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ADDRESSING TRANSPORTATION EQUITY BY COMPARING IN-SERVICE 

 PERFORMANCE OF ROADSIDE SAFETY DEVICES THROUGH  

MACHINE LEARNING MODELING 

By 

Hanzhen Wang, B.S. 

Texas Southern University, 2021 

Professor Dr. Fengxiang Qiao, Advisor 

 

Transportation equity plays an important role in modern communities, and 

a fair distribution of transportation infrastructures is vital as an integral part of 

transportation planning process. The In-Service Performance Evaluation (ISPE) 

satisfies transportation safety requirements by identifying the problems of roadside 

safety devices during installation and maintenance process with proper solutions, 

and the performance results reveal the current statue of target devices in specific 

areas. Although several studies have been conducted to emphasize transportation 

equity, there is still a lack of equity research specifically focusing on the deploying 

of roadside safety devices associated with ISPE results. With proper comparison 

of in-service performance results in different areas, the importance of ensuring 

transportation equity of all communities and areas in the decision-making process 

is able to be demonstrated. 



2 
 

 
 

This thesis utilizes Machine Learning models to analyze linked crash and 

roadway data related to major roadside safety devices implemented in Texas. 

Three typical roadside safety devices are selected to be assessed, including: (1) 

guardrail, (2) median barrier, and (3) bridge rail. By comparing both statistical and 

Machine Learning based modeling analysis with rural and metropolitan areas in 

specific counties, it is demonstrated that distributions of crashes that end up 

causing heavy property damage or serious injuries is higher in rural communities 

regardless of its lower crash frequency. The data analysis result suggests that 

parameters related to roadway conditions and transportation infrastructures tend 

to have higher influence over the performances of rural safety devices. Additional 

one year of crash data analysis also addresses the importance of transportation 

equity under the COVID-19 pandemic period. Recommendations on improving 

overall equity and Environmental Justice (EJ) within all regions are conducted with 

stated findings. 

Keywords: Environmental Justice, In-Service Performance Evaluation, 

Machine Learning, Roadside Safety Devices, Transportation Equity 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Transportation equity means distributing transportation resources, benefits, 

and services fairly in each community. The U.S. Office of Management and Budget 

(OMB) designated different communities into metropolitan communities and rural 

communities. The majority popularity with more than 50,000 population and 

consists of a core urban area categorized under metropolitan communities (HRSA, 

2021). The actions to address Environmental Justice (EJ) in minority population 

which includes transportation users in rural communities are purposed in the 2012 

Federal Highway Administration (FHWA) order 6640.23A (FHWA, 2012). With 

lower population in rural areas, funds for transportation maintenance are limited in 

these areas due to less tax distribution.  

However, 68.13% of American total lane miles are located in rural areas till 

2019 and fatality rate in rural areas is two times higher than metropolitan areas 

(FHWA, 2019; NHTSA, 2018). In addition, around 80% of railroad crossings in rural 

areas lack of suitable warning devices (U.S. DOT, 2021). According to FHWA’s 

rural transportation planning, 40% roads in rural areas do not meet the requirement 

for current travel, and around 50% of bridges that over 20 feet in rural areas have 

structural flaws now (FHWA, 2017). In a word, there is a lack of investment in the 
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maintenance and preservation of rural transportation infrastructure which leads 

several safety issues in rural areas. The inequality of traffic risk needs to be 

addressed under current circumstances. 

The roadside safety device is the transportation infrastructure designed and 

served as an engineering hardware, which has the general function of decreasing 

the risk of roadway crashes significantly and ensuring transportation safety 

(Cantisani, et al., 2017). Several common types of roadside safety devices have 

been implemented on the roadways to redirect and protect vehicles, such as: (1) 

longitudinal barriers (guardrails); (2) barrier terminals (guardrail end treatments); 

(3) crash cushions; and (4) breakaway hardware (signs, luminaires, etc.) (FHWA, 

2020). Among listed safety hardware, barriers are typical devices that can be found 

along highways and roadways. According to Roadside Design Guide conducted 

by American Association of State Highway Transportation Officials (AASHTO), the 

barriers refer to three major categorizes by their specific functions: (1) roadside 

barrier; (2) median barrier; and (3) bridge railing. Accordingly, to assess the 

performance of this type of safety transportation infrastructure, In-Service 

Performance Evaluation (ISPE) is an important procedure to process when 

determining whether the devices perform as they designed to in real world 

conditions. These considerable conditions include traffic conditions, site 

maintenance, and environmental conditions (AASHTO, 2011). 

Previous research focused on transportation equity are mainly aiming at 

discussing burdens and benefits of transportation infrastructure among various 
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areas and populations. These approaches include redefining equity rules on 

political side and identifying equalization standard for transportation planning 

process. While other factors such as measures of performance should be 

considered in a broader perspective (Karner, et al., 2020). Another research also 

recommended improving analytical approaches to evaluate the features of inequity 

conditions in burdens and benefits of transportation infrastructure (Karner, et al., 

2016). For the analytical approach as performance measures for particular 

transportation safety infrastructure roadside safety devices, there are currently a 

lack of comprehensive ISPE results to demonstrate transportation equity among 

different areas. As a defined procedure in ISPE, outcome of crash data analysis 

illustrates the performance of safety hardware. As road crashes becoming the 

major death causes for people among 1 to 54 ages in the United States (ASIRT, 

2020), the thorough analysis of crash data can significantly reveal the performance 

of safety transportation infrastructure. This thesis will fill the gap by addressing 

transportation equity and providing recommendations through comparing ISPE 

results between various areas. 

1.2 Research Objectives 

The major objective of this research is to perform proper comparison of in-

service performance results in different areas through Machine Learning modeling 

on Texas crash data, and to demonstrate the importance of ensuring transportation 

equity of all communities and areas in the decision-making process. The specific 

objectives can be concluded as following points: 
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• Find crash distribution of main safety devices on crash severity and property 

damage in rural and metropolitan areas, 

• Analyze the main safety devices related roadway and crash data in Texas 

using statistical analysis and Machine Learning modeling method, 

• Analyze related crash data under COVID-19 pandemic period in Texas and 

compare the impact factors by Machine Learning modeling method, and 

• Assess the performance of in-service roadside safety devices in Texas 

metropolitan and rural areas, while addressing the transportation equity 

conditions for safety devices in the decision-making process. 

• Provide recommendations to improve transportation equity for roadside 

safety devices, identify future study needs in this direction of research. 

1.3 Outline 

This thesis is conprised of five chapters. Chapter one presents the 

introduction of the study by presenting the background, as well as research gaps, 

research objectives, and the thesis outline. Chapter two performs a thorough 

literature review on the studies related to transportation equity and environmental 

justice, roadside safety devices, ISPE practices, and transportation equity 

conditions under pandemic period. Chapter three demonstrates the design of the 

study, including the methodology, data collection, data processing, Machine 

Learning modeling method, and related algorithms. Chapter four illustrates the 

data analysis results and discussion, which is divided into statistical analysis and 
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Machine Learning modeling analysis, while crash data under pandemic period will 

also be analyzed separately. Chapter five presents the conclusion of this study 

with related recommendations based on the results. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter summarizes findings and reviews of the existing studies 

related to the proposed research topic. A general idea about current update and 

perspectives from correlated literature is presented to address the significance of 

the study. To start with, studies and practices related to transportation equity will 

be reviewed and summarized. The literature based on several common types of 

roadside safety devices will be discussed to learn the applications and functions 

of typical safety hardware. In addition, ISPE definitions and procedures from 

existing reports and studies will be summarized. ISPE levels will be introduced, 

and performance measures will be emphasized based on the review of related 

literature. 

