dataset, three resampling techniques including random undersampling, oversampling, and 

mix sampling were used in the training dataset to create correspondingly three balanced datasets. 

Add up with the original dataset, which is kept the same as the training dataset, a total of four 

datasets were used to develop different prediction models. Since seven classifiers were selected in 

this study, combining with the four datasets, a total of twenty-eight prediction models were 

developed. In this way, the effects of class balancing techniques in model prediction performance 

were tested. Finally, the final best performance of four classification tree-based ML models 

(XGBoost, AdaBoost, RF, GBDT), two non-tree-based ML models(SVM, k-NN), and LR in crash 

severity prediction can be compared.  
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Figure 2. Study Procedure 

3.3 Methodology 

As mentioned in the literature review, a variety of traditional regression methods have been 

applied to predict crash severity, including the traditional regression models, such as the logistic 

regression model (or multinomial logit model), ordered logit model, and so on. The logistic 

regression model is a widely used regression model for the severity prediction of crash injury. 

Many studies have found that the logistic regression model could achieve a closer estimation of 

the crash probabilities to the observations (Iranitalab and Khattak, 2017; Zhang et al., 2018). Thus, 

in this study, the logistic regression model was chosen to compare with the ML models. Besides, 

the classification tree-based ML methods have been widely employed for crash risk prediction and 

identification of contributing factors (Jiang et al., 2016, Lu et al., 2020, and Zhou et al., 2020). 

Note that classification tree-based algorithms usually fall into the scope of ensemble learning-a 

machine learning paradigm where multiple models (often called “weak learners”) are trained to 

solve the same problem and combined to get better results. Ensembles are often recognized as the 

algorithm-level approaches to handle the classification problem for the class-imbalance dataset. 

Some researches suggest that ensemble algorithms work better for imbalanced data than others 
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(Błaszczyński and Stefanowski, 2015). Besides, the Support Vector Machines (SVM), k-Nearest 

Neighbors (kNN) are also among the most popular non-tree-based ML techniques that have been 

widely selected for crash severity prediction (Rivera et al., 2020; Abou Elassad et al., 2020). 

Therefore, there is a need to find out if the classification tree-based methods can effectively and 

correctly predict crash severity than non-tree-based ML models and what is the prediction 

difference between these ML models and the logistic regression model. In this study, four 

representative classification tree-based ML models (e.g., Extreme Gradient Boosting tree 

(XGBoost), Adaptive Boosting tree(AdaBoost), Random Forest (RF), Gradient Boost Decision 

Tree (GBDT)), two non-tree-based ML models (e.g., the Support Vector Machines (SVM), k-

Nearest Neighbors (kNN)), and LR model were selected for developing models for crash severity 

prediction.  

3.3.1 Testing of Different Resampling Techniques 

High imbalance often occurs in practical applications where the minority one is often rare 

but important. Take the traffic accident datasets as an example, the instances of fatal crashes often 

much fewer than the PDO crash. Some researchers believe that in such cases classifiers tend to be 

overwhelmed by the majority classes and overlook the minority ones(Kotsiantis et al. 2006). To 

be more specific, classifiers tend to produce high predictive performance over the majority class, 

but poor predictive performance over the minority class. A number of solutions to the class-

imbalance problem were previously proposed both at the data and algorithmic levels. Compared 

with the algorithmic level approach, the data level approach (preprocessing approach) seems to be 

the more straightforward approach (Thammasiri et al., 2014). In this consideration, resampling 

approaches are extensively studied to diminish the class imbalance problem before developing 

classification models (García et al., 2020). Resampling techniques are essentially data 
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preprocessing methods that aim to balance different classes (Thammasiri et al., 2014). According 

to the results of the literature review, some researchers suggest resampling is an effective approach 

in improving the prediction performances of minority crashes (Mujalli et al, 2016; Fiorentini et al., 

2020), while others suggest that when the distribution of the classes in the population is known, 

the user should choose a sample that has the same distribution as the population to ensure optimal 

performance ((Oommen et al., 2010). 

Therefore, to testify the effectiveness of sampling balancing techniques in detecting the 

severity level of the large truck crash, three commonly used resampling approaches were selected 

to balancing the datasets: Synthetic minority oversampling technique (SMOTE), Random 

undersampling (RUS), and mixed techniques. 

