STUDIES TOWARDS THE TOTAL SYNTHESIS OF SPIROQUINAZOLINE

Submitted by
Siyuan Chen
Department of Chemistry

In partial fulfillment of the requirements
for the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, CO

Summer, 2007

Dedication

To my dad, for everything he did

Abstract

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR SUPERVISION BY SIYUAN CHEN ENTITLED STUDIES TOWARDS THE TOTAL SYNTHESIS OF SPIROQUINAZOLINE BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE THE DEGREE OF DOCTOR OF PHILOSOPHY.

ABSTRACT OF DISSERTATION STUDIES TOWARD THE TOTAL SYNTHESIS OF SPIROQUINAZOLINE

Presented herein is the synthesis of a key intermediate in the total synthesis of spiroquinazoline. By using N-Boc-serine as starting material, an efficient methodology has been developed to synthesize two types of δ, γ-unsaturated- α-amino acids bearing substitution at either the δ - or γ-position. After this, a novel $\mathrm{S}_{\mathrm{N}} 2$, reaction which introduces two quaternary centers has been developed. The quinazolinone core of the molecular has been constructed.

The progress we made in those key steps paves the way to the first total synthesis of spiroquinazoline.

Ackowledgements

First, I would like to thank Professor Robert M. Williams for giving me the opportunity to study and do research under his guidance and supervision. I also want to thank Professor Williams for granting me the freedom to develop my own ideas. I have been trained to be a good chemist from this research project. I would like to thank all other group members in Williams group for their help and support. Special thanks to Dr. Dan Fishlock, Tenaya Newkirk, O. Andrea Wong, my lab colleagues Hui Li, Carolyn Selenski, Alberto Jimmenez, Ryan Rafferty and Brandon English.

Table of Contents

Chapter 1 Introduction 1
1.1 Isolation and Biological Studies 1
1.2 Hart's Synthesis of (-)-Alantrypinone 4
1.3 Kende's Synthesis of (\pm)-Alantrypinone 7
1.4 Snider's Synthesis of Fumiquinazoline C 11
1.5 Hart's Studies toward the Total Synthesis of Spiroquinazoline 13
1.6 Strategies to Construct Bicyclo[2,2,2]diazaoctane. 19
1.7 Strategies to Construct Quinazolinone Core 25
Chapter 2 Results and Discussions 28
2.1 Synthetic Consideration 28
2.2 Synthesis of δ-Aryl- δ, γ-Unsaturated- α-Amino Acids 39
2.3 A Novel $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ Reaction. 53
2.3.1 Introduction of Protecting Groups 53
2.3.2 First Generation $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ Reaction 57
2.3.3 Efforts to Introduce ortho Functionality 62
2.3.4 Unexpected Sigmatropic Rearrangement 64
2.3.5 Second Generation $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ Reaction 67
2.4 Construction of Quinazolinone Core and Future Plan 73
2.4.1 Construction of Quinazolinone Core 73
2.4.2 Efforts to Make Oxindole 75
2.4.3 Conclusion and Future Plan 78
References 83
Chapter 3 Experimental Section 93
Appendix ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra 149

Chapter 1. Introduction

1.1 Isolation and biological studies

Substance P (SP), a member of the neurokinin family and the endogenous ligand for the neurokinin-1 (NK1) receptor, has been implicated in a number of physiological activities and is believed to play an important role in the perception of painful stimuli and inflammatory responses. ${ }^{1}$ In 1994, Barrow reported the isolation of a new substance with a new carbon skeleton from Aspergillus Flavipes. ${ }^{2}$ This natural product showed inhibition of $\left[{ }^{3} \mathrm{H}\right]-\mathrm{SP}$ binding to human astrocytoma cells with an inhibitory concentration $\left(\mathrm{K}_{1}\right)$ of $95 \mu \mathrm{M}$. This property renders it one of the leading products in the preparation of analgesics. The natural product was named spiroquinazoline. The structures of spiroquinazoline and some close analogues are shown in Scheme 1.

Alantrypinone is a natural product with the same carbon skeleton as spiroquinazoline, but alantrypinone has an oxindole rather than an imidazoleindoline. When alantrypinone was isolated in 1998 , no biological activity was reported. ${ }^{3}$ Three years later, Yoshihisa Ozoe et al performed a series of experiments to determine the potency of alantrypinone and seralantrypinone ${ }^{4}$ in terms of their respective abilities to inhibit the specific binding of $\left[{ }^{3} \mathrm{H}\right] \mathrm{EBOB}(\mathrm{EBOB}=1$-(4-ethylnylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2,2,2]octane) to housefly head and rat brain membranes. ${ }^{5}$ As
shown in Figure 1, alantrypinone ($\mathrm{PF} 1198 \mathrm{~A}, \mathrm{IC}_{50}=0.34 \mu \mathrm{M}$) inhibited $\left[{ }^{3} \mathrm{H}\right]$ EBOB binding to the housefly GABA ($\mathrm{GABA}=\gamma$-aminobutyric acid) receptor ca. 6 -fold more potently than did seralantrypinone $\left(\mathrm{PF} 1198 \mathrm{~B}, \mathrm{IC}_{50}=2.1 \mu \mathrm{M}\right)$. In the rat GABA receptor, alantrypinone $\left(\mathrm{IC}_{50}=16 \mu \mathrm{M}\right)$ was 8-fold more potent than seralantrypinone $\left(\mathrm{IC}_{50}=128 \mu \mathrm{M}\right)$. The selectivities that those two natural products showed for housefly versus rat GABA receptors were ca. 47 -fold and ca. 61-fold respectively (Figure 2).

Scheme 1

Figure 1 Inhibition of the specific binding of [$\left.{ }^{3} \mathrm{H}\right] E B O B$ to housefly head membranes by PF1198A (alantrypinone) and -B (seralantrypinone). J. Agric. Food Chem., 2004, 52, 3884-3887

Figure 2 Inhibition of the specific binding of [$\left.{ }^{3} \mathrm{H}\right]$ EBOB to rat brain membranes by PF1 198A (alantrypinone) and -B (seralantrypinone). J. Agric. Food Chem., 2004, 52, 3884-3887

They then examined the two natural products in terms of their insecticidal activity. In assays using agricultural pest insects, both in the range of $100-500 \mathrm{ppm}$ showed significant insecticidal activity against aphids. Again, alantrypinone was found to be more potent than seralantrypinoe in insecticidal assays using aphids (Figure 3).

Figure 3 Insecticidal activity of PF1 198A (alantrypinone) and -B (seralantrypinone) against aphids. J. Agric. Food Chem., 2004, 52, 3884-3887

Lapatin A and B are two natural products recently discovered by Larsen and coworkers. ${ }^{6}$ Lapatin A appears to be the enantiomer of spiroquinazoline; however the substituted methyl group is actually in a different position. Lapatin B appears to be the enantiomer of alantrypinone; however it is actually lacking one methyl group. Fumiquinazoline C^{7} has a $[2,2,3]$ bridged cycle rather than a $[2,2,2]$ system. With an extra oxygen fumiquinazoline C has a seven-membered ring.

It should be pointed out that reported research on all aspects of spiroquinazoline, such as its biological mechanism, biosynthesis and total synthesis is limited. Until today, nobody has reported the total synthesis of spiroquinazoline. In 1999, Hart reported a total synthesis of (-)-alantrypinone by using an iminium ion generation-indole spirocyclization-intramolecular azomethine trapping cascade. ${ }^{8,9}$ Similar chemistry was used by Snider in the total synthesis of fumiquinazoline C, another relative of spiroquinazoline. ${ }^{10,11}$ In 2004, Kende reported a total synthesis of (\pm)-alantrypinone using an intramolecular Diels-Alder reaction. ${ }^{12,13}$ First, we will have an overview of the syntheses of those close analogues; then we will discuss some synthetic studies of spiroquinazoline by Hart's research group.