2.1 Transportation Equity 

2.1.1 Transportation Equity Policies 

The concept of equity is derived from Environmental Justice (EJ) when 

related actions or proposals by authorities have been started in late 1900s. The 

Title VI of the Civil Rights Act was passed in 1964, it forbids any form of 

discrimination against race, color, and national origin (Civil Rights Act, 1964). After 

that, The National Environmental Justice Advisory Council (NEJAC) was 
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established by Environmental Protection Agency (EPA) in 1993, which provides 

recommendations about issues related to EJ and consider EJ into the development 

of agency policies and activities (EPA, 1993). It is serving as the legal satisfaction 

of following the 1994 Executive Order (EO) 12898 as actions on federal level to 

address EJ (Twaddell & Zgoda, 2020). The EO orders that each Federal agency 

to conduct an agency wide EJ strategy. DOT issued its initial EJ Strategy in 1995 

to meet the requirements. In the FHWA order 6640.23A, the EJ within minority and 

low-income populations are addressed. It is suggested that FHWA’s continuing 

policy has the intention of identifying and eliminating discriminatory influences 

throughout the decision-making process (FHWA, 2012). DOT has been 

continuously considering the EJ strategy into the programs, activities, and policies, 

while the minority and low-income population have been given more notices when 

implementing the EJ strategy (U.S. DOT, 2017). 

According to the Environmental Justice Reference Guide by FHWA, the 

fairly participation of all potentially affected communities and agencies is required 

when addressing EJ in the decision-making process. Thus, as the federal financial 

recipients, apart from U.S. DOT and FHWA, the Metropolitan Planning 

Organizations (MPOs) and Federal Transit Administration (FTA) are also required 

to follow the EJ strategy polices to further ensure transportation equity (FHWA, 

2015). Following by the existing laws, the National Environmental Policy Act 

(NEPA) has also been involved relatively to ensure the equity of healthy 

environment. 
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Public engagement in the decision-making process is also required by the 

DOT to fulfil EJ strategy. It is intended to avoid, minimize, or mitigate the 

disproportionately influence and environmental effects from transportation 

infrastructure projects. The transportation infrastructure planning projects is also 

considered for the EJ influence (U.S. DOT, 2017). 

2.1.2 Transportation Equity Practices 

To satisfy the continuing transportation equity needs from EJ strategy 

policies, research and practices focused on developing transportation equity have 

been carried out in different aspects. Some studies implement various models to 

evaluate the transportation equity impacts on projects and practices. Methods of 

training models to simulate and present the equity effects on particular conditions 

are regarded as equity analysis. Bills et al. emphasized that the equity analysis 

consists of three major parts including assessment priority, models used, and 

equity indicators (Bills, et al., 2012). Priority assessment refers to distinguishing 

the importance of involved transportation factors in considering of the major 

interests. The models used for equity analysis include transportation simulating 

and forecasting models, while the primary goal of applying models is to conduct 

comprehensive analysis that the model output represents the difference of settled 

scenarios to address equity or inequity situations. Equity indicators present the 

overall impacts focused on equity side and demonstrate the transportation 

distribution in comparison. 
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Accordingly, Rodier et al. implemented a spatial economic model to 

evaluate the influences of equity on the land use in the purpose of reducing gas 

emissions (Rodier, et al., 2010). The distribution measures are conducted by 

proposed model in this study and the recommendation of smaller urban form 

around transit stations help developing transportation equity. More related studies 

intend to apply travel forecast and travel demand models to perform equity analysis 

on various transportation issues or projects (Castiglione, et al., 2006). In these 

practices on transportation equity, some are reginal transportation practices, and 

the analysis targets ranging from household pricing to land use planning. The 

equity analysis in related studies tend to present the distribution of transportation 

sources, by ensuring the equity in transportation investments among all 

communities and areas, avoiding the negative or inequity in the decision-making 

process. 

2.1.3 Transportation Equity Needs under Pandemic 

Under the impact of COVID-19 pandemic since earlier 2020, social activities 

of various communities have been affected and the influences on transportation 

tend to be complicated (Du, et al., 2020). During this period, transportation equity 

is also affected and the needs for satisfying EJ strategy are rising according to 

recent situations. Due to the decrease of overall revenue, the funding and budgets 

for equitable transportation projects have been changed in some areas. In addition, 

public transportation has been majorly affected by the pandemic and transportation 

equity on the transportation modes is also influenced in a way. It is suggested that 
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not only the funding amount for public transit should be increased but also the 

funding approach should be developed for equitable public transit. The 

engagement with community residents is also recommended for better equitable 

results in the policy decision-making process (Davis & Stacy, 2021). 

According to another research in the period of pandemic, urban EJ is also 

not relatively balanced. Some communities have situations of socio-environmental 

injustice due to the condition of the housing and popularity density under the 

pandemic (Cole, et al., 2020). Abdoli and Hosseinzadeh have also studied the 

spatial equity among public transit under pandemic period. They concluded that 

the pandemic effect on various transportation transit systems is uneven. Thus, the 

inequity was addressed for public transport and social groups (Abdoli & 

Hosseinzadeh, 2021). 

2.2 In-Service Performance Evaluation 

2.2.1 ISPE Practices 

As a vital process to evaluate performance of roadside safety devices, ISPE 

practices have been conducted in several states. Four levels of ISPE are included 

in ISPE implementations in Arizona and Texas (Mak & Sicking, 2002; Zhang, et 

al., 2019). Level I of ISPE focused on developing a comprehensive database that 

collects data from various data sources including crash data, highway and roadway 

data, roadside safety devices inventory data, and maintenance data. Level II of 

ISPE based on evaluating specific individual road safety devices and obtain further 

information through field studies. Level III of ISPE collects more detailed data of 
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target safety devices that involved serious crashes resulted in fatal or incapacity 

injuries or heavy property damage. Level IV of ISPE evaluates the improved or 

newly designed safety devices and fulfil the gaps of limited information on these 

types of roadside safety devices. It is crucial that all the results from each level of 

ISPE will eventually enrich the Level I ISPE database (Qiao, et al., 2020). 

Early ISPE practices implemented in Texas consists of two phases of 

evaluation process. The Phase I ISPE collects data mostly from existing database 

while Phase II requires more detailed investigation of specific safety device when 

the failure rate is too high. The crash data analysis mainly focused on statistical 

counting on the crash number, ranking crashes through counties, and comparing 

vehicle type related to safety features (Schalkwyk, et al., 2004). Studies that 

focused on specific safety device like cable median barrier using performance 

evaluation was also carried out. This research by Schalkwyk, et al. (2004) 

analyzed data related to cost, maintenance and repair, safety, and field 

performance evaluation. By counting the fatal and incapacity injuries before and 

after the target cable median barrier were putting into service, the significance of 

the specific safety device was demonstrated. It also concluded that, weather 

conditions have important effect on the occurrence of crashes related to studied 

safety devices as shown in Figure 1 (Cooner, et al., 2009). 
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Figure 1 Impact of weather condition on cable median barriers crash (Source: 

Cooner, et al., 2009) 

 

2.2.2 Roadside Safety Devices 

As the early evaluation guideline for roadside safety device, National 

Cooperative Highway Research Program (NCHRP) report 350 presents uniform 

guidelines for evaluating highway safety devices and helps determine the criteria 

of the evaluation in the assessment of tests targeting at various types of roadside 

safety systems (Ross Jr, et al., 1993). Followed by such criteria, the AASHTO’s 

Manual for Assessing Safety Hardware (MASH) was published later in 2009 and 

2016 to provide guidelines for crash testing temporary and permanent highway 

safety structures (AASHTO, 2009; AASHTO, 2016). Some listed types of roadside 

safety devices are included under the MASH 2016, which is implemented in 2020. 

Categorized safety devices in MASH 2016 include: (1) Longitudinal Barriers, (2) 

Terminals, (3) Crash Cushions, (4) Support Structures, (5) Work Zone Attenuation 

and Channelizers, (6) Other Devices, and (7) Drainage and Geometric Features 

(AASHTO, 2016). 
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Relatively, some specific roadside safety devices are mainly implemented 

on the roadways such as guardrail, median barrier, bridge railing, crash cushion, 

and roadside barrier. According to Roadside Safety Field Guide 2014, median 

barrier, bridge railing, and roadside barrier all longitudinal barriers with different 

functions. Among these devices, median barrier serves as barrier that preventing 

out-of-line vehicles from crossing the median area. Bridge railing has the function 

of preventing out-of-line vehicles from driving through the side of bridge. Roadside 

barrier works as a barricade to shield obstacles along roadside, which also has the 

function of protecting pedestrians from passing vehicles. Crash cushions function 

at decelerating or redirecting out-of-line vehicles to prevent serious crashes 

(TxDOT, 2014). Some typical safety devices on the Texas roadways are shown in 

Figure 2 as examples. The left one in Figure 2 is a terminal at the end of guardrail, 

while the right one presents a metal bridge railing. 