• Synthetic minority oversampling technique (SMOTE): a heuristic method that creates 

synthetic instances of the minority class using the k-Nearest Neighbors approach within 

a bootstrapping procedure until the dataset is balanced. The minority class is over-

sampled by taking each minority class sample and introducing synthetic examples 

along the line segments joining all of the k minority class nearest neighbors. Depending 

upon the amount of over-sampling required, neighbors from the k nearest neighbors are 

randomly chosen (Chawla et al., 2002). Moreover, SMOTE can be used for handling 

both continuous and categorical features.  

• Random undersampling (RUS): a non-heuristic method that aims to balance the class 

distribution by randomly eliminating the number of instances of the majority class until 

the dataset is balanced. The major disadvantage of RUS is that it can delete potentially 

useful instances that could be important for data analysis. (Kotsiantis et al., 2006). 
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• The mixed techniques: this method combines both SMOTE and RUS techniques. In 

this method, the instance number of minority class is increased while the instance 

number of majority class are discarded until the number of instances of each class is 

the same, while the dataset size remains the same as the original dataset size (Witten 

and Frank, 2005). 

These three resampling techniques are performed in the program python, the package 

“imbalanced-learn” is used. 

3.3.2 Regression Model  

3.3.2.1 The Logistic Regression model (LR) 

The logistic regression model is the most widely used discrete choice model (Train, 2009) 

and has a long history of use in crash severity analysis literature. When the logistic regression is 

multinomial. Multinomial logistic regression is used for the multi-class response variables. In a 

multinomial logit model of crash injury severity outcomes, the propensity of crash i towards 

severity category k is represented by severity propensity function, Tki, as shown in Equation (1) 

(Kim et al., 2008). 

 𝑇𝑘𝑖 = 𝛼𝑘 + 𝜷𝑘𝐗𝑘𝑖 + 𝜀𝑘𝑖 (1) 

Where, 𝛼𝑘  is a constant parameter for crash severity category k; 𝜷𝑘  is a vector of the 

parameters for crash severity category k; k=1, 2, …, K (K=3 in the paper) representing all the three 

severity levels: Property Damage Only (PDO), Slight Injuries (SLIG), and accidents with Killed 

or Severe Injuries (KSEV); 𝐗𝑘𝑖  represents a vector of independent variables (risk contributing 

factors) affecting the crash severity for i at severity category k; 𝜀𝑘𝑖 is a random error term  that 

accounts for unobserved effects following the Type I generalized extreme value (i.e., Gumbel) 

distribution; i=1, 2, …, n where n is the total number of crash events included in the model. 
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If  𝑃𝑖(𝑘) is the probability of accident i ending in crash severity category k, then: 

 𝑃𝑖(𝑘) =
e(𝛼𝑘+𝜷𝑘𝐗𝑘𝑖)

∑ e(𝛼𝑘+𝜷𝑘𝐗𝑘𝑖)
∀k

 (2) 

In this study, the python interface to Logistic Regression, available through package 

Logistic Regression from sklearn is used. 

3.3.3 Machine Learning Models 

3.3.3.1 Random Forest (RF) 

In Random Forests (RF) method, each tree in the ensemble is built from a sample drawn 

with replacement from the training set. The method combines Brieman’s bagging idea and Ho’s 

“random subspace method” to construct a collection of decision trees with various sub-sample of 

the dataset (Breiman, 2001; Ho, 1995). A predetermined number of classification trees are 

generated from the bootstrap sample and combined to give a final prediction. In this study, the 

model combines classifiers by averaging their probabilistic prediction, instead of letting each 

classifier vote for a single class. The performance of an RF can be improved by minimizing the 

bias of each tree and the correlations among trees. To minimize the bias, each tree should be grown 

to maximum depth based on Gini index (Breiman, 1984). 

In this study, the input samples for RF are represented as 𝑥 = {[𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛 ], 𝑦𝑖}, 

i=1,2,3…, m and m indicates the number of crash samples, n is the number of independent variables. 

The values of dependent variable y (y=0,1,or 2) correspond to different levels of  crash severity. 

The output is the probability of a single sample belongs to different severity levels. The RF 

algorithm includes three basic calculation processes: sample set selection (bootstrap samples), 

decision tree generation and decision tree combination. 

The python interface to RF, available through package RandomForestClassifier from 

sklearn is used. 
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3.3.3.2 Adaptive Boosting (AdaBoost) 

The basic idea of the AdaBoost algorithm is to combine a sequence of weak learners 

through a weighted majority vote (or sum) to make classifications. It repeatedly updated the data 

by taking the previous weak learners’ mistakes into account. The basic steps of this algorithm can 

be explained as follows (Chen, 2015).  