1.2 Hart's Synthesis of (-) Alantrypinone ${ }^{8.9}$

Hart's group spent years on the synthesis of spiroquinazoline. They imagined that nature might produce spiroquinazoline by an oxidative cyclization of fumiquinazoline F via the formal equivalent of an N -acyliminium ion of type 7 (Scheme 2).

Scheme 2
Alantrypinone is a structurally simpler relative of spiroquinazoline. Hart envisioned that it could be produced via a similar oxidative cyclization (Scheme 3).

Scheme 3

It seems that the synthesis of alantrypinone is simplified to the synthesis of 9 .
In Hart's story, they spent a long time finding a way to synthesize 9. Although they could make compound 12, they were unable to achieve cyclization, even under such drastic conditions as reflux in CHCl_{3}-TFA mixture (Scheme 4).

Scheme 4

Their successful synthesis of (-)-alantrypinone is shown in Schemes 5 and 6. Their synthesis started with isatoic anhydride 13. Coupling between isatoic anhydride 13 and the methyl ester of (S)-(-)-tryptophan 14 in benzene gave dipeptide 15 in 97% yield. Reaction of dipeptide 15 with acid chloride 16 derived from N-Fmoc-Smethylcysteine under Schotten-Baumann conditions gave tripeptide 17 in 96% yield. Cyclization of 17 to benzoxazine 18 was accomplished by treatment with $\mathrm{PPh}_{3}-\mathrm{I}_{2}$ and Hünig's base in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Treatment of $\mathbf{1 8}$ with [$\left.\mathrm{Me}_{3} \mathrm{AlSPh}\right] \mathrm{Li}$ in THF gave compound 19 in 76%, which was then converted into quinazolinone 20 . Oxidation of $\mathbf{2 0}$ with m CPBA, followed by treatment with PPh_{3}, gave enamide 21.

Scheme 5

The next step was the key step. A tertiary carbocation was formed from the terminal alkene in 21 when 21 was treated with TFA. The carbocation was captured by the indole in an intramolecular reaction to afford bridged core $\mathbf{2 2}$ in 89% yield. Treatment of 22 with NBS, followed by hydrogenolysis gave a mixture of (-) alantrypinone 23 and 17-epi-alantrypinone 24 in 30% and 44% yields, respectively. We should notice that what they obtained was the enantiomer of (+)-alantyrpinone, the natural product. So we used a different number to denote it. The conversion of $\mathbf{2 2}$ to $\mathbf{2 3 + 2 4}$ was shown to involve rapid formation of a mixture of diastereomeric bromoindoles followed by slower conversion to a mixture of 23-bromo-23 and $\mathbf{2 4}$. They used hydrogenolysis to remove those aromatic bromine atoms.

Scheme 6

1.3 Kende's Synthesis of (\pm) Alantrypinone ${ }^{12,13}$

In 2004 Kende and coworkers reported a racemic synthesis of alantrypinone using an intermolecular Diels-Alder reaction. The first part of Kende's synthesis is similar to Hart's synthesis (Scheme 7). Kende's synthesis started with anthranilic
acid, which was coupled with ethyl glycinate using EDCI to provide amide $\mathbf{2 5}$. Compound 25 was then coupled with Fmoc-Ala-OH using EDCI in $\mathrm{CH}_{3} \mathrm{CN}$ to produce protected diamide 26 in 68\% overall yield. Treatment of compound 26 with $\mathrm{Ph}_{3} \mathrm{P}$ and Br_{2} and Hünig base led to the corresponding imino benzoxazine 27. Imino benzoxazine 27 was treated with piperidine to produce the desired tricyclic dione 28 in 79% yield for two steps. Tricylclic dione 28 was treated with triethyloxonium fluoroborate in the presence of sodium carbonate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 85% of an imino ether. A gentle oxidation of the imino ether was accomplished by refluxing with DDQ in benzene to produce azadiene 29 as a stable, crystalline solid.

Scheme 7

A Diels-Alder reaction between the azadiene 29 and dienophile $\mathbf{3 0}$ provided the desired regio chemistry and good exo selectivity (Scheme 8). The methyl lactim ether was deprotected by treatment with HCl in ethyl acetate. The tert-butyl ester was converted to the acid $\mathbf{3 3}$ by treatment with TFA. The acid was then transformed into the corresponding phenylselenyl ester, followed by reduction with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN to produce (\pm) alantrypinone 34 . We shall notice that what they obtained is a racemic mixture.

Scheme 8
From these Diels-Alder reactions, it seems that the azadiene 29 is an active diene that might be directly reacted with 3-methyleneoxindole. As expected, an aza Diels-Alder reaction between diene 29 and 3-methyleneoxindole $\mathbf{3 5}$ proceeded readily in chloroform at room temperature to produce exo isomer $\mathbf{3 6}$ in 55\% yield and endo isomer 37 in 18\% yield, as shown in Scheme 9. The exo isomer was converted into (\pm) alantrypinone 34 in good yield.

Kende and coworkers also found a thermal equilibration between (\pm)alantrypinone 34 and (\pm-epi-alantrypinone 38 under basic condition. When 38 was heated to $100^{\circ} \mathrm{C}$ in the presence of a small amount of DBU in DMSO, 75% of $\mathbf{3 8}$ was converted to 34 . When 34 was heated to the same temperature at the presence of DBU, the same ratio (3:1) of $\mathbf{3 4}$ to $\mathbf{3 8}$ was again generated. This interesting epimerization may occur through an anionic retro-Mannich reaction (Scheme 10).

Scheme 9

Scheme 10

1.4 Snider's synthesis of fumiquinazoline $\mathbf{C}^{10,11}$

Fumiquinazolines A-I are a group of natural products built upon [2, 1-b]-quinazoline-3,6-dione. Among this group of natural products, fumiquinazoline C is the closest analogue of spiroquinazoline. Instead of a [2,2,2] bridged system fumiquinazoline C has a $[2,2,3]$ ring system, which consists of a seven-membered ether ring. That is the major structural difference between spiroquinazoline and fumiquinazoline C. Schemes 11 and 12 show the total synthesis of this natural product by Snider's research group. Snider's synthesis is also based on cation chemistry. In Hart's synthesis of alantrypinone, the cation was captured by the indole ring. In Snider's synthesis of fumiquinazoline C, the cation was captured by a hydroxyl group.

Their synthesis started with N -acylindole $\mathbf{4 0}$ which could be prepared from Dtryptophan 39 in 3 steps (Scheme 11). Mercuration of 40 with $\mathrm{Hg}(\mathrm{OTFA})_{2}$ followed by iodination gave 85% of iodoindole 41 . Compound 41 then underwent a Buchwald palladium-catalyzed cyclization to afford 64% of 42 . Epoxidation of 42 with the saccharine-derived oxaziridine $\mathbf{4 3}$ yielded 65% of $\mathbf{4 4}$ as a mixture of diastereomers. Reduction of 44 with NaBH_{4}, followed by lactonization with silica gel in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 12 h to gave 66% of 45 .

Scheme 11

Reductive deprotection of Troc in 45 with Zn in AcOH afforded an amine, which was coupled with anthranilic acid to yield a dipepetide (Scheme 12). A second coupling of this dipeptide with $\mathrm{FmocNHCH}\left(\mathrm{CH}_{2} \mathrm{SePh}\right) \mathrm{CO}_{2} \mathrm{H}$ yielded tripeptide 46. Treatment of 46 with $\mathrm{Ph}_{3} \mathrm{P}$ and Br_{2} in the presence of Hünig base provided 76% of iminobenzoxazine 47. Reaction of 47 with 10 equivalents of piperidine in EtOAc at $25^{\circ} \mathrm{C}$ for 10 minutes generated crude amidine amine 48, which was refluxed in $\mathrm{CH}_{3} \mathrm{CN}$ and acetic acid for 2 hours to give 65% of Cbz -fumiquinazoline 49 .