 

Figure 2 Typical roadside safety devices in Texas 
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2.2.3 Crash Analysis on Safety Devices 

With increased efficient methods in data analysis, the literature of data 

analysis on transportation infrastructure to evaluate their performance and give 

corresponding recommendations or advice are reviewed in this section. Du et al. 

conducted frequent pattern analysis on six specific types of roadside safety 

devices using crash data. Variables from crash database that may influence the 

crash results were analyzed such as weather condition, light condition, and speed 

limit (Du, et al., 2021). In this study, The Apriori and FP-Growth frequent pattern 

mining algorithms were implemented to identify the variables that have higher 

impact on crashes. It is concluded by Du et al. (2021) that, although median 

barriers have the highest frequency on crashes, “side of bridge” can statistically 

result in more serious crashes as an important safety device. A conceptional 

notation about the methodology in this study is shown in Figure 3. 

 

Figure 3 An Example of intersection between device item and crash item 

(Source: Du, et al., 2021) 
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Similarly, another study compared the performance of safety devices 

between rural and metro areas by analyzing crash data by different device types 

in two groups. It is recommended considering fair distribution of maintenance and 

installation of safety devices in rural and metro counties as the conclusion (Wang, 

et al., 2021). Crash analysis and evaluation on W-beam guardrail was conducted 

by Gutowski et al. (2017) in recent years. The Finite Element (FE) model was 

applied in this study to simulate and evaluate crash scenarios due to the needs of 

testing whether the W-beam guardrail are functioning effectively. The result 

suggested a promising function of the implemented model and some specific size 

of W-beam guardrail meet the requirement compared to MASH criteria (Gutowski, 

et al., 2017). 

2.3 Machine Learning Modeling 

With the fast development of data science technologies, the Machine 

Learning technique has become a vital part in processing data in not only 

transportation field but also various implementation sites. The Intelligent 

Transportation System (ITS) has utilized many computational technologies to 

allocate suitable approaches and address transportation needs. Different kinds of 

computer algorithms and models are capable of handling tasks such as regression, 

classification, pattern recognition, clustering, prediction, etc. A significant number 

of Machine Learning algorithms have been implemented especially for smart 

transportation applications (Zantalis, et al., 2019). 
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One of the examples is to use Machine Learning classifier to predict 

people’s choice for travel modes. Wang et al. (2020) analyzed the National 

Household Travel Survey (NHTS) 2017 database using more than 80 Machine 

Learning classifiers. In this study, Random Forest, Deep Neural Network (DNN), 

and Classical discrete choice models were performed to predict travel modes 

choice. As a conclusion, this research presents the advantages of implementing 

Machine Learning on public dataset. 

Relatively, Rezapour et al. conducted Machine Learning based analysis on 

severity of injury types in crashes involved motorcycles. The Binary Logistic 

Regression and Classification Tree (CT) models were implemented together to 

predict injury severity for motorcycle related crashes (Rezapour, et al., 2020). 

Zhang et al. applied Gradient Boosting (GB) and Decision Tree (DT) model to 

predict crash, thus addressing the grad crossing crashes happened on highway 

rails. The performances of two Machine Learning models were compared and it is 

concluded that GB has higher accuracy on the objectives. By effectively training 

GB model, Zhang et al. found several factors impacting the crashes, including 

travel speed of train, traffic volume of railway and highway, etc. (Zhang, et al., 2020) 

2.4 Summary and Research Needs 

The important role of transportation equity stays vital throughout the 

development of transportation history. Along with the continuous policies and 

actions being proposed focused on equity and EJ, increasing number of research 

and practices are also highlighting the needs for equity requirements. It is distinctly 
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concluded from the literature that, EJ needs should not be ignored even under the 

pandemic situation. Since the development of transportation infrastructure can be 

an indispensable part in transportation planning and operation, when evaluating 

those infrastructures, considerations related to equity side is essential by 

comparing the results among different communities. 

As a method of assessing whether the particular transportation 

infrastructure as in roadside safety devices are functioning as expected, crash data 

analysis is included in multiple previous ISPE studies and practices. However, 

most analysis conducted through finished projects were statistical analysis with 

different inputs and outputs. With listed studies utilizing Machine Learning based 

approaches to process transportation data including crash data, it can be 

demonstrated that this analysis technology gives more specific results to evaluate 

the proposed goals effectively. Thus, the needs to fulfil the research gap in ISPE 

studies are presented. In addition to this, there are few studies associate the 

performance of roadside safety devices with transportation equity and EJ by 

dividing the analysis groups into different communities. Therefore, this thesis study 

analyzes crash data by Machine Learning Modeling and comparing the outcomes 

in both rural and metropolitan counties in Texas. With solid results presenting the 

impacts during crashes, the transportation equity can be evidently addressed, and 

related recommendations can be proposed reasonably. 
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CHAPTER 3 

DESIGN OF THE STUDY 

3.1 Methodology 

After reviewed related literature on the practices and case studies related 

to transportation equity on the infrastructures, this study is designed to aim at 

presenting modeling results to address particular equity problems on roadside 

safety devices. In doing so, a design of this study is illustrated to present the 

research procedure and fulfil the study objectives. A designed flowchart as shown 

in Figure 4 describes the whole process conducted in this study. 

From the flowchart of study methodology in Figure 4, the entire procedure 

mainly consists of data collection, data processing, Machine Learning model 

selection, and data analysis. After data preprocessing to validate original data for 

modeling, the additional data are linked with preprocessed crash data. By doing 

so, more attributes information related to additional database are included in the 

analysis for broader and more precise consideration. To better address the 

objective of this study, analysis results through statistical analysis and Machine 

Modeling analysis are compared. Additionally, a sample amount of data under 

specific time period was individually analyzed by Machine Learning analysis using 

selected model to emphasize the impact and difference under pandemic scenario.
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Figure 4 Study methodology flowchart 

 

3.2 Data Collection 

The collected data of this study including crash data, county designation 

data, and roadway data. To begin with, a total of eleven years statewide crash data 

from January 1st, 2010 to December 31st, 2020 with 5,704,523 crash records and 

172 attributes information are gathered from the Crash Record Information System 

(CRIS). The CRIS is a statewide database containing information of documented 

traffic crashes related to motor vehicle collected from Texas Peace Officer's Crash 
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Reports (CR-3) and handled by the TxDOT. It contains all the crash related 

information. By picking attribute that indicates the hit object during the crash, 

crashes that involved main types of roadside safety devices were filtered for the 

study. 

According to the OMB, the community groups are divided into metropolitan 

communities and rural communities. The counties that meet the requirements of 

majority popularity exceeding 50,000 population and consisting of a core urban 

area are categorized under metropolitan communities (HRSA, 2021). The 

designations of Texas rural and metropolitan areas are collected to divide study 

areas based on 254 counties in Texas. There are 77 counties are designated as 

metropolitan areas, while the rest 177 are categorized into rural areas (Texas 

DSHS, 2020). The detailed distribution of rural and metropolitan counties is shown 

in Figure 5. 

By statistically comparing the percentage of crash severity and property 

damage by crash amount, total population, and area between rural and 

metropolitan areas, it has been concluded that the total crash number during 2010 

to 2019 in rural counties is a lot lower than that in metropolitan counties. However, 

the percentages of crashes resulted in serious injuries including incapacity injury 

and fatal injury are higher in rural counties both by amount and by population. 