Given a classification training data set D = {(x1, y1), (x2, y2), ⋯ , (xN, yN)} , a strong 

classifier C(x) generated by the following steps:  

Initialization of the weight value distribution of the training data, 

W1 = (w11, ⋯ , w1i, ⋯ , w1N, ), w1i =
1

N
, i = 1,2, ⋯ , N, m=1,2,⋯,M(m is the times of iteration) (3) 

Using the training data set has the weight distribution Wm  to learn, get the basic 

classification Cm(x) according to the Gini indexes of different influencing factors k   

The classification error rate of Cm(x) is calculated as follows 

 em = P(Cm(x) ≠ yi) = ∑ wmi
N
i=1 I(Cm(x)) ≠ yi (4) 

Calculation the “amount of say”, am of Cm(x) according to its classification error em 

 am =
1

2
log

1−em

em
 (5) 

Update the weight distribution based on the calculated “amount of say”, am 

 Wm = (wm+1,1, ⋯ , wm+1,i, ⋯ , wm+1,N) (6) 

 wm+1,i =
wmi

Zm
exp(−amyiCm(xi)) (7) 

where, Zm is normalization factor which could make the sum of Wm equal to 1. 

Calculate the weighted sum of all the classifiers 

 f(x) = ∑ amCm(x)M
m=1  (8) 

The final strong classifier can be expressed as 
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 C(x) = signf(x) = sign(∑ amCm(x)M
m=1 ) (9) 

The python interface to AdaBoost, available through package AdaBoostClassifier from 

sklearn is used. 

3.3.3.3 Gradient Boosting Decision Tree (GBDT)  

GBDT is a generalization of boosting to arbitrary differentiable loss functions. The 

motivation is to combine several weak models to produce a powerful ensembl. Assume that F(x) 

is an approximation function of the dependent variable y based on a set of independent variables 

x.  F(x) can be expressed as F(x) = ∑ γmhm(xM
m=1 ), where hm(x) are the basis functions, which 

are usually called weak learners in the context of boosting. The loss function can be defined as, 

L(y, F(x)) = log(1 + e−yF(x)). 

Similar to other boosting algorithms, GBDT builds the additive model in a greedy fashion: 

 Fm(x) = Fm−1(x) + γmhm(x)  (10) 

where the newly added tree hm tries to minimize the loss L, given the previous ensemble 

Fm−1(x): 

 hm =
arg min

h
∑ L(yi, Fm−1(xi) + h(xi))n

i=1  (11) 

The initial model F0 is problem-specific; for the least-squares regression, one usually 

chooses the mean of the target values. 

Gradient boosting attempts to solve this minimization problem numerically via steepest 

descent: 

 Fm(x) = Fm−1(x) − γm ∑ ∇F
n
i=1 L(yi, Fm−1(xi)) (12) 

where the step length γm is chosen using the line search: 

 γm =
arg min

γ
∑ L (yi, Fm−1(xi) −γ

∂L(yi,Fm−1(xi))

∂Fm−1(xi)
)n

i=1  (13) 
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3.3.3.4 Extreme Gradient Boosting (XGBoost) 

The Extreme Gradient Boosting (XGBoost) is a variant of the gradient boosted regression 

trees. The algorithm is based on the boosting idea, which combines an ensemble of weak learners 

into a single strong model through iteratively improving the ensemble learner. XGBoost relies on 

training new models to the gradient of the loss function. Due to a number of optimizations- 

simplifying the objective functions but maintaining the optimal computational speed, XGBoost is 

a very fast and efficient tree boosting algorithm (Chen and Guestrin, 2016).  

The processes of additive learning in XGBoost are explained below. The first learner is 

fitted based on the whole space of input data, then according to the residuals of the first learner, a 

second learner is then fitted for tackling the drawbacks of the first weak learner. The ultimate 

prediction of the model is obtained by the sum of the prediction of each learner. The general 

function for the prediction at step t is presented as follows: 

 𝑓𝑖
(𝑡)

= ∑ 𝑓𝑘
𝑛
𝑘=1 (𝑥𝑖) = 𝑓𝑖

𝑡−1 + 𝑓𝑡(𝑥𝑖) (14) 

Where 𝑓𝑡(𝑥𝑖) is the learner at step t, 𝑓𝑖
𝑡−1 and 𝑓𝑖

(𝑡)
 are the predictions at step t-1 and t, and 

𝑥𝑖 is the input variable. 