Heating crude 49 in $25: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{HOAc}$ at reflux for 2 h formed a mixture of Cbz-dehydrofumiquinazoline $\mathrm{A}(56 \%)$ and Cbz -fumiquinazoline C (14\%). Further heating in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{HOAc}$ converted more of the former product to the latter. Under these reaction conditions, 49 underwent four sequential reactions. First, the amidine amide cyclized to form the quinazolinone. The amine lactone then reacted to give the piperazine ring. At this point, benzeneselenol was eliminated without the need for oxidation to the selenoxide. Finally, under the acidic conditions, the double bond was
protonated to give a cation that reacted with the alcohol to form the seven-membered ether ring of fumiquinazoline C .

Scheme 12
1.5 Hart's studies towards the total synthesis of spiroquinazoline ${ }^{14,15}$

Hart's research group has spent years trying to synthesize spiroquinazoline.
They first pursued a biomimetic approach to spiroquinazoline that involved a projected cascade cylization of an N -acryliminium ion as shown in Scheme 13.

Scheme 13

Their initial target for synthesis was compound 54 (Scheme 14). It was imagined that ionization of the C -S bond would provide an N -acyliminium ion of type 50. Treatment of 51 with 2 -aminoethanethiol followed by α-bromoacetyl bromide under basic conditions gave 52. Addition of hexadecyltrimethylammonium bromide provided 53. Sequential treatment of $\mathbf{5 3}$ with LDA and $\mathrm{Li}_{2} \mathrm{CuCl}_{4}$ in THF at $-78{ }^{\circ} \mathrm{C}$ followed by addition of gramine methosulfate provided 54. All attempts to ionize $\mathbf{5 4}$ using a variety of electrophiles such as iodomethane, silver triflate and mercuric triflate have failed.

Scheme 14

Compound $\mathbf{5 4}$ was then oxidized to sulfoxide $\mathbf{5 5}$ by m-CPBA (Scheme 15). Compound $\mathbf{5 6}$ was formed in 80% when compound $\mathbf{5 5}$ was refluxed with TFA in CHCl_{3}. The mechanism of the formation of $\mathbf{5 6}$ is also shown in Scheme 15. In this process, compound $\mathbf{5 5}$ underwent an elimination reaction to generate compound 57. Protonation followed by electrophilic addition of the sulfenic acid to the resulting olefin generated an N -acyliminium ion $\mathbf{5 8}$ which led to compound $\mathbf{5 6}$ by a loss of a proton.

Scheme 15
It seems that N-acylindole was too electron deficient to participate in an electrophilic aromatic substitution reaction under the sulfoxide rearrangement conditions. The indole sulfoxide 60 without N-acryl group was then examined (Scheme 16). The indole sulfoxide was treated with TFA in CHCl_{3} at reflux to give a complex mixture. This products included sulfoxide $\mathbf{6 2}$ (0-11\%), bridged indoles $\mathbf{6 3}$ (21-35\%) and 67 (14-21\%), and spiro indoline 66 (22-25\%).

61

Scheme 16

Sulfenic acid $\mathbf{6 1}$ was first generated from 60. Addition of sulfenic acid $\mathbf{6 1}$ to the resulting double bond provided sulfoxide 62. Addition of the sulfenic acid to the olefin, followed by an electrophilic aromatic substitution reaction provided 63. The N -acryaminium ion formed by addition of the sulfenic acid to the olefin was trapped by $\mathrm{C}-3$ of indole to provide indoline $\mathbf{6 5}$. Addition of the sulfenic acid to the azomethine followed by a Pummerer reaction provided 66. Fragmentation after protonation of the indoline nitrogen produced 67 . Hart's study demonstrated that an iminium ion generation-indole spirocyclization-intramolecular azomethine trapping cascade was feasible. Indeed, some redesign based on this chemistry had led to the
first synthesis of alantrypinone. However, using this strategy to build the imidazoleindoline ring system is still a big challenge.

It seems hopeless to pursue a total synthesis of spiroquinazoline directly on the basis of iminium cation chemistry mentioned ealier. Another option is to convert alantrypinone to spiroquinazoline by building imidazoloindoline on from the oxindole. To examine the feasibility of this option, Hart's group started with a model study on the transformation of 3,3-dimethyloxindole to imidazoloindoline (Scheme 17).

Scheme 17

Their initial studies focused on the transformation of 3,3-dimethyloxindole to imidazoloindoline and involved an intramolecular Staudinger reaction. Thus, the anion derived from deprotonation of known oxindole 68 was acylated using α chloroacetyl chloride followed by treatment with sodium azide in DMSO and gave 69 in 63% yield. Treatment of 69 with triphenylphosphine provided the expected intramolecular Staudinger product 70 in 92% yield. Borch reduction of 70 with sodium cyanoborohydride completed the desired four-step annulation and provided 71 in quantitative yield.

An alternative method for converting 68 into 71 involved initial acylation of the anion derived from 68 with p-nitrophenyl N -Cbz-glycinate to provide imide $\mathbf{7 2}$ in 88% yield. Saturation of a dichloromethane solution of 72 with BF_{3} gas at $-78^{\circ} \mathrm{C}$ in the presence of triethylsilane (2 equiv), followed by gradual addition of another 4 equivalents of triethylsilane and an aqueous workup gave carbinol 73 in 79% yield. Treatment of $\mathbf{7 3}$ with p-toluenesulfonic acid in benzene provided 70, and hydrogenolysis of the $\mathrm{N}-\mathrm{Cbz}$ group provided 71 in 98% overall yield.

All attempts to apply the annulation methods described above for the conversion of alantrypinone to spiroquinazoline have thus far met with failure. For the first strategy, although they were able to prepare the appropriate acylated substrates from alantrypinone by treatment with α-chloroacetyl chloride followed by treatment with sodium azide, they were not able to accomplish the key aza-Wittig reaction. Instead, the deacylation reaction became the dominant reaction. For the second strategy, the method that relies on the regioselective reduction of imide 72 provided a complex mixture of unidentifiable products when applied to an appropriate alantrypinone derivative. It is not surprising that the amide and $\mathrm{C}=\mathrm{N}$ bond in quinazolinone core may interfere with the reduction and make the reaction messy.

Our goal is to design and implement a total synthesis of spiroquinazoline on the basis of available knowledge of synthetic organic chemistry. From Hart's study we realize that we only have two options: (1) find a strategy to synthesize spiroquinazoline without going through alantrypinone; (2) design a new synthesis of alantrypinone, and a unique method to convert alantrypinone to spiroquinazoline. When we design our synthesis, we must consider a way to construct
bicyclo[2,2,2]diazaoctane and the quinazolinone core. Below is a summary of the options we may have for those two key steps.

1.6 Strategies to construct bicyclo[2,2,2]diazaoctane

Chemistry based on N-acyliminium ion
As we discussed above, the N-acyliminium ion may be generated by treatment of an olefin with an acid. The cation may be captured by a hydroxyl group, as shown by Snider in the synthesis of fumiquinazoline C. The cation may also be captured by an indole, and this strategy was utilized by Hart to synthesize alantrypinone. However, Hart's study showed that an N-acyindole was too electron-deficient to capture the cation. On the other hand, not only the electron-rich indole may capture this cation, but a phenyl without any electron rich subsituent can also capture the cation efficiently (Scheme 18). ${ }^{16}$

Scheme 18

(2) Diels- Alder reaction

The first example of a Diels-Alder reaction of olefin with 2-(1 H)-pyrazinones was reported in 1991. ${ }^{17}$ In the following example, a new and versatile route to 2,5diazabicyclo[$2,2,2$]octane-3,6-diones has been developed proceeding through cycloaddition of ethane to $2(1 \mathrm{H})$-pyrazinones (Scheme 19).

Scheme 19

An intermolecular Diels-Alder reaction of this type has led to a concise total synthesis of alantrypinone by Kende. It should be pointed out that intramolecular Diels-Alder reactions have been used to synthesize paraherquamides, brevianamides and asperparalines by our group. Scheme 20 shows a biomimetic total synthesis of racemic brevianamide. ${ }^{18}$

9-epi-Deoxybrevianamide E (80) was synthesized according to Kametani’s procedure. ${ }^{19}$ This substance was converted into a lactim ether, which was then oxidized to unsaturated compound $\mathbf{8 1}$ with DDQ. Treatment of this compound with KOH produced labile azadiene 82 , which cyclized to give a mixture of $\mathbf{8 3}$ and $\mathbf{8 4}$. Oxidation of $\mathbf{8 4}$ by m-CPBA followed by Pinacol-type rearrangement produced brevianamide 86 in 65% yield.