Relatively, percentage comparison results of crashes that caused heavier property 

damage are similar as rural area are higher by crash amount and population 

(Wang, et al., 2021). With bigger area and lower popularity density in rural areas, 
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the statistical result from the study emphasizes crashes in rural areas may result 

in serious injury or property damage, regardless of lower total crash number. 

 

 

Figure 5 Texas rural and metropolitan counties (Sources: SORH, 2012; Wang, et 

al., 2021) 

Apart from state crash data, in order to include more attributes for analysis 

in this study, another dataset that have impacts on roadside safety devices related 
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crashes are collected. The geospatial data retrieved from Highway Performance 

Monitoring System (HPMS) database present documented roadway information 

annually. Due to the accessibility of current released public HPMS data, seven 

years of HPMS data from 2011 to 2017 are collected for this study. Several 

important roadway attributes are included in the original data, including: 

International Roughness Index (IRI), Annual Average Daily Traffic (AADT), High-

Occupancy Vehicle (HOV) types, etc. 

3.3 Data Processing 

3.3.1 Attributes Filtering 

While the latest collected 2020 crash data in CRIS system has been 

updated with specific description of attributes in each column, older crash data 

collected from 2010 to 2019 are still in previous format with IDs and abbreviated 

headers. In addition, there are columns appearing to be with no data in both crash 

data and roadway data sets, which also need to be replaced with certain values 

for further Machine Learning modeling. Thus, a step of data preprocessing is 

required before proceeding. 

Some attributes related to roadside safety devices that may impact the 

performance evaluation process have been selected and filtered in this section. 

Thirteen attributes including their IDs are listed in Table 1 and Table 2 (except for 

Crash ID, Crash Speed Limit, and county ID), where three types of struck object 

with IDs 23, 39, 41 are listed as selected roadside safety devices in this study to 

divide crashes involved different safety devices. Attribute “$1,000 Damage to Any 
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One Person’s Property” and “Crash Severity” present the results of crashes as 

property damage and personal safety side. 

Table 1 Selected Attributes from CRIS Crash Data 

$1,000 
Damage to 
Any One 
Person's 
Property 

Roadway Part 
Weather 
Condition 

Light 
Condition 

 
Bridge Detail 

0- no 

1- yes 
 

1- main/proper lane 

2- service/frontage 
road 

3- entrance/on 
ramp 

4- exit/off ramp 

5-connector/flyover 

7- other 
 

0- unknown 

2- rain 

3- sleet/hail 

4- snow 

5- fog 

6- blowing 
sand/snow 

7- severe 
crosswinds 

8- other 

11- clear 

12- cloudy 

0- unknown 

1- daylight 

2- dawn 

3- dark, not 
lighted 

4- dark, 
lighted 

5- dusk 

6- dark, 
unknown 
lighting 

8- other 

1- vehicle 
retained on 
bridge or 
overpass 

2- vehicle went 
through rail 

3- vehicle went 
over rail 

4- crash involved 
underpass 

5- vehicle went 
between 
parallel 
structures 

6- structure not 
hit 

8- not applicable 

 

Table 2 Selected Attributes from CRIS Crash Data (Cont.) 

Surface 
Condition 

Object 
Struck 

Crash Severity Base Type Median Type 

0- 
unknown 

1- dry 

2- wet 

3- standing 
water 

5- slush 

6- ice 

8- other 

9- snow 

23- guardrail 

39- median 
barrier 
(concrete 
or cable) 

41- side of 
bridge 
(bridge 
rail) 

 

-1- unknown 

1- 
incapacitating 
injury/suspect
ed serious 
injury 

2- non-
incapacitating 
injury 

3- possible 
injury 

-1- no data 

1- roadbed soil  

2- flex base 
(granular) 

3- stabilized earth 
or flex 
(granular) 

8- asphalt base 
(hot mix, 
asphalt 
concrete) 

-1- no data 

0- no median 

1- curbed 

2- positive 
barrier 

3- unprotected 

4- one-way pair 
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10- sand, 
mud, 
dirt 

4- killed 

5- not injured 

 

9- concrete 

 

As is shown in Table 1 and Table 2, values that represent no data under 

selected attributes are replaced with “-1”. “Yes” and “No” binary value under 

attribute “$1,000 Damage to Any One Person’s Property” are replaced with “1” and 

“0” to indicate whether there is over or less $1,000 Damage to any One Person’s 

Property in a crash. IDs for crash severity were replaced with the Equivalent 

Property Damage Only (EPDO) weights in the reference of crash costs analysis 

conducted by FHWA (Harmon, et al., 2018). The assigned EPDO weights are 

decided by the societal costs of crashes under different severity levels, the crash 

costs under target crash severity are divided by Property Damage Only (PDO) 

costs to calculate the EPDO weights for the target crash severity (AASHTO, 2010; 

Wemple, et al., 2014). There is a total of six types of crash severity replaced as 

calculated EPDO weights: (1) “-1” for unknown records; (2) “1” for no injury; (3) “6” 

for possible injury; (4) “11” for non-incapacitating injury; (5) “30” for incapacitating 

injury; and (6) “568” for fatal injury. 

Attributes from HPMS roadway database contain the information of a part 

of roadway and contribute to crashes are selected. Ten attributes including their 

IDs in the HPMS data are selected and listed in Table 3 and Table 4 by looking up 

the HPMS Field Manual (FHWA, 2016). Values that represent no data under 

selected attributes are replaced with “-1”. 
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Table 3 Selected Attributes from HPMS Roadway Data 

AADT 
Functional 
System 

Facility Type 
HOV 
Lanes 

HOV Type 

-1- no 
data 

0 

20 

50 

60 

… 

326,677 
 

-1- no data 

0- unknown 

1- interstate 

2- principal arterial 
– other 
freeways and 
expressways 

3- principal arterial 
– other 

4- minor arterial 

5- major collector 

6- minor collector 

-1- no data 

0- unknown 

1- one-way 
roadway 

2- two-way 
roadway 

4- ramp 

5- non mainline 

6- non inventory 
direction 

7- planned/unbuilt 

 

 
 

-1- no 
data 

0 

1 

2 

 

-1- no data 

0- unknown 

1- full-time 
managed 
lanes 

2- part-time 
managed 
lanes 

3- part-time 
managed lanes  

 

Table 4 Selected Attributes from HPMS Roadway Data (Cont.) 

International 
Roughness 
Index 

National 
Highway System 

Strategic 
Highway 
Network Type 

Toll 
Charged 

Toll Type 

-1- no data 

0 

1 

2 

16 

… 

554 
 

-1- no data 

0- unknown 

1- non collector 
NHS 

2- major airport 

3- major port 
facility 

4- major amtrack 
station 

5- major rail/truck 
terminal 

6- major intercity 
bus terminal 

7- major public 
transportation 
or multi-modal 
passenger 
terminal 

8- major pipeline 
terminal 

-1- no data 

0- unknown 

1- regular 
strategic 
highway 
network 

2- connector 

 

 
 

-1- no data 

0- unknown 

1- toll 
charged in 
one 
direction 
only 

2- toll 
charged in 
both 
directions 

3- no toll 
charged 

 

-1- no data 

0- unknown 

1- has toll lanes 
but no 
special tolls 
(e.g., HOT 
lanes) 

2- has HOT 
lanes 

3- has other 
special tolls  
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9- major ferry 
terminal 

 

 
 

 

After selecting attributes that may impact the crashes related to chosen 

roadside safety devices from both databases, abbreviations of each attribute are 

presented for the convenience of plotting in the following data analysis. The listed 

abbreviations are shown in Table 5. 