To preventing over-fitting issue without compromising the computational speed, the 

analytic expression below is used to evaluate the “goodness” of the model from the original 

function:  

 𝑂𝑏𝑗(𝑡) = ∑ 𝑙(�⃗�𝑖, 𝑦𝑖)𝑛
𝑘=1 + ∑ 𝛺(𝑓𝑡)𝑡

𝑘=1   (15) 

Where l is the loss function, n is the number of observations used and 𝛺 is the regulation 

term and defined as: 

 𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖�⃗⃗⃗�‖2 (16) 
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where �⃗⃗⃗� is the vector of scores in the leaves, λ is the regularization parameter, and γ is the 

minimum loss needed to further partition the leaf node. 

The python interface to XGBoost, available through package xgboost is used. 

3.3.3.5 Support Vector Machine (SVM) 

Developed by Vapnik (Vapnik, 2013), a support vector machine (SVM) is a supervised 

binary linear classifier that can be used to solve a classification problem by constructing 

hyperplanes in a way that the resulting gaps between classes exhibit margins that are as large as 

possible (Cristianini and Shawe-Taylor, 2000; Vapnik, 2000, 1998). Let us consider a training set 

represented by{(𝑥𝑖, 𝑑𝑖)}𝑖=1
𝑁 ,where xi is the n-dimensional dependent variables and di represents the 

independent variable di=1 represents the positive group and the independent variable di=-1 

represents the negative group. SVM maps each point xi from the input space n to the feature space 

H by means of the mapping function Φ(�⃗�𝑖) and finds a linear decision surface to separate the 

negative data points from the positive ones in the feature space. The linear decision surface is 

defined as 

 w⃗⃗⃗⃗ ∙ Φ(�⃗�𝑖) + 𝑏=0  (17) 

 s.t. 𝑑𝑖(w⃗⃗⃗⃗ ∙ Φ(�⃗�𝑖) + 𝑏) ≥ 1  (18) 

where the w⃗⃗⃗⃗ is a vector perpendicular to the decision surface and b is a decision surface 

bias. In order to maximize the margin of separation between the classes (
2

‖�⃗⃗⃗�‖
 or equivalent to 

minimize 
1

2
‖�⃗⃗⃗�‖2), SVM constructs a unique decision surface by applying Lagrange multiplier and 

transforming it into the following dual problem: 

 min
𝜆

(
1

2
∑ 𝜆𝑗

𝑁
𝑗,𝑘=1 𝜆𝑘𝑦𝑗𝑦𝑘𝐾(�⃗�𝑗 , �⃗�𝑘) − ∑ 𝜆𝑖

𝑁
𝑗=1 )  (19) 

                            Subject to ∑ 𝜆𝑖
𝑁
𝑖=1 𝑦𝑖 = 0 𝑎𝑛𝑑 0 ≤ 𝜆𝑖 ≤ 𝐶 
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Where 𝜆 = (𝜆1, ⋯ , 𝜆𝑁)  is the Lagrange multiplier, C is a constant parameter that 

determines the tradeoff between the maximum margin and minimum classification error. 𝐾(. , . ) 

is denoted as 𝐾(�⃗�𝑗 , �⃗�𝑘) = Φ(�⃗�𝑗) ∙ Φ(�⃗�𝑘), which is the so-called kernel function. By using kernel 

function, SVM does not need to know explicitly the mapping function Φ(�⃗�𝑖); it is sufficient only 

to know the dot product between the mapping of two data points. Having determined the optimum 

Lagrange multiplier, the optimum solution for the vector w⃗⃗⃗⃗ is given by: 

 w⃗⃗⃗⃗ = ∑ 𝜆𝑗
𝑁
𝑗=1 𝑦𝑗Φ(�⃗�𝑗)  (20) 

Then SVM is able to classify any input �⃗� using the function: 

 𝑓(�⃗�) = 𝑠𝑖𝑔𝑛(�⃗⃗⃗� ∙ 𝛷(�⃗�𝑖) + 𝑏) = 𝑠𝑖𝑔𝑛(∑ 𝜆𝑗
𝑁
𝑗=1 𝑦𝑗𝐾(�⃗�𝑗 , �⃗�𝑘) + 𝑏)  (21) 

The python interface to SVM, available through package SVM from sklearn is used. 