85

brevianamide

Scheme 20
(3) $\mathrm{S}_{\mathrm{N}} 2$ 'reaction.

Both the Diels-Alder reaction and chemistry based on N -acyliminium ion are versatile tools to construct bridged cycles. Both of these two tools also have their limits. The Diels-Alder reaction can only lead to racemic products. Capturing of an N-acyliminium ion by another unit intramolecularly usually only leads to [2,2,3] bridged systems, meaning further transformation is required. For example, Hart's group used an NBS promoted rearrangement to convert the [2,2,3] bridge system to the correct $[2,2,2]$ ring system. The selectivity of the rearrangement is not ideal.

To avoid the shortcomings of those two strategies, we are interested in another strategy to build bicyclo[2,2,2]diazaoctane: an $\mathrm{S}_{\mathrm{N}} 2$ ' reaction. The Williams research group has been using this powerful tool in the total synthesis of natural products since $1990 .{ }^{20}$

Different conditions have been examined by Williams' group to observe the affect on the facial selectivity of the $\mathrm{S}_{\mathrm{N}} 2$ reaction (Scheme 21). ${ }^{21}$ It was found that, in the presence of a polar solvent such as DMF or a metal-complexing ligand such as 18-crown-6, the anti product predominated, whereas in a nonpolar solvent such as benzene, the diastereoselectivity was completely reversed to favor the syn relative stereochemistry.

Scheme 21

These results were rationalized in term of "open" and "closed" transition states, as illustrated in Scheme 21. In the presence of a strongly coordinated species, a ligand sphere surrounds the enolate metal counterion and sterically forces the allylic chloride to adopt an "open" transition state, whereas in a nonpolar solvent, the
counter ion and chloride leaving group form a tight, intramolecular contact ion-pair and the reaction takes place through a "closed" transition state. However, better selectivity for the anti diastereomer is obtained when the metal ion and the ligand are "mismatched", e.g., Na^{+}with 18 -crown- 6 . When the pair is "matched", e.g., Na^{+}with 15 -crown-5, the metal ion is coordinated so strongly that it is separated from the enolate faster than $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization can take place, and the reaction exhibits poor selectivity.

The intramolecular $\mathrm{S}_{\mathrm{N}} 2$, cyclization was exploited in the asymmetric total synthesis of (-)-brevianamide B, as illustrated in Scheme 22. Allyl chloride $\mathbf{8 8}$ can be synthesized from 87. The key intramolecular $\mathrm{S}_{\mathrm{N}} 2$, cyclization furnished the bicyclo[2,2,2]diazaoctane core 89. Olefin-cation cyclization with concomitant removal of the Boc protecting group gave the hexacyclic compound 90 . The remaining part of the synthesis followed similar protocols in shown in Scheme 20.

Scheme 22

The intramolecular $\mathrm{S}_{\mathrm{N}}{ }^{\prime}$, cyclization was also exploited in the asymmetric total synthesis of (+)-paraherquamide B. ${ }^{22}$ As illustrated in Scheme 23, allylic chloride 93
could be prepared from known piperazinedione 92. The key intramolecular $\mathrm{S}_{\mathrm{N}} 2$, cyclization furnished the bicyclo[2,2,2]diazaoctane nucleus 94. Olefin-cation cyclization with concomitant removal of the Boc protecting group gave the heptacyclic compound 95 . Reduction of the tertiary amide, followed by introduction of the methyl group and deprotection of the Boc group afforded compound 96 . Chlorination by $t-\mathrm{BuOCl}$ to chloroindolenine followed by rearrangement led to oxindole. Dehydration of oxindole by $(\mathrm{PhO})_{3} \mathrm{PMeI}$ in DMPU yielded paraherquamide B 97.

Scheme 23
(4) Intramolecular Michael Addition

This reaction was also reported by Williams' group (Scheme 24). ${ }^{23}$ So far it has not been used in any natural product synthesis. Substituted diketopiperazine 99
was constructed in seven steps from (\pm) $-\mathrm{N}-\mathrm{Cbz}$ homoserine 98. A Horner-Wadsworth-Emmons olefination procedure provided unsaturated ester 100, which cyclized immediately to form a pair of diastereomers $\mathbf{1 0 1}$ and $\mathbf{1 0 2}$.

Scheme 24
1.7 Strategies to construct the quinazolinone core
(1) aza-Wittig reaction: ${ }^{24}$

In this case, a simple model 103 was first treated with KHMDS and then with o-azidobenzoyl chloride in the presence of DMI (1,3-dimethyl-2-imidazolidinone) to produce compound 104. Oxidative debenzylation by CAN generated compound $\mathbf{1 0 5}$. An aza-Wittig reaction on compound $\mathbf{1 0 5}$ produced the quinazolinone core structure 106 (Scheme 25).

Scheme 25
(2) A modified aza-Wittig strategy ${ }^{24}$

The strategy shown in Scheme 26 is less satisfactory than the one described above. Diketopiperazine 107 was first converted to a labile species: bis(trimethylsilyloxy)-dihydropyrazine 108. This species was treated with oazidobenzoyl chloride and then with PBu_{3} to give a mixture of three compounds. Due to the generation of two unfavorable by-products, the yield was low and purification was troublesome.

Scheme 26
(3) Strategy using benzoxazine

This strategy has been described above in Hart and Kende's syntheis of alantrypinone and Snide's syntheis of fumiquiazoline C. For the purposes of summary and comparision, the strategy is shown in the Scheme 27. As we can see, all three research groups have modified the original strategy to meet their needs

Scheme 27
(4) Strategy using lactim ether

A direct condensation of lactim ether with anthranilic acid may also produce quinazolinone (Scheme 28), ${ }^{16}$ but the yield is usually low.

1. $\mathrm{Et}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$ 2. Anthranilic acid
35\%
112

Scheme 28

Chapter 2. Results and Discussions

2.1 Synthetic Considerations

We have learned some strategies to build bicyclo[2,2,2]diazaoctane and quinazolinone core. Now we can use the knowledge to do some synthetic analysis of spiroquinazoline.

The first disconnection could be on any bond of the imidazoleindoline. There are different possible diconnections depending on the kind of substrate we wish to obtain. The first possiblee disconnection is on the N-C bond in imidazoleindoline (Scheme 29).

In this situation, if there is no ortho functional group we should have 3-hydroxyimidazolidin-4-one 114, which could be condensed with the phenyl to form the imidazoleindoline. ${ }^{26}$ The hydroxyl group is necessary for condensation. 3-Hydroxyimidazolidin-4-one 114 could be readily prepared from condensation of 2-amino- N-hydroxyethanamide with aldehyde 115 , which itself may be derived from terminal alkene $\mathbf{1 1 6}$ by ozonolysis.

Scheme 29
A appropriate ortho functional group will facilitate the synthesis. For example, if the phenyl carries an ortho bromine atom, the imidazoleindoline can be formed by a Buchwald palladium catalyzed cyclyzation (Scheme 30). ${ }^{26}$ In this case, we shall have imidazolidin-4-one 117 rather than a 3-hydroxyimidazolidin-4-one. Similarly, imidazolidin-4-one 117 can be prepared by condensation of 2 aminoethanamide with aldehyde 118, which may in turn come from terminal alkene
119.

Scheme 30

If the phenyl group carries a protected or a latent amino group (for example, a nitro group) the situation is very different. We envision that the imidazoleindoline could be formed by an acid or base promoted condensation of the α-amino amide with aldehyde 120 intramolecularly (Scheme 31). The α-amino amide could come from coupling of Fmoc-glycine with amine 122. This amine may be formed from a the nitro group in 123, and the aldehyde from terminal alkene 124.