Table 5 List Abbreviations for Selected Attributes 

Selected Features Abbreviation 

Roadway Part RRP 

Crash Speed Limit CSL 

Weather Condition WC 

Light Condition LC 

Surface Condition SC 

Bridge Detail BD 

Road Base Type BT 

Median Type MT 

Functional System FS 

Facility Type FT 

HOV Lanes HL 

HOV Type HT 

International Roughness Index IRI 

National Highway System NHS 

Strategic Highway Network Type ST 

Toll Charged TC 



27 
 

 
 
 

Toll Type TT 

 

3.3.2 Data Linking 

To include both crash and roadway attributes in the Machine Learning 

modeling analysis, seven years of filtered CRIS crash data and HPMS roadway 

data are linked accordingly by year. Since both data have geospatial attributes, 

Distance from Origin (DFO) attribute in crash data, Begin and End Point attributes 

in roadway data both represent the reference marker. It used locations of existing 

milepost and a listing equivalent to a mile post as a control document during the 

identification and installation process (Randall, 2005). 

By implementing Spatial Join through closeness factor in ArcGIS, the 

original database is uploaded to the ArcGIS platform to create a feature layer for 

loading data and avoiding conflicting coordinate systems issues. A search radius 

is set to perform spatial join with acceptable error range. For every target point on 

the map, a circle is drawn and the nearest joinable object within that radius is 

selected and attached to the target dataset. In this case, the HPMS roadway data 

is directly imported into the platform to link with CRIS crash data. Each year of 

linked data from 2011 to 2017 contain selected attributes from both original 

datasets. 

3.4 Model Selection 

Machine learning modeling is conducted by choosing candidate Machine 

Learning models, such as: Random Forest, Decision Tree, Multi-layer Perceptron 
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(MLP) Classifier, KNeighbors Classifier, Gaussian Naive Bayes, and XGBoost 

(Ahmed, et al., 2010). The k-Fold Cross-Validation is implemented to evaluate 

accuracy of each candidate models under different output (Burman, 1989). 

Machine Learning models with the highest accuracy under different main safety 

devices are selected for modeling. The importance ranking of chosen input 

attributes is presented after training the selected Machine Learning model, while 

the results are discussed for each input/output and safety devices set. The last 

part of Machine Learning modeling is model evaluation, which assesses the 

modeling results accordingly. 

3.4.1 Candidate Machine Learning Models 

After collected related and properly processed related data, six Machine 

Learning based models are selected as candidate Machine Learning models for 

modeling data analysis. The description of the six models and their fundamental 

principles are introduced in this section. 

Decision Tree Model. When considering candidate models for Machine 

Learning based analysis, Decision Tree Model is always been widely used to 

evaluate output features through inputs (Drummond et al., 2005). The model refers 

to a tree-like procedure with multiple nodes and paths as binary trees, which 

conducts evaluation based on the decision rules that learned from original data. It 

implements regression and classification to pick important features. For example, 

the classifier of this model has the function of recognizing patterns of features and 

is applicable of selecting features (Safavian & Landgrebe, 1991). 
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Random Forest Model. Based on a single Decision Tree model, the 

Random Forest model is developed relatively. It selects features with the results 

of a set of Decision Tree models (Belgiu & Drăguţ, 2016). By collecting and 

summing results from multiple Decision Trees, the outcome of Random Forest is 

finalized. It also rises the shortage that, it is hard to ensure the performance by 

concluding various Decision Trees results, and a model compression is needed 

sometimes (Madeh Piryonesi & El-Diraby, 2021). Random Forest model can also 

be used to decide the feature importance, which is calculated through Gini index 

shown in Equation 1. 

𝐺 = 1 − ∑ 𝑓2𝑛
𝑖=1      (1) 

where, 𝐺 is the Gini index, 

𝑛 is the number of candidate features, and 

𝑓 is the feature frequency. 

Gradient Boosting Model. Gradient Boosting model also has the function 

of regression and classification as one of the Machine Learning models, which is 

an ensemble of prediction models with weak outcome such as Decision Trees 

(Hastie, et al., 2009). As an extreme Gradient Boosting model, the XGBoost model 

is developed by Chen and Guestrin, while the basic algorithm is the Decision Tree 

featured as scalable tree boosting system. (Chen & Guestrin, 2016). It tends to 

have higher running speed and usually has better performance than traditional 

Machine Learning models. By minimizing the value followed by Equation 2 and 

Equation 3, the XGBoost model builds trees through a loss function. 
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𝐿(∅) = ∑ 𝑙(𝑦𝑖̂, 𝑦𝑖)𝑖 + ∑ 𝛺(𝑓𝑘)𝑘     (2) 

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2    (3)  

where, 𝑦𝑖 is the target feature in the given dataset, 

𝑦𝑖̂ is the prediction through the model, 

𝑙 is the convex loss function, 

𝐿 is the pseudo residuals of predicted feature value, 

𝑓 is the space of built regression trees, 

𝛺 is the regularization term used to reduce complexity of prediction model, 

𝛾 is the user-definable penalty, 

𝑇 is the number of leaves in the built trees, and 

𝑤 is the weights of leaf in the built trees. 

Multilayer Perceptron Model. As one of the most common Neural Network 

model in Machine Learning modeling, Multilayer Perceptron Model (MLP) is one 

type of Neural Network that used to solve simple regression problems. Multiple 

layers are components or nodes that coordinated with each other and form the 

MLP model (Pal & Mitra, 1992). Except from input and output layers, one or more 

hidden layers are also included in the MLP model. Due to its non-linear and couple 

of layers features, the MLP model can be implemented in non-linear data. It has 

relatively lower training time compared with other complex models (Car, et al., 

2020). The MLP model also serves as both classifier and regressor. According to 
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the concluded equation by Nicholson, the relationship between inputs and outputs 

are shown in Equation 4 (Nicholson, 2020): 

𝑦 = 𝜑(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 ) = 𝜑(𝑤𝑇𝑥 + 𝑏)   (4) 

where, 𝑥 is the inputs vector, 

𝑤 is the weights vector, 

𝑏 is the bias, and 

𝜑 is the non-linear activation function. 

Naive Bayes Model. By applying the Bayes’ theorem with higher 

independence assumptions among features, a set of probabilistic classifiers called 

Naïve Bayes (NB) Model can achieve higher accuracy (Hastie, et al., 2009). the 

probability calculation for each assumption through NB modeling are simplified to 

make their calculations easy to follow. The independence is too high as strong or 

naïve state that is not usual in actual data (Brownlee, 2016). One of the extended 

NB models is the Gaussian NB model that estimates the mean and the standard 

deviation with real-value inputs. The probability density is calculated through the 

training of Gaussian NB model in Equation 5, where the mean and variance of 

input attributes are computed. 

𝑝(𝑥 = 𝑣|𝐶𝑘) =
1

√2𝜋𝜎𝑘
2
𝑒
−
(𝑣−𝜇𝑘)

2

2𝜎𝑘
2

   (5) 

where, 𝑥 is the attributes in the given dataset, 

𝐶𝑘 is the assigned class for the attributes, 
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𝜇𝑘 is the mean of the values, 

𝜎𝑘
2 is the Bessel corrected variance of the values, and 

𝑝 is the possibility density. 

K-Nearest Neighbors Model. The K-Nearest Neighbors (KNN) model can 

be used both in classification and regression side. It was developed as a non-

parametric classification method in early 19s and extended for regression also in 

1992 (Altman, 1992). The KNN model focuses on similarity measure of training 

data, so it needs to calculate the similarity of all training data to select nearest k 

neighbors. Thus, the disadvantage of KNN model is longer running time when 

processing large amount of data, and the cost is relatively high when implementing 

KNN for big data (Deng, et al., 2016). The distance measure through KNN model 

is valid for continuous variables only and can be computed in three ways of 

distance measuring, including: (1) Euclidean distance measuring, (2) Manhattan 

distance measuring, and (3) Minkowski distance measuring (Sayad, 2010). The 

calculations are shown in Equation 6, Equation 7, and Equation 8, respectively. 

𝑑𝐸 = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑘
𝑖=1     (6) 

𝑑𝑀𝑎 = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑘
𝑖−1      (7) 

𝑑𝑀𝑖 = (∑ (|𝑥𝑖 − 𝑦𝑖|)
𝑞𝑘

𝑖−1 )
1

𝑞    (8) 

where, 𝑑𝐸 is the Euclidean distance, 

𝑑𝑀𝑎 is the Manhattan distance, 
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𝑑𝑀𝑖 is the Minkowski distance, 

𝑘 is the number of nearest neighbors, 

𝑥 and 𝑦 are the attributes in the given data set, and 

𝑞 is an integer as the Minkowski distance of order. 