3.3.3.6 k-Nearest neighbor (k-NN)  

k-Nearest neighbor (k-NN) classifier is conventional non-parametric classifier (Cover and 

Hart 1967). Instances are represented by some feature vectors as a point in the feature space. To 

classify one instance, the k-NN classifier calculates the distances between the point and points in 

the training data set. In this study, the Euclidean distance is used to measure the distance. Then, it 

assigns the point to the class among its k nearest neighbours (where k is an integer). Figure 3 

illustrates this concept. where * represents the new data point. If k = 3, the point belongs to class 

A; if k = 5, the point belong to class B. 
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Figure 3. k-Nearest Neighbor (k-NN) Classifier 

To measure the distance between points A and B in a feature space, various distance 

functions have been used in the literature, in which the Euclidean distance function is the most 

widely used one. Let A and B are represented by feature vectors A = (x1, x2, . . . , xm) and B = (y1, 

y2, . . . , ym), where m is the dimensionality of the feature space. To calculate the distance between 

A and B, the normalized Euclidean metric is generally used by 

 𝑑𝑖𝑠𝑡(𝐴, 𝐵) = √
∑ (𝑥𝑖−𝑦𝑖)2𝑚

𝑖=1

𝑚
  (22) 

The python interface to k-NN, available through package Nearest Neighbors from sklearn 

is used. 

3.4 Prediction Evaluation Measures  

In imbalanced learning, there were mainly two types of evaluation measures. One is the 

threshold-based measures, like sensitivity, precision, specificity, and F-measure, which means 

these measures rely on one specific threshold. The other is non-threshold-based measures, like 

ROC-AUC and PR-AUC (Fernández et al. 2018), which will be explained in the following 

paragraph. In this study, the dependent variable was categorized into three levels: PDO, SLIG, and 
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KSEV, based on this class division condition, the detailed description of these threshold-based 

metrics are summarized in Table 3 

Table 3  

Threshold-based Evaluation Metrics 

Metric Formula 

Sensitivity or 

recall 

𝑅(𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉)

=
# 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
 

Precision 

𝑃(𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉)

=
# 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
 

F1-score 𝐹(𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉) =
2 ∗ 𝑃(𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉) ∗ 𝑅(𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉)

𝑃(𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉) + 𝑅(𝑃𝐷𝑂/𝑆𝐿𝐼𝐺/𝐾𝑆𝐸𝑉)
 

Specificity 

𝑆(𝑃𝐷𝑂) =
# 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑆𝐿𝐼𝐺 𝑎𝑛𝑑 𝐾𝑆𝐸𝑉 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐿𝐼𝐺 𝑎𝑛𝑑 𝐾𝑆𝐸𝑉 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
 

 

𝑆(𝑆𝐿𝐼𝐺) =
# 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑃𝐷𝑂 𝑎𝑛𝑑 𝐾𝑆𝐸𝑉 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝐷𝑂 𝑎𝑛𝑑 𝐾𝑆𝐸𝑉 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
 

 

𝑆(𝐾𝑆𝐸𝑉) =
# 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑃𝐷𝑂 𝑎𝑛𝑑 𝑆𝐿𝐼𝐺 

𝑇𝑜𝑡𝑎𝑙 predicted 𝑃𝐷𝑂 𝑎𝑛𝑑 𝑆𝐿𝐼𝐺 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
 

As it is often the case that accident severity datasets are typically imbalanced, thus there is 

usually a trade-off between Sensitivity and Specificity (Jeong et al. 2018). For example, in a two-

level crash severity classification problem where the instances of the non-AK crash is much more 

than the instances of AK crash (non-AK crash takes 99% of all instances). There is one possible 

extreme situation that the model classifies all accidents to be non-AK, such a model would have a 

very high recall rate, while it exhibits a very low specificity rate. This is often the case, when the 

training dataset is rebalanced using resampling techniques, the specificity rate can be improved 

while the recall rate will be compromised. Besides, all these metrics are decided by one threshold, 
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which means these metrics cannot present an overall performance, thus result in failing to be 

informative in reality. 

While, ROC-AUC, which is calculated in function of the threshold metrics (Rivera et al. 