Scheme 31

All of these retrosynthetic analyses led to the same type of compound (125 in Scheme 32). Our next disconnection will be on the quinazolinone core. We mentioned in Chapter 1 that a useful strategy to make the quinzolinone core is coupling of a diketopiperazine with o-azido benzoyl chloride followed by an azaWittig reaction. Therefore, the disconnection on the quinazolinone comes very naturally. As shown in Scheme 32, this disconnection may lead to two different types of structures. The first one is $\mathbf{1 2 7}$, in which the two amides are protected with the
same kind of protecting group. Although this plan seems to be feasible, there is an issue of regioselectivity since the quinazolinone core is attached to only one side of diketopiperazine (DKP). However, it still worths our tentative effort of research. If we take the issue of regio-selectivity into consideration, the two sides of the DKP should be protected with two orthogonal protecting groups. As an example, one amide can be converted into a lactim ether and other one may be protected with an alkyl group such as PMB as seen in $\mathbf{1 2 8}$. Of course this may lead to a longer synthetic route.

Scheme 32

From these analyses, the second type of disconnection discussed above seems more promising, but compound $\mathbf{1 2 7}$ seems more accessible, and we can do some tentative research on this substrate. The next disconnection will come through an $\mathrm{S}_{\mathrm{N}}{ }^{2}$ ' reaction (Scheme 33). If we choose reaction conditions which favor closed transition
state $\mathbf{1 2 9}$, then compound 127 could be derived from $\mathbf{1 3 0}$. The allyl chloride $\mathbf{1 3 0}$ may be accessible from allyl alcohol 131, which may arise from conjugated ester 132.

A similar disconnection may be applied to compound 128 using an $\mathrm{S}_{\mathrm{N}} 2$ ' strategy. Compound $\mathbf{1 2 8}$ may arise from the corresponding protected DKP in which the two amides are protected with orthogonal protecting groups.

It seems that if we can prepare DKP 130, it could be used to test the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction. Once we develop an efficient $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction we can apply this strategy on other more complicated DKPs.

Scheme 33
Scheme 34 shows two strategies to prepare the fuctionalized DKP. One is a strategy based on a Heck reaction, and the other is based on a Stille coupling reaction. In DKP 133, there are chiral centers, but the chiral center from alanine is unimportant. In $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reactions, when the substrate is treated with base, this chiral center will be racemized. The chirality of the $\mathrm{S}_{\mathrm{N}}{ }^{2}$ ' product therefore depends solely on the other chiral center. The problem is thus simplified to the synthesis of a
functionalized DKP with one chiral center. We can have a brief look at some strategies to do this.

The first strategy is presented and demonstrated by Sandri and coworkers. ${ }^{27}$ Scheme 35 shows their method to introduce a chiral center on a DKP using a chiral template. Although no peptide synthesis is needed for this method, the process consumes two equivalents of chiral auxiliary (R)-phenylethylamine. Removal of the chiral template by Birch reduction gave inconsistent results. Eventually, we gave up this strategy.

Scheme 34

Scheme 35

Scheme 36 shows a general method to introduce an allyl group on glycine by using N -(diphenylmethlene) glycine ethyl ester. ${ }^{28}$ The DKP is prepared by peptide coupling followed by intramolecular condensation. Chiral additives must be used to introduce chirality. Our first attempt was to make the racemic product. The yield of the transformation from $\mathbf{1 4 5}$ to $\mathbf{1 4 6}$ was not reproducible. This method is not an economic method to prepare functionalized DKPs due to poor yields and the expensive reagent 145 .

Scheme 36

Sheradky reported a concise synthesis as shown in Scheme 37. ${ }^{29}$ In this synthetic route, the starting materials are N-Cbz-alanine 150 and α-amino- α butyrolactone hydro-bromide 151, which could be prepared by a method previously described. ${ }^{30}$ A coupling reaction between these two starting materials gave dipetide 152. Hydrogenolytic deprotection of Cbz gave a free amine that attacked the lactone to generate compound $\mathbf{1 5 3}$ directly. In spite of this compound's poor solubility in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, it can still be oxidized to the corresponding aldehyde by a Dess-Martin reagent. However, the corresponding aldehyde is not separable due to its poor
solubility. To improve solubility, alcohol $\mathbf{1 5 3}$ was first treated with 1,2-dihydrofuran to introduce a THP protecting group. Treatment of 155 with PMBBr and NaH installed two PMB protecting groups on the amides. Deprotection of THP by treatment with TsOH gave the alcohol 156. This alcohol was readily oxidized to the corresponding aldehyde $\mathbf{1 5 7}$ by Dess-Martin oxidation. A Wittig reaction afforded a conjugate ester 158 which is the substrate for a Heck reaction.

Unfortunately, we were unable to introduce an aryl group into the conjugate ester. All the conditions we tried for the Heck reactions resulted in complex mixtures (Table 1). Since in all conditions base was used, the stability of substrate to base is questionable.

Scheme 37
As in our analyses above, an alternative strategy is the Stille strategy. Aldehyde 157 underwent a Wittig reaction to produce vinyl iodide 159. ${ }^{31}$ Different basic conditions were examined to convert vinyl iodide 119 into alkynyl ester $\mathbf{1 6 0}$, but unfortunately no desired product was observed under all conditions (Scheme 38).

Table 1

Catalyst	Base	Solvent	T ($\left.{ }^{\circ} \mathbf{C}\right)$
$\mathrm{Pd}(\mathrm{OAc})_{2}$	KOAc	DMF	60
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{P}(t-\mathrm{Bu})_{3}$	$\mathrm{Cy}_{2} \mathrm{NMe}$	dioxane	25
$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{3} \mathrm{CN}$	100
$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{OAc}^{-}$	Melt salt: $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{OAc}$ and $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$	~ 100
$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$	NaHCO_{3}	80
$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cy}_{2} \mathrm{NMe}^{2}$	$\mathrm{DMAc}+\mathrm{Et}_{4} \mathrm{NBr}$	85
$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$	DMF	80
$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$	$1,2-$ dchlorobenzene	80

Scheme 38

When compound 159 was treated with strong base, only complex mixtures were obtained. Under weak basic conditions, only conjugate diene 164 was obtained (Table 2). The mechanism is shown in Scheme 39.

Table 2

Entry	Reagents	Solvent	T (${ }^{\circ} \mathrm{C}$)	Result
1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	methanol	25	Messy
2	KHCO_{3}	methanol	25	diene
3	$\mathrm{Ag}_{2} \mathrm{O}$	benzene	25	No reaction
4	$\mathrm{Ag}_{2} \mathrm{O}$	benzene	60	No reaction
5	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	benzene	25	No reaction
6	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	benzene	60	No reaction
7	NaOAc	ethanol	25	No reaction
8	NaOAc	ethanol	60	diene
9	AgF + Pyr.	pyridine.	25	diene
10	$\mathrm{Ag}_{2} \mathrm{O}_{2} \mathrm{CCF}_{3}+\mathrm{TEA}$	benzene	25	diene
11	Quinoline	benzene	25	No reaction
12	Quinoline	benzene	60	No reaction
13	$\mathrm{Cy}_{2} \mathrm{NMe}$	benzene	25	No reaction
14	$\mathrm{Cy}_{2} \mathrm{NMe}$	benzene	25	No reaction

Scheme 39

All tentative trials failed. We could not use the Stille strategy above simply because the alkynl ester 160 is not available. However we were sure that the Stille strategy should work after some modifications. Since introduction of an alkynyl ester on a DKP is impossible we must examine the possiblity of introducing it in the stage of amino acid rather than on the DKP. This idea has led to the synthesis of δ-aryl- δ, γ -usaturated- α-amino acids. A new methodology was developed. This will be discussed in the next chapter.