 

3.4.2 Model Performance Measure 

To finalize which candidate Machine Learning model is the most suitable 

one for feature selection in Machine Learning modeling, the performance measure 

for selected models is needed in the data analysis procedure. The k-Fold Cross-

Validation has the function of assessing the accuracy of a group of Machine 

Learning models and provides understandable results for model selection. Cross-

validation has the convenience of only requiring mild distributional assumptions for 

the modeling data and it does not need the detailed features of each evaluated 

model such as their model dimensions (Yang, 2007). In this statistical evaluation 

method, k often remains a fix number but 10-Fold Cross-Validation is the most 

widely used one in related situations (McLachlan, et al., 2005).  

For the 10-Fold Cross-Validation when k is selected as 10, given data set 

is randomly spitted into 10 sampled sets with the same size. A single sample set 

is picked up to test the selected model, while the remaining 9 datasets are 

assigned as training data. The evaluating model was fitted to the other 9 parts of 

sampled data, and the prediction error of the fitted model is calculated. The 
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procedure of cross-validation is repeated by 10 times and the results of these 

prediction errors are combined to give final performance result (Hastie, et al., 2009). 

The 10-Fold Cross-Validation prediction error estimation is computed through 

Equation 9. 

𝐶𝑉(𝑓) =
1

𝑁
∑ 𝐿(𝑦𝑖, 𝑓

−10(𝑖)(𝑥𝑖))
𝑁
𝑖=1     (9) 

where, 𝐶𝑉 is the estimate prediction error by cross-validation, 

𝑓 is the predicted evaluating model, 

𝑁 is the partition of allocated observations, 

𝑖 is the number of fitted observations, and 

𝐿 is the loss function. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Statistical Analysis 

4.1.1 ANOVA Test on Statistical Significance of Crash Data 

Before detailed analysis on various groups of crash data, the input data 

need to be verified comparable and have significant differences. Analysis of 

Variance (ANOVA) test was performed to check the statistical significance of 

differences on crash data so that the comparison between different groups makes 

sense. By comparing groups of data under variable, the significant probability (P-

value) is conducted and the invalid assumptions as null hypothesis will be 

returened when the P-value is lower than the identified level of significance (Kim, 

2017). In addition, statistic F value is also a result of ANOVA test that shows the 

ratio of between group variances and within group variances as a reference. 

Thus, the significant differences between selected groups will be justified 

and the crash data can be proceeded in the following analysis. In this case, 

different groups based on types of safety devices involves only one independent 

attribute and One-way ANOVA test (Howell, 2012). This particular testing method 

was performed in this section, while attributes in crash data are coordinated with 

selected attributes in Table 1 and Table 2. 
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A significance level threshold was set as 0.05 to test P-value under different 

attributes. According to the results shown in Table 6 and Table 7, most P-values 

were very close to zero, and the highest P-value (7.7E-62<<0.05) was under 

attribute “Light Condition”. With most light conditions for crashes related to each 

safety device are daylight, the comparison of light condition in crash data appears 

to be the least significant different for the six roadside safety devices. However, 

since all the P-value are far less than 0.05, comparisons of crashes related to 

different groups of safety devices under selected ten attributes show significant 

difference and are comparable. 

Table 6 ANOVA Test Result for Crash Data Attributes 

 
Attribute 

$1,000 Damage 
to Any One 

Person's 
Property 

Roadway 
Part 

Weather 
Condition 

Light 
Condition 

Bridge 
Detail 

P-value 8.3E-142 0 
 

0 7.7E-62 0 

 

Table 7 ANOVA Test Result for Crash Data Attributes (Cont.) 

 
Attribute 

Surface 
Condition 

Crash 
Speed Limit 

Crash 
Severity 

Base Type 
Median 
Type 

P-value 0 0 7.4E-122 0 0 

 

Another ANOVA test was conducted based on the severity of crashes, the 

crash data was divided into two groups with higher or lower property damage 

according to attribute “$1,000 Damage to Any One Person's Property”. The values 

in each group are “Object ID” from attribute “Object Struck” to represent the types 

of selected roadside safety devices. To verify the analysis results when 
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considering property damage and crash severity as outputs and safety device type 

as input are comparable, the F statistic and P-values of each crash severity type 

are shown in Table 8. 

Table 8 ANOVA Test for Safety Devices by Crash Severity Type 

Crash 
Severity 

No Injury 
Possible 

Injury 
Non-

incapacity 
Incapacity Fatal Unknown 

P-value 4.3E-15 0.00019 0.022 0.011 0.22 0.23 

F 61.5 13.9 5.3 6.5 1.5 1.4 

 

The F statistic was included in this ANOVA test to present the significant 

difference of safety device types with different property damage under each crash 

severity type. Higher F statistic corresponding to lower P-value and higher 

significant difference. As the result shown in Table 8, the P-value under fatal and 

unknown crashes are higher than significance level and the F statistic are lower 

than 2. Since fatal and unknown type of crashes only take up 6.4% of whole crash 

records, the significant of safety devices are limited. In these two types of crashes, 

crashes related to guardrail and median barriers all have the highest portion, and 

significances of difference are lower due to the data size limitation. 

Apart from fatal and unknown crashes, the P-values under other crash 

severity type are lower than the significance levels and the data groups are 

comparable. Larger size of crash data under specific crash severity tends to be 

more significantly different except for non-incapacity crashes. Compared to 

incapacity crashes, although the number of crashes resulted in non-incapacity 
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injuries is larger, the P-value is higher and F statistic is lower than incapacity 

crashes. The safety devices type under incapacity crashes have higher significant 

difference regardless of its number of crashes. In conclusion, selected grouped 

crash data under selected attributes are generally comparable and suitable for 

further analysis. 

4.1.2 Statistical Count of Crash Data Attributes 

After ensuring the statistical significance of attributes in CRIS crash data 

satisfies the analysis requirement as statistical comparable, basic count of crash 

number by crash severity and property damage type are conducted to demonstrate 

overall statistical differences. The counting results are divided into rural and 

metropolitan groups for each roadside safety device. Distribution of crash amount 

by crash severity for three selected safety devices is shown in Figure 6. 

 

(a) Metropolitan Areas 
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(b) Rural Areas 

Figure 6 Statistical distribution of crash severity by roadside safety devices in 

Texas from 2010 to 2019 

 

As is shown in Figure 6, the crash distribution in Metropolitan and rural 

counties are presented. The labels show the distribution percentage out of total 

crash number related to three selected safety devices. It can be concluded from 

Figure 6 that, median barriers have the highest crash amount among all the areas 

in ten years of Texas crash records. The percentage of crashes ended up causing 

fatal injuries demonstrates the proportion of each roadside safety device compared 

to the total crash number. It clearly suggests from the statistics that, although crash 

frequency in rural areas is much lower compared to metropolitan areas, the 

percentage of fatal crashes related to each safety device is higher in rural counties. 

In addition, guardrail involved more fatal crashes in rural areas. while in 
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metropolitan areas, median barriers tend to result in more fatal injuries. Similarly, 

the distribution for property damage is shown in Figure 7. 

 

(a) Metropolitan Areas 

 

(b) Rural Areas 

Figure 7 Statistical distribution of property damage by roadside safety devices in 

Texas from 2010 to 2019 
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When focusing on another attribute that reflects the property damage in 

crashes, crash distribution of whether over $1,000 damage was resulted in a crash 

by safety device is shown in Figure 7. The labels show the distribution percentage 

out of total crash number related to three selected safety devices. According to the 

percentage of crashes that caused heavier property damage, median barriers have 

the highest distribution in both areas. However, the percentage of median barrier 

crashes that caused over or equal to $1,000 property damage is reduced in rural 

counties, while other three safety devices all have higher proportion of related 

serious crashes in damaging property.  