2020). The ROC-Receiver Operating Characteristic-is the curve formed when the transversal axis 

represents the false positive rate (1-specificity), and the longitudinal axis represents the true 

positive rate (sensitivity) for different cut-off points. ROC is a probability distribution, and its area 

under the curve (AUC) represents the degree of separability between classes. With a maximum of 

ROC-AUC value close to 1 describing that the classifier has an excellent performance in separating 

classes, and a value close to 0.5 describing a valueless test. PR-AUC. Like the ROC curve, the PR 

(Precision-Recall) curve is a plot of the precision (y-axis) and the recall (x-axis) for different 

probability thresholds. ROC-AUC does not place more emphasis on one class over the other, so it 

is not biased against the minority class (Kotsiantis et al, 2006). Besides, some researchers suggest 

that for the evaluation of probabilistic models, ROC-AUC is recommended to evaluate the 

separability between the classes (Oommen et al., 2010). Therefore, in this study, ROC-AUC is 

selected as the evaluation measure for prediction performance in classifying large truck crash 

severity, in the following part, ROC-AUC will be simplified to be AUC. 
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CHAPTER 4 

RESULTS ANALYSIS 

In this chapter, the effects of resampling techniques are tested first. Then, the final results 

of different prediction models are presented and discussed. Below, we present the experiments 

conducted to estimate (a) the effects of sampling balancing techniques, (b) the performance of the 

classifiers for identifying crash severities. 

All the models are programmed in Python (version 3.7), using scikit-learn 0.22, 

imbalanced-learn 0.5, XGBoost 1.4.0, pandas 0.25.3, matplotlib 3.1.2, numpy 1.17.4. 

4.1 Imbalanced versus Balanced Training Datasets 

An analysis of challenging real-world classification problems still reveals difficulties in 

finding accurate classifiers. One of the sources of these difficulties is class imbalance in data, 

where at least one of the target classes contains a much smaller number of examples than the other 

classes. This section aims to investigate the effects of sample balancing techniques in model’s 

prediction ability. The possible resulting differences between balanced and imbalanced (original) 

datasets are measured by applying eight different prediction models - LR, OP, RF, AdaBoost, 

GBDT, XGBoost, SVM, and k-NN and their resulting performance evaluation measures. To 

achieve this goal, three balanced datasets were created based on the original imbalanced datasets 

using three sampling strategies namely RUS, SMOTE, and Mixed. 

The original training dataset contained 62,066 accidents in which the severity distribution 

was: 44,905 PDO crashes and 14,159 SLIG crashes, 2,919 KSEV crashes, and in which the 

dependent variable was predominantly imbalanced. To deal with the imbalanced dataset problem, 

three new balanced data sets were developed using three different resample techniques: RUS, 
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SMOTE, and Mixed. Table 4 shows the total number of instances in all the datasets used and their 

distribution amongst different severity levels. 

As shown in Table 4, when the RUS undersampling technique was used, the dataset was 

reduced to the size of the minority class, in this case to KSEV class (2,925 instances for KSEV as 

shown in Table 4). While when using SMOTE oversampling, the number of instances in the 

resulting dataset was increased to the size of the majority class (44,905 instances for PDO class). 

Finally, in the mixed sampling, the resulting dataset preserved the original number of instances 

(61,983 accidents), the instance of the majority class was reduced to 20,661 and the instance of 

minority class was increased to 20,66. 

Table 4  

Number of Instances in Original and Balanced Training Datasets 

Datasets Total PDO SLIG KSEV 

Original dataset 61,983 44,905 14,159 2,919 

Balanced datasets 

SMOTE 134,715 44,905 44,905 44,905 

RUS 8,757 2,919 2,919 2,919 

Mixed 61,983 20,661 20,661 20,661 

Seven classifiers described in Chapter 5 were used to build different models. For each 

training dataset (original, SMOTE, RUS, and mix), seven models were developed. Firstly, each 

training dataset was used to train the model, and then the testing dataset was used to test the 

model’s prediction performance. All the parameters for each model were optimized separately 

through the function GridSearchCV from scikit-learn until the best AUC score was reached. The 

testing results of classifiers developed from balanced datasets were then compared with those 

developed from the original dataset. In order to perform this comparison, the results of the AUC 

used to compare the models developed from different datasets are summarized in Table 5. The 

comparison is based on the performance measures of AUC. An AUC value close to 1 indicates 

that the classifier has excellent performance when separating classes, and a value close to 0.5 
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indicates that the classifier cannot discriminate classes correctly. With respect to the results 

obtained by the testing set, the following findings were extracted: 