2.2 Synthesis of δ-aryl- δ, γ-usaturated- α-amino acids ${ }^{32}$

Non-proteinogenic α-amino acids are important nitrogenous building blocks, which are useful for the synthesis of natural products as well as a multitude of biologically significant substances. ${ }^{33,34,35}$ There has been continuing interest in the development of new methods for the synthesis of enantiomerically pure amino acids with substituents strategically placed at side-chain positions, including the capacity to install unsaturation. Many methods have been developed for the asymmetric synthesis of amino acids. Despite the plethora of extant methodologies, many reactive functionalities remain incompatible with existing templates.

Our tentative trials have demonstrated that introduction of all necessary functionalities in the DKP stage is difficult. We have to seek an alternative option. One option is to introduce those functionalities in the amino acid stage. Access to δ -aryl- δ, γ-usaturated- α-amino acids such as $\mathbf{1 6 5}$ is thus required.

Originally, we envisioned that $\mathbf{1 6 5}$ could be synthesized from Williams lactone template $\mathbf{1 6 6}$ and allyl bromide 167. ${ }^{36}$ The first compound therefore we need to synthesize is the functionalized allyl bromide 167 (Scheme 40).

Scheme 40

The synthesis of the allyl bromide started with 4-bromofuran-2(5H)-one $\mathbf{1 6 9}$ and tributyl(2-nitrophenyl)stannane 171 (Scheme 41). The former can be prepared from tetronic acid $\mathbf{1 6 8}$ by a Vilsmeier bromination, ${ }^{37}$ and the latter can be prepared from o-iodonitrobenzene $\mathbf{1 7 0}$ by a Stille reaction ${ }^{38}$. A Stille coupling reaction between 169 and 171 afforded 172 almost quantitatively. Compound 172 was then reduced with DIBAL to afford diol 173. The two hydroxyl groups can be differentiated by introducing a TBDPS protecting group, which selectively reacted with the less hindered hydroxyl group to give compound 174.

Scheme 41

It should be pointed out that another effort to open the lactone led to an interesting result (Scheme 42). When compound 172 was treated with dimethyl amine, aldehyde 175 was produced. This product likely most arises through furan-2olate anion 177 followed by ketene intermediate 178 . The driving force should be the formation of the aromatic furan ring. ${ }^{39}$

Scheme 42

All efforts to directly convert the allyl alcohol into the corresponding allyl bromide failed. For example, no reaction occurred when allyl alcohol was treated with triphenylphosphine, carbontetrabromide and imidazole. It seems that the allyl alcohol is in a very hindered environment. Fortunately, the allyl alcohol could be converted into allyl chloride $\mathbf{1 8 0}$ (Table 3). ${ }^{40}$

Table 3

Conditions	Yield
$\mathrm{MsCl}, \mathrm{Collidine}, \mathrm{LiCl}, \mathrm{DMF}, 25^{\circ} \mathrm{C}$	48%
$\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$	No reaction
$\mathrm{NCS}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	60%

When the $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DMAP}$ system was used, no reaction was observed, probably due to hindrance. Both $\mathrm{MsCl} /$ collidine/ LiCl and $\mathrm{NCS} / \mathrm{DMS}$ worked for the reaction; however, both reactions caused partial migration of TBDPS. For the $\mathrm{MsCl} /$ collidine $/ \mathrm{LiCl}$ system, this problem was more serious. We eventually chose NCS/DMS system, which brought us 60% yield.

Allyl chloride 180 obtained above was converted into the corresponding allyl bromide 181 in 70% yield by treatment with LiBr (Scheme 43). Unfortunately, we were unable to couple 181 with the Williams lactone 166. Different bases such as LiHMDS, NaHMDS and KHMDS have been tried. In all conditions, a small amount of starting materials were recovered. Addition of 18 -crown- 6 did not change the result. Whenever the base was added to a mixture of Williams lactone and bromide 181, a dark red solution was obtained. Three factors may influence the reaction: 1) hindrance from the aryl group; 2) hindrance from the TBDPS group; 3) interference from the NO_{2}. We wer not sure which factor was the real problem, and decided to do some experiments to examine it. First, we decided to change the big TBDPS group to a small protecting group such as PMB. This transformation cannot be performed on compound 181, because it may undergo cyclization or TBDPS migration.

Scheme 43

Thus, a new strategy was developed to prepare an allyl chloride with PMBprotected alcohol 184 (Scheme 44). The synthesis started with propargyl alcohol 183 that was treated with NaH and PMBCl to introduce the PMB protecting group. ${ }^{41}$ The product 184 thus obtained was treated with n-butyl lithium followed by methyl chloroformate to afford compound 185. ${ }^{42}$ A hydrostannation generated two regioisomers, 186 and 187 , with the desired one (186) as the major product. ${ }^{43}$

Scheme 44
The results of the Stille coupling are listed in Table 4. ${ }^{44}$ Both $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ can catalyze this coupling reaction. When $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was used, cocatalyst CuI was needed. However, when $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ was used, a better yield (up to 62% yield) could be obtained.

Table 4

Catalyst	Cocatalyst	Solvent	Results	
$\mathrm{X}=\mathrm{Br}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	None	Toluene	No reaction
$\mathrm{X}=\mathrm{I}$	$\mathrm{Pd}_{2}\left(\mathrm{PP}_{3}\right)_{4}$	None	DMF	No reaction
$\mathrm{X}=\mathrm{I}$	$\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{4}$	CuI	THF	trace
$\mathrm{X}=\mathrm{I}$	${\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}}^{\text {N }}$	CuI	DMF	50%
$\mathrm{X}=\mathrm{I}$	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	None	DMF	62%
$\mathrm{X}=\mathrm{Br}$	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	None	DMF	23%
$\mathrm{X}=\mathrm{I}$	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	None	Dioxane	37%
$\mathrm{X}=\mathrm{Br}$	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	None	Dioxane	trace

Compound 188 was then reduced with DIBAL to generate alcohol 189. Again, we were unable to convert alcohol 189 directly to an allyl bromide by treatment with triphenylphosphine, carbontetrabromide and imidazole (Scheme 45).

Scheme 45

As discussed above, the alcohol was transformed into an allyl chloride, which was then treated with LiBr to afford the allyl bromide 191. However, we again failed to couple allyl bromide 191 with the Williams lactone template to obtain 192 (Scheme 45).

It seems that the factor of hindrance from the TBDPS protecting group is excluded. We began to realize that the o-nitrophenyl group was the problem. The hydrostannation chemistry above gave us a hint. Since o-nitrophenyl group was the problem, we would have to introduce the aryl group at a later stage. Namely, we could make an amino acid with a vinyl stannane and introduce the aryl group by a Stille coupling.

Jackson et al. have reported the synthesis of enantiomerically pure unsaturated α-amino acids via coupling to readily available serine-derived β-iodoalanine derivatives using zinc/copper reagents. ${ }^{45}$ We have adapted this approach to prepare a variety of δ-aryl- δ, γ-usaturated- α-amino acids.

Our approach commenced with N -(tert-butoxycarbonyl)-L-iodoalanine methyl ester 193, which is commercially available or can be prepared on a large scale by using the reported procedure with serine as the starting material. ${ }^{46}$ Iodide 193 was converted into the corresponding $\mathrm{Zn} / \mathrm{Cu}$ complex 194 and coupled with ethyl 3bromopropiolate or tert-butyl 3-bromopropiolate. ${ }^{46} \mathrm{The} \mathrm{Zn} / \mathrm{Cu}$ complex 194 reacted with ethyl-3-bromopropiolate to produce the propargyl species 195 and 196 in 77\% and 48% yields, respectively (Scheme 46).

Then we tried to install a phenyl group on compound 195 by treatment with $\mathrm{PhB}(\mathrm{OH})_{2}{ }^{48}$ or $\mathrm{Ph}(\mathrm{CN}) \mathrm{CuLi}$, but no reactions were observed under these conditions (Scheme 47).