4.1.3 Correlation Analysis on Crash Data Output Attributes 

Apart from identifying statistical significance and counting crash 

distributions, a correlation analysis is conducted to present the impact of selected 

attributes on the injury type and property damage in crashes. Each selected safety 

device is individually analyzed with a corresponding diagonal correlation matrix. 

Ten years of Texas crash data from 2010 to 2019 are correlated in groups. “Crash 

severity” and “$1,000 Damage to Any One Person's Property” attributes are 

regarded as output variables to demonstrate the relationship between input 

attributes and output attributes in statistical analysis side. Three diagonal 

correlation matrixes in corporation with three studied safety devices are presented 

in Figure 8. 
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(a) Guardrail     (b) Median Barrier 

 

(c) Bridge Rail 

Figure 8 Correlation analysis results between attributes by safety devices 

 

From the correlation results, the correlation between input attributes and 

output attributes varies with safety devices. The crash speed limit has relatively 

higher correlation with crash severity attribute for median barrier and bridge rail. 

The weather condition however, is an important parameter when considering 

property damage outcome for each safety device. Some attributes have impacts 
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over the attributes for specific safety devices according to the matrix. For instance, 

the roadway part and bridge detail have relatively higher correlation relationship 

between crash severity in bridge rail related crashes. While other attributes except 

from weather condition do not show major relationship between severity of crashes 

in other two safety devices. 

4.2 Machine Learning Modeling Analysis 

The Machine Learning modeling analysis is conducted by comparing the 

performance of candidate Machine Learning models, while the candidate model 

with highest accuracy score through 10-Fold Cross-Validation is selected to 

perform Machine Learning based data analysis. The modeling analysis is 

conprised of two parts where one part focused on linked data ranged from 2011 to 

2017 acquired by data processing part. The attributes from both roadway data and 

crash data are included. Another analysis procedure assessed the impact of 

attributes under COVID-19 pandemic period using crash data in year 2020, 

highlighting the transportation equity under pandemic situation. 

4.2.1 Modeling Analysis on Linked Data 

Model Performance. In order to choose the most suitable model, the 

repeated 10-fold cross validation was applied to assess the performance of 

selected six candidate models with the crash severity and property damage 

outcome. The linked data with roadway and crash information are divided into 

three groups for different specific safety device in rural crashes and metropolitan 
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crashes. The results of model performance evaluation based on different output 

attributes are shown in Table 9 and Table 10. 

Table 9 Accuracy Scores for Candidate Models on Crash Severity in Linked Data 
Analysis 

 
Area 

Decision 
Tree 

XGBoost 
Random 
Forest 

MLP 
Classifier 

Gaussian 
NB 

K-Nearest 
Neighbors 

Rural 0.432 0.567 0.532 0.450 0.582 0.535 

Metropol
itan 

0.457 0.607 0.558 0.547 0.602 0.560 

 

Table 10 Accuracy Scores for Candidate Models on Property Damage in Linked 
Data Analysis 

 
Area 

Decision 
Tree 

XGBoost 
Random 
Forest 

MLP 
Classifier 

Gaussian 
NB 

K-Nearest 
Neighbors 

Rural 0.928 0.963 0.962 0.918 0.928 0.963 

Metropol
itan 

0.954 0.978 0.976 0.975 0.954 0.978 

 

As the results shown in Table 9 and Table 10, the highest accuracy scores 

are shown in red colors for both output attributes. XGBoost has highest accuracy 

scores on crash severity and property damage output. The performance of 

candidate Machine Learning Models are relatively better on property damage and 

in metropolitan data. Thus, XGBoost is selected as the Machine Learning model 

in this section. 

Feature Selection. After choosing the model with highest performance 

accuracy, the selected Machine Learning model is used to train crash data, and to 

individually analyze the importance of attributes regarding crash results. The crash 
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data is divided into six groups with three safety device types and two areas. 

XGBoost with the best model performance was used to train the six data sets. The 

feature selection is performed during modeling process to rank the impact level of 

selected attributes on crash severity or property damage. The feature selection 

results through modeling on crash severity is shown in Figure 9. 

  

(a) Guardrail–Metro    (b) Guardrail–Rural 

  

(c) Median barriers–Metro    (d) Median barriers–Rural 
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(e) Bridge Rail-Metro    (f) Bridge Rail-Rural 

Figure 9 Linked data attributes importance ranking on crash severity by XGBoost 
model for each safety device 

 
According to the results presented by the attributes importance ranking 

through the Gradient Boosting modeling, the impacting attributes on the severity 

of injuries during crashes are diversified on the specific type of safety devices. 

Generally speaking, by comparing different areas, it can be demonstrated that in 

metropolitan areas, crash attributes tend to have more influence on the crash 

severity compared to roadway attributes. Surface condition and light condition are 

especially having higher importance scores in metropolitan counties. The 

attributes from roadway database have minor impact crash severity such as AADT 

and IRI in metropolitan areas. 

When focusing on rural areas, the impact from crash attributes is 

decreasing significantly. Importance of attributes become more similar especially 

on guardrail and median barrier related crashes which also suggests the rising 
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importance of roadway attributes. Relatively, HOV types have the highest 

importance rank on rural bridge rail crashes, the impact of bridge detail information 

has also increased compared to metropolitan areas. 

To emphasize the attribute impacts on the property damage, the same 

datasets are trained again with another output. The analysis results are shown in 

Figure 10. 

  

(a) Guardrail–Metro    (b) Guardrail–Rural 
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(c) Median barriers–Metro    (d) Median barriers–Rural 

  

(e) Bridge Rail-Metro    (f) Bridge Rail-Rural 

Figure 10 Linked data attributes importance ranking on property damage by 
XGBoost model for each safety device 

 

Since property value amount damaged also reflects the performance of 

roadside safety devices, and the modeling result that set property damage as 

output is also analyzed to assess the performance difference. In metropolitan 

areas, the attributes with the highest important score on the crash result for each 

selected safety device are from roadway attributes. More specifically, types of HOV 

lanes impact the performance of both guardrail and median barriers on property 

damage in metropolitan counties. Highway systems which specify located 

transportation infrastructure affect the performance of bridge rail. 
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The results in rural areas have some differences as median type is the 

major affecting attribute for median barriers and bridge rail. As for guardrail, IRI 

and highway network type rank the highest as important parameters in rural 

crashes. Although some attributes from crash conditions increase the importance 

scores in rural areas, the major impacting attributes are focused on transportation 

infrastructure and roadway design instead of crash conditions. 

4.2.2 Modeling Analysis on Crash Data under Pandemic 

Since the COVID-19 pandemic has significant influence over transportation 

field during 2020. One year of CRIS crash data in year 2020 is sampled to study 

the difference of attributes influencing performance of selected safety attributes. 

Due to the decrease of traffic flow during pandemic period, the crash number in 

2020 has been remarkably changed. Detailed crash number and population with 

normalized trend in recent ten years in Texas are shown in Table 11 through CRIS 

crash data. The normalized general crash trend is increasing over the first nine 

years. However, the total crash in 2020 has decreased by 15.9% compared to year 

2019 and is even lower than the crash number in 2014. In considering of the 

population growth, crash number per 1,000 population in 2020 is significantly 

dropped and close to the crash number per 1,000 population in 2011. 

Table 11 Normalized Crash Trend in Texas from 2011 to 2020 

Year 2011 2012 2013 2014 2015 

Crash 
Number 

456,150 495,893 521,475 555,298 601,175 

Population 25,645,504 26,084,120 26,479,646 26,963,092 27,468,531 
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Crash 
Number 
over Every 
1,000 
Population 

17.8 19.0 19.7 20.6 21.9 

 

Year 2016 2017 2018 2019 2020 

Crash 
Number 

632,288 620,860 629,116 649,024 545,736 

Population 27,914,064 28,291,024 28,624,564 28,986,794 29,360,759 

Crash 
Number 
over Every 
1,000 
Population 

22.7 21.9 22.0 22.4 18.6 

 
Model Performance. Since the size of one year crash data is different 

compared to seven years of linked data used in the last modeling analysis part. 