1) For the tree-based classifier (XGBoost, AdaBoost, RF, and GBDT), the overall 

results indicate that the original dataset works better in predicting all three levels of severity when 

compared to the balanced datasets. Look at the XGBoost classifier first, the highest prediction 

performance of XGBoost classifier is evaluated as 0.59 for PDO level crash, which means the 

original dataset performed better than the balanced datasets in terms of its ability to classify the 

PDO level crash. Besides, the best models for SLIG and KSEV level crash were also obtained 

using the original dataset. The above results suggested that original datasets performed better than 

the other three balanced datasets in all three levels of crash severity prediction. Furthermore, it 

indicates that using the original dataset, meaning dataset with original population, to train the 

XGBoost model, the model will produce better prediction performance than using the datasets with 

revised sample population. Similar results are obtained for GBDT and RF classifiers. For the 

AdaBoost classifier, the highest prediction performance is evaluated as 0.58 for PDO level crash 

using the original dataset. And better prediction performance of SLIG level crash is achieved by 

trained in the original dataset and rebalanced dataset based on SMOTE technique. As for KSEV 

level crash, better performance is achieved by in the original dataset and rebalanced dataset 

obtained through the RUS technique. Consistent results can be found in Liu’s research, where 

some experimental study was conducted showing that ensembles specialized for class imbalance 

should work better than an approach consisting of first pre-processing data and then using 

ensembles (Liu et al., 2013).   

2) For non-tree-based classifiers (k-NN and SVM), the original dataset also works 

better. Look at the k-NN classifier, the original dataset works better than the balanced datasets in 
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SLIG and KSEV level prediction. Only the SMOTE dataset produced a relatively better PDO level 

prediction than the original dataset. The overall results indicate that the original dataset works 

better in predicting most levels of severity when compared to the balanced datasets. Similar results 

are obtained for the SVM classifier. Some recent studies on class imbalances have shown that the 

global imbalanced ratio between classes is not a problem itself. For some data sets with high 

imbalance ratio, the minority class can still be sufficiently recognized even by standard classifiers. 

The degradation of classification performance is often linked to other difficulty factors related to 

data distribution, such as decomposition of the minority class into many rare sub-concepts playing 

a role of small disjuncts (Ting1994; Weiss and Hirsh2000), the effect of too strong overlapping 

between the classes (Garcia et al. 2007), or the presence of too many minority examples inside the 

majority class regions (Napierala et al. 2010). 

3) For LR classifier, using the balanced dataset technique to train the model showed 

an improvement in prediction performances in contrast to using the original dataset, and the 

balanced dataset acquired from SMOTE approach showed the best performance. A similar result 

was found in Salas-Eljatib’s research, where the data balancing technique was proved to improve 

the prediction capability of the LR model (Salas-Eljatib et al., 2018). 
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Table 5  

Overview of AUC Using Different Datasets 

Severity levels Datasets 
AUC 

XGBoost GBDT RF AdaBoost k-NN SVM LR 

PDO 

Original 0.59 0.60 0.58 0.58 0.53 0.53 0.47 

SMOTE 0.57 0.57 0.57 0.55 0.55 0.51 0.53 

RUS 0.57 0.58 0.55 0.57 0.51 0.53 0.53 

Mix 0.53 0.53 0.55 0.53 0.52 0.50 0.52 

SLIG 

Original 0.57 0.58 0.56 0.51 0.53 0.54 0.48 

SMOTE 0.55 0.55 0.52 0.51 0.52 0.51 0.51 

RUS 0.50 0.51 0.51 0.50 0.51 0.52 0.50 

Mix 0.52 052 0.53 0.49 0.50 0.50 0.51 

KSEV 

Original 0.72 0.72 0.70 0.71 0.62 0.51 0.52 

SMOTE 0.70 0.69 0.70 0.67 0.61 0.50 0.66 

RUS 0.71 0.72 0.70 0.71 0.62 0.51 0.66 

Mix 0.63 0.62 0.67 0.63 0.57 0.55 0.66 

Based on the above results, since there is no improvement achieved by resampling the 

training dataset for ML-based models, the original dataset was finally chosen to develop the 

prediction models for ML-based models. As for the LR model, the data balancing technique 

showed a prediction improvement in all of the three severity levels, and SMOTE sampling, which 

obtained the most encouraging results among the sampling algorithms tested, was selected to build 

the final model.  
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4.2 Regression versus Machine Learning models 

Based on the above results, the final dataset is selected for each model. To make a detailed 

comparison of the final seven models, Figure 4 presents ROC curves of different severity levels. 