Scheme 46

Scheme 47

Next, we examined the conjugate stannylation of organocopper (I) reagents to the δ, γ-alkynyl residue of 195 (Table 5). The addition of compound 195 to a solution of $\mathrm{Bu}_{3} \mathrm{SnCu} \cdot \mathrm{SMe}_{2}$ or $\left[\mathrm{Bu}_{3} \mathrm{SnCuCN}\right] \mathrm{Li}^{49.50}$ in THF resulted in no reaction, probably due to steric hindrance. When 195 was added to $\mathrm{Me}_{3} \mathrm{SnCu} \cdot \mathrm{SMe}_{2}$ in THF, compound 198 was obtained in 23% yield along with 40% recovery of 195 . Piers reported that the (trimethylstannyl)copper(I) dimethylsulfide complex was relatively unreactive towards α, β-unsaturated carbonyl compounds. ${ }^{48}$ When a more reactive species, $\left[\mathrm{Me}_{3} \mathrm{SnCuCN}\right] \mathrm{Li},{ }^{49}$ was used in place of $\mathrm{Me}_{3} \mathrm{SnCu} \cdot \mathrm{SMe}_{2}$ for this reaction, the yield was dramatically improved.

Table 5

X-	Organocopper (II) reagent	Yield
$\mathrm{Bu}_{3} \mathrm{Sn}-$	$\left[\mathrm{Bu}_{3} \mathrm{SnCuCN}\right] \mathrm{Li}$	48%
$\mathrm{Me}_{3} \mathrm{Sn}-$	$\mathrm{Me}_{3} \mathrm{SnCu} \cdot \mathrm{SMe}_{2}$	No reaction
$\mathrm{Me}_{3} \mathrm{Sn}-$	$\left[\mathrm{Me}_{3} \mathrm{SnCuCN}\right] \mathrm{Li}$	60%

When 195 was added to $\left[\mathrm{Me}_{3} \mathrm{SnCuCN}\right] \mathrm{Li}$ in dry THF at $-78^{\circ} \mathrm{C}$, compound 198 and the corresponding Z-isomer were produced in a nearly $1: 1$ ratio with no recovery of starting material. Separation of the two isomers by flash chromatography proved to be very difficult and synthetically intractable. When $\left[\mathrm{Me}_{3} \mathrm{SnCuCN}\right] \mathrm{Li}$ was treated with EtOH prior to the addition of $\mathbf{1 9 5}$, the product obtained was exclusively
the desired E-isomer. ${ }^{49,50}$ The geometric configuration of the product was determined by the coupling constant between the α-olefinic proton and the tin atom (${ }^{(117} \mathrm{Sn},{ }^{119} \mathrm{Sn}$) of the $\mathrm{Me}_{3} \mathrm{Sn}$ group (Scheme 48). It is well known that when a trialkylstannyl group and a proton are vicinal on a $\mathrm{C}=\mathrm{C}$ bond, the ${ }^{3} J_{\mathrm{S}_{\mathrm{n}} \mathrm{H}}$ values are much larger when these moieties are trans- as opposed to cis-configured. ${ }^{51}$ The ${ }^{3} J_{S_{n-H}}$ value in the present case is 69 Hz , which falls into the expected range for the E-stereochemistry. The observation of a significant ${ }^{1} \mathrm{H} n \mathrm{O} e$ between the vinyl proton and the $\mathrm{Me}_{3} \mathrm{Sn}$-protons provided corroborating evidence to support the E-stereochemistry assigned for 198 (Scheme 49). The optical integrity of $\mathbf{1 9 8}$ was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the derived Mosher's amide ${ }^{52}$ which revealed that 198 was obtained in at least 99.5:0.5 er. Compound 198 proved to be a stable substance and can be kept as an oil and exposed to air at ambient temperature for several weeks without detectable decomposition.

Scheme 48. E-Stereochemical assignment for 198.

Compound 198 was then coupled with a variety of aryl and heterocyclic halides under Stille cross-coupling conditions (Table 6). ${ }^{53}$

Table 6. Stille coupling reactions of stannane 198

Entry	R-X	conditions	Yield \%	R
a	$\stackrel{B r}{B+}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}$, DMF	68	
b		$\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}, \mathrm{Bu}_{3} \mathrm{SnH}$	$\begin{gathered} 79 \\ \text { (brsm) } \end{gathered}$	$\langle\overbrace{-}^{\mathrm{NO}_{2}}$
c	CN	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}, \mathrm{DMF}$	71	$\stackrel{N C}{\text { NC }}$
d	$\varepsilon_{0}^{B r}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}, \mathrm{DMF}$	77	0
e	$\left.\mathrm{O}==_{0}^{\mathrm{B}}\right]^{\mathrm{Br}}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}$, DMF	57	$0==_{0}^{2}$
f	1_{1}^{5}	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}, \mathrm{DMF}$	80	$\left.\pi^{s}\right\rangle$
g	$\left.1 \mathrm{ri}^{\mathrm{O}}\right)^{\text {cно }}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}$, DMF	84	$\left.{ }^{\mathrm{OHC}} \pi^{\circ}\right\rangle^{-\frac{1}{2}}$
h	$1-1)$-сно	$\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}, \mathrm{Bu}_{3} \mathrm{SnH}, 45^{\circ} \mathrm{C}$	67	$\mathrm{OHC}-4.1$ -

brsm: based on recovery of starting material.

Our initial efforts examined $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as the catalyst in the presence of $\mathrm{CuI}{ }^{54}$ at room temperature. Under these conditions either no product or only trace amounts of product were obtained. Higher temperature only led to decomposition of compound 198. Amino acid 6a was successfully prepared by coupling of obromoiodobenzene with compound 198 using $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ in the presence of AsPh_{3} and CuI. ${ }^{55}$ Only bromide 6a was observed as evidenced by ${ }^{13} \mathrm{C}$ NMR spectroscopy and Mass Spectrometry; the corresponding iodide was not observed. The 3-cyanophenyl moiety can be introduced under similar conditions (entry c). Heterocyclic species such as 2-bromocyclopent-2-enone ${ }^{56}$ and 4-bromofuran-2(5H)-one were also successfully coupled with compound $\mathbf{1 9 8}$ to yield $\mathbf{6 d}$ and $\mathbf{6 e}$ in 77% and 57% yields,
respectively (entries d and e). The coupling of 198 with 3-iodothiophene or 5-iodofuran-2-carboxaldehyde also provided the cross-coupling products in useful yields (entries f and g).

In all cases, the reactions were complete within just two hours with no loss of optical integrity was observed by ${ }^{1}$ HNMR of Mosher's amides or chiral HPLC analysis. o-Iododnitrobenzene coupled with compound $\mathbf{1 9 8}$ to deliver $\mathbf{6 b}$, albeit in very poor yield. When $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ was used as the catalyst, an incomplete reaction was observed. We found that the yields could be improved by increasing catalyst loading, but this also caused more homocoupling. Eventually, it was found that treatment of $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ with n-tributyltin hydride followed by addition of compound 198 and o-iodonitrobenzene portion-wise resulted in a 79% yield of $\mathbf{6 b}$ (based on a small amount of unreacted starting material, Scheme 49).

Scheme 49

It was proven unnecessary to employ dry, deoxygenated solvent and the reaction can be manipulated in air at ambient temperature. It should be noted that no reaction occurred when commercially available Pd-black was used. This system also proved effective for the coupling of p-iodobenzaldehyde with compound 198 (entry
h). In this case, the catalyst was added in one portion and heating to $45^{\circ} \mathrm{C}$ was required. It is known that for aryl iodide substrates, the oxidative addition of $\operatorname{Pd}(0)$ in the Stille reaction cycle is accelerated by electron-withdrawing substituents. ${ }^{57}$ Strong electron-withdrawing groups, such as aldehydes or nitro groups, consequently accelerate the oxidative addition step so that no ligand is needed (entries b and h). For the other halides examined, which were devoid of strong electron-withdrawing substituents, the ligand has to be added to facilitate the oxidative addition. ${ }^{58}$

In addition to the copper (I) chemistry described above, compound 195 also underwent a Pd-catalyzed hydrostannylation reaction with n-tributyltin hydride providing the alternate regio isomer $\mathbf{1 9 9}$ as the major product in 71% yield along with regioisomer 200 (10\%) as shown in Scheme 50.

Scheme 50

The two regioisomers 199 and 200 can be separated by flash chromatography and may be stored exposed to air for weeks without significant decomposition. The major isomer 199 can be coupled with a variety of halides to give the amino acids listed in Table 7.

Table 7. Stille coupling reactions of stannane 199

Entry	R-X	conditions	Yield \%	R	
a	-S-Ome	$\mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}, \mathrm{DMF}$	74	$\left.\mathrm{H}_{3} \mathrm{Co}-\mathrm{Cl}\right)^{-1}$	
b		$\mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}, \mathrm{DMF}$	79		
c	$F^{B r}$	$\mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}, \mathrm{DMF}$	72		
d	8	$\mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}, \mathrm{DMF}$	69		
e	$\\|_{1}^{s i}$	$\mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}, \mathrm{DMF}$	84		
f	$\left.\pi^{\circ}\right)^{\text {CHO }}$	$\mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{CuI}, \mathrm{AsPh}_{3}, \mathrm{DMF}$	76	${ }^{\text {OHC }} \mathrm{KI}^{\circ}$	

The catalytic system $\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{CuI} / \mathrm{AsPh}_{3}$ works quite well for the Stille coupling reactions of $\mathbf{1 9 9}$ and the halides listed in Table 7. It does not appear to matter whether the substituent on the phenyl group is an electron-withdrawing group such as cyano, or an electron-donating group such methoxy. 2-Bromocyclopent-2enone and 4-bromofuran-2(5H)-one can couple with compound 199 to yield 7 c and 7d respectively. The coupling of 199 with 3 -iodothiophene or 5-iodofuran-2carboxaldehye delivered $\mathbf{7 e}$ and $\mathbf{7 f}$ respectively, in good yields.

Compound 195 underwent hydrostannylation with good regioselectivity favoring the γ-stannane 199. We also examined reaction conditions by using a hindered tert-butyl ester that would favor the δ-stannane-type regioisomer 200 (Scheme 51). Compound 196 underwent conjugate addition of $\left[\mathrm{Me}_{3} \mathrm{SnCuCN}\right] \mathrm{Li}$ to
yield the δ-substituted stannane 201 in 53% yield (Scheme 3). As a preliminary demonstration of the utility of this species, compound 201 underwent Stille crosscoupling with o-iodonitrobenzene to produce the δ-aryl- δ, γ-unsaturated amino acid derivative $\mathbf{2 0 2}$ in which the two ester groups are differentiated.

Scheme 51

In summary, we have developed an efficient strategy to synthesize two types of δ, γ-unsaturated- α-amino acids bearing substitution at either the δ - or γ-positions. Those two types of amino acids and related derivatives may be used as important building blocks in natural products.

2.3 A Novel $\mathrm{S}_{\mathrm{N}} \mathbf{2}^{\prime}$ Reaction

2.3.1 Introduction of protecting groups

In the first part of this chapter, we mentioned the necessity to differentiate the two amides in the DKP with two orthogonal protecting groups. In the total synthesis of brevianamide B by an $\mathrm{S}_{\mathrm{N}} 2$ ' reaction, a PMB protecting group was used. ${ }^{21}$ In the total synthesis of paraherquamide $\mathrm{B},{ }^{22}$ the amide was converted into a methyl lactim ether. In our case there is a need to introduce two protecting groups. If we focus on alkyl protecting groups such as PMB and lactim ether, we will have only three options as shown in Scheme 52.

Scheme 52

In the first substrate (203), the two amides are present in the form of a bislactim ether. A strong base such as BuLi will be required for deprotonation. ${ }^{59}$ The acidities of H_{1} and H_{4} are close, so the substrate may cyclize to form a bridged cycle
or a spirocyclic system. If both sides are protected with the same alkyl group (substrate 204), the two α-protons H_{1} and H_{4} are more acidic than those in substate 203. However, H_{1} and H_{4} in 204 are still not differentiable so that the substrate may still cyclize to form the undesired spirocyclic system upon treatment with base. In the third case, one amide is protected with an alkyl group and the other is in the form of a lactim ether. It is obvious that H_{4} is much more acidic than H_{1}. The undesired spiro cyclization can be minimized.

Through this analysis, an alkyl protecting group must be introduced at the amino acid stage. At first, we chose an allyl group since it is small and will not cause congestion in the later stages of the synthesis.

We synthesized amino acid $\mathbf{6 b}$ by the Stille coupling reaction, but we found that amino acid $\mathbf{6 b}$ prefers to cyclize to form a six membered lactim after Boc deprotection. Treatment of $\mathbf{6} \mathbf{b}$ with NaH and allyl chloride or PMBBr to introduce an alkyl protecting group only generated a complex mixture (Scheme 53).

Scheme 53

We chose to start with compound 198. Introduction of an alkyl protecting group by treatment with NaH and allyl bromide resulted in failure. The Boc deprotection was also troublesome, since the $\mathrm{Me}_{3} \mathrm{Sn}$ - group is not compatible with acidic conditions and most Lewis acids. $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is a widely used reagent
for Boc deprotection. ${ }^{60}$ In our case, only 50% yield was obtained when 198 was treated with $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. As we know, BF_{3} may complex with weak Lewis bases such as THF, $\mathrm{Et}_{2} \mathrm{O}$, 1,4-dioxane and dimethysulfide. The solvent effect with $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$ is tremendous. Screening several solvents showed that ethyl acetate was the best solvent for Boc deprotection (Table 8).

Table 8

Solvent	Results
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50%
THF	No reaction
Diethyl ether	$66 \%+20 \%$ SM
Ethyl acetate	$\mathbf{9 5} \%$
Dioxane	60%
$\mathrm{CH}_{3} \mathrm{CN}$	50%
Acetone	messy

Direct treatment of the free amine with allyl halide under all conditions generated only a complex mixture. Eventually a three-step protocol was used (Scheme 54). The free amine 207 was coupled with p-nitrobenzenesulfonyl chloride (NsCl) under Schotten-Bauman conditions to yield sulfonamide 208. Compound 208 reacted with allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to produce bisprotected amino acid 209. Deprotection of the Ns group provided the allyl protected amino acid 210. ${ }^{61}$

Scheme 54

Compound 210 reacted with the acid chloride derived from Fmoc-alanine under Schotten-Baumann conditions to produce the dipeptide 211 (Scheme 55). Fmoc deprotection gave DKP 212 directly. Stille reaction of 212 with iodobenzene produced 213 in low yield (35\%). When diphenyliodolidium chloride $\left(\mathrm{Ph}_{2} \mathrm{I}^{+} \mathrm{Cl}^{-}\right)$was used, the yield was dramatically improved. ${ }^{62}$ Treatment of compound 213 with $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}$ generated lactim ether 214 in which the two amides were differentiated by orthogonal protecting groups: one was protected with a small, electron-rich allyl group, and the other was transformed into a lactim ether. We shall point out that some other weak bases such as $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$ or CaCO_{3} can also be used in the transformation of $\mathbf{2 1 3}$ to $\mathbf{2 1 4}$ without causing any racememization. Bases such as $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, or $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ caused racemization at $\mathrm{C}-1$ on the DKP.

Scheme 55

2.3.2 First-generation $S_{N} \mathbf{2}^{\prime}$ reaction

Compound 214 provided an opportunity for an intramolecular Michael reaction to build the bicyclo[2,2,2]diazaoctane. However when compound 214 was treated with $\mathrm{NaH}, \mathrm{KO}^{\prime} \mathrm{Bu}$ or NaHMDS at various temperatures ranging from $-78^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in THF, it decomposed to some very polar by-products. No desired product of intramolecular Michael addition was observed. Compound $\mathbf{2 1 4}$ was only two steps away from an allyl chloride, which is a precursor of the $\mathrm{S}_{\mathrm{N}} 2$ ' reaction.

Reduction of the conjugate ester in compound $\mathbf{2 1 4}$ was one of the greatest challenges we have met. Compound