Performances of candidate models are required to be evaluated again on crash 

data set to select the suitable Machine Learning model. The dataset is categorized 

under each safety device similarly in the previous section. The results of model 

performance evaluation based on different output attributes are shown in Table 12 

and Table 13.  

Table 12 Accuracy Scores for Candidate Models on Crash Severity in Crash 
Data Analysis 

 
Area 

Decision 
Tree 

XGBoost 
Random 
Forest 

MLP 
Classifier 

Gaussian 
NB 

K-Nearest 
Neighbors 

Rural 0.575 0.631 0.600 0.630 0.563 0.614 

Metropol
itan 

0.595 0.625 0.606 0.625 0.589 0.578 
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Table 13 Accuracy Scores for Candidate Models on Property Damage in Crash 
Data Analysis 

 
Area 

Decision 
Tree 

XGBoost 
Random 
Forest 

MLP 
Classifier 

Gaussian 
NB 

K-Nearest 
Neighbors 

Rural 0.967 0.981 0.979 0.979 0.953 0.979 

Metropol
itan 

0.972 0.978 0.977 0.978 0.956 0.978 

 

As the results shown in Table 12 and Table 13, the highest accuracy scores 

are shown in red colors for both output attributes. The XGBoost also has the 

highest accuracy scores on crash severity and property damage output in this 

dataset. Unlike the linked data, the performance of candidate Machine Learning 

Models are not necessarily better in metropolitan scenario. The performance of 

MLP Classifier for sample crash data is close to XGBoost. Thus, XGBoost is 

selected as the Machine Learning model in this section. 

Feature Selection. The target data has fewer attributes and smaller data 

size compared to linked data with additional roadway attributes. This part of data 

analysis focuses on parameters in crash database, the outputs used for 

assessment of devices performance are still crash severity and whether over 

$1,000 property damage. The XGBoost modeling results on the crash severity 

output are shown in Figure 11. 
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(a) Guardrail–Metro    (b) Guardrail–Rural 

  

(c) Median barriers–Metro    (d) Median barriers–Rural 
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(e) Bridge Rail–Metro    (f) Bridge Rail–Rural 

Figure 11 Crash data attributes importance ranking on crash severity by 

XGBoost model for each safety device 

 

From modeling results on crash severity when data source is one year of 

Texas crash data under the pandemic period, the dissimilarity of the importance 

scores for related attributes between different safety devices and areas is reduced. 

Generally, the highest impact attribute on crash severity regardless of data groups 

is the road surface condition. The light condition is also having relatively higher 

impact over crash severity in this dataset. Due to the decrease in total crash 

number, the impact of crash attributes in metropolitan crashes tend to be more 

average and the important crash parameters in metropolitan crashes tend to be 

included in the crash conditions. 
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Compared to metropolitan areas, rural crash attributes have similar impact 

on crash severity. Apart from surface condition, bridge detail attribute that indicates 

the lane type of crash location is also vital especially for rural bridge rail crashes 

under pandemic. The attributes that are related to roadway maintenance and basic 

infrastructure have higher influence in rural areas under the pandemic. 

The XGBoost model is used to train same groups of data again for 

presenting performance through property damage. The results are shown in Figure 

12.  

  

(a) Guardrail–Metro    (b) Guardrail–Rural 
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(c) Median barriers–Metro    (d) Median barriers–Rural 

  

(e) Bridge Rail–Metro    (f) Bridge Rail–Rural 

Figure 12 Crash data attributes importance ranking on property damage by 

XGBoost model for each safety device 
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 According to the modeling results for property damage output, the speed 

limit is presented to be the most important parameter for each safety device in rural 

and metropolitan areas, except for metropolitan crashes related to bridge rail. The 

bridge detail still has the influence over property damage for bridge rail in 

metropolitan crashes, while the importance rank of this attribute is higher even 

related to median barrier crashes. The importance ranking of attributes in rural 

crashes are different compared with metropolitan crashes with increased impact 

from attributes related to roadways. 

 

4.3 Discussion 

By conducting a thorough analysis on crash and roadway data sets, part of 

Level I ISPE process were implemented to address the performance of selected 

safety devices through crash results outputs. This study went through the statistical 

analysis which ensure the significance difference between individual input and 

output attributes in the target databases. Follow-up analysis only makes sense 

when the results of ANOVA test suggest the dissimilarities within studied data. 

Through comparing the statistical counting and correlation results with 

Machine Learning based modeling results, it can be concluded that, performance 

of roadside safety devices differs in rural and metropolitan areas. While distribution 

of serious crashes tends to be higher in rural counties, the impact factors that 

influence the performance of safety devices are focused on roadway information 

and transportation infrastructure in rural areas, instead of crash conditions as in 
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metropolitan areas. However, the roadway surface condition has been a fairly 

important parameter in affecting safety devices. Studies have been conducted to 

draw the conclusion that, when further feature selection on more detailed 

scenarios is conducted, it can be demonstrated that the improvement and 

maintenance of roadway condition in rural areas are insufficient compared to 

metropolitan areas, which tends to leave bad surface conditions for the roadways. 

In addition, some transportation infrastructure including medians in rural roadways 

are much less installed and developed (Wang, et al., 2021). In this way, the 

transportation equity can be addressed to highlight the importance of balancing 

between different communities. 

The result of this study emphasizes the focusing point of impacting 

parameters when performing ISPE are varied. It is based on located communities 

and additional attributes from other data sources apart from crash data itself. The 

corporation of other related infrastructure also plays a necessary role for roadside 

safety devices to perform as they designed to. In addition, to back up reviewed 

needs under pandemic period, the individual crash analysis result suggests the 

roadway condition and related infrastructure statue in rural counties need to be 

paid attention to by local authorities. In a word, transportation equity is still vital 

under pandemic period. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

The major objectives of this thesis include the comparison between two 

principal communities in transportation safety aspect and addressing the needs for 

transportation equity by conducting In-Service Performance Evaluation on safety 

devices. Candidate Machine Learning models with their own algorithms and 

theories are introduced in this study. By performing assessment on potential 

suitable models, one Gradient Boosting model was applied to train target datasets 

for more precise analysis results. Multiple analysis approaches were conducted in 

this study along with proper comparisons. Additional analysis under specific year 

is also performed to prove the needs for transportation equity and Environmental 

Justice practices under pandemic situations. 

The findings of this thesis study can be summarized into the following points.  

(1) As an important evaluation to transportation safety, crash analysis is 

essential in transportation studies. The distribution of crashes results in fatal or 

incapacity injuries and high value of property damage is higher in rural 

communities, even though the total crash number there is much lower compared 

to metropolitan counties. 
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(2) Apart from the maintenance and development of safety devices 

themselves, the needs for improving surrounding roadway conditions and related 

transportation infrastructure cannot be ignored. It is a vital consideration to ensure 

the roadside safety devices are properly in-service before the determination of 

transportation decisions.  

(3) It is rather essential to follow the requirement of transportation equity 

and EJ practices in related polices. The demand in fulfilling equity in transportation 

studies should be satisfied all time including the pandemic period. 

Illustrated from the conclusions of this study, several recommendations are 

presented for improving the transportation equity: 

(1) Projects and studies focused on maintaining and improving 

transportation infrastructure and roadway conditions in rural or low population 

communities are recommended to conduct. Related transportation agencies and 

local authorities are encouraged to spend more resources and make high-level 

polices or acts on the development of basic public facilities and infrastructures 

equally in all regions. 

(2) ISPE practices are recommended to be incorporated into proper 

analysis on transportation infrastructure. Additional data sources and attributes are 

suggested to be included in crash related analysis. High-end analysis method 

including Machine Learning modeling or other computer technologies are 

recommended to be considered in further data analysis. 
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(3) The installation and maintenance conditions of safety devices 

themselves should also be equally evaluated in both metropolitan and rural areas. 

Inventory of major types of safety devices such as median barriers and guardrails 

are suggested to be updated with regular time period
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