A ROC-AUC value close to 1 indicates that the classifier has excellent performance when 

separating classes, and a value close to 0.5 indicates that the classifier cannot discriminate classes 

correctly. 

 
a) ROC curves of PDO level crash 

 
b) ROC curves of SLIG level crash 
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c) ROC curves of KSEV level crash 

Figure 4. Comparison of Prediction Performance of Different Models 

As shown in Figure 4.a) the pattern of these curves indicates that there are two groups, one 

group consists of XGBoost, AdaBoost, RF, and GBDT, the other group consists of SVM, k-NN, 

and LR. It means there is a significant difference between these two groups while within these 

groups, the prediction performance of classifiers are similar. Besides, one of the groups comprised 

of classification tree-based ML models (XGBoost, AdaBoost, RF, GBDT) is relatively above the 

none-tree-based ML models (SVM and k-NN) and LR. It indicated that for PDO severity level 

prediction, the prediction performance between the four tree-based ML models are similar, the 

prediction performance between SVM, k-NN, and LR models are also similar, and overall, the 

prediction performance of four tree-based ML models are better. And GBDT is relatively above 

all the curves. 

Similar to Figure 4.a), there are two groups of curves in Figure 4.b). The distance between 

these two groups are closer than that in Figure 4.a) and one of the tree-based ML method 

(AdaBoost) showed the relatively low performance, the other three tree-based algorithms 

(XGBoost, RF and GBDT) still performed well. Still, GBDT showed the best results. 
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As shown in Figure 4.c). the classification tree-based ML curves (XGBoost, AdaBoost, RF, 

GBDT) are highly overlapped and above the other three curves. The other three curves are highly 

separated, and SVM showed the weakest performance. 

Overall, all these models relative are good at predicting KSEV level crash, except for SVM, 

which performs better at predicting SLIG level crash. Besides, the area under the ROC curves 

(AUC) of the GBDT model is greater than those of the other six models, which indicates that the 

GBDT model has better prediction performance than the other models. Finally, classification tree-

based ML models (XGBoost, AdaBoost, RF, GBDT) are relatively above the none tree-based ML 

models(SVM, k-NN) and LR at all of the three levels. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

This research was designed to predict the severity level of the large truck crash based on 

the comparison of different classification models (XGBoost, AdaBoost, RF, GBDT, SVM, k-NN, 

and LR). For this purpose, a historical crash records for the entire texas state from 2016 to 2019 

were extracted from Texas Crash Record Information System (CRIS). In order to determine the 

appropriate training dataset for each model, three sampling strategies namely RUS, SMOTE, and 

Mixed are employed to test the effects of data balancing techniques. The following are the key 

findings of the study, along with some corresponding recommendations: 

• XGBoost, GBDT, RF, AdaBoost are classification tree-based ML classifiers. For these 

four classifiers, the original dataset works better in predicting all three levels of severity 

when compared to the balanced datasets. For two non-tree-based classifiers( k-NN and 

SVM), the original dataset also works better, while balancing technique can realize 

prediction improvement for a certain level of severity. 

• For the LR classifier, using the balanced dataset to train the model showed an improvement 

in prediction performance when compared to the employing of the original dataset, and the 

balanced dataset acquired from SMOTE approach showed the most promising results.  

• All these models are good at predicting KSEV level crash, except for SVM, which 

performs better at predicting SLIG level crash. The GBDT model performs best among all 

of the seven models.  
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• Finally, classification tree-based ML models (XGBoost, AdaBoost, RF, GBDT) perform 

relatively better than the none tree-based ML models(SVM, k-NN) and LR at all three 

severity levels. 

Overall, the results of this study can help to predict the severity of a reported crash with 

unknown severity or of the severity of crashes that may be expected to occur sometime in the 

future. Besides, the modeling procedure can provide some insight into the selection and 

development of classifiers for large truck crash severity prediction.  

More studies concerning the modeling effectiveness analysis of the mixed logit model and 

the ordered probit model will be conducted to make a full understanding of characteristics of 

different traditional models. Besides, it is also worth attention that the resampling techniques used 

in this research is limited, the results of resampling may not be applicable to all kinds of resampling 

approaches. Furthermore, the author will put more emphasis on how to improve the prediction 

results by using more advanced parameter optimization strategies and by employing more efficient 

data cleaning methods.  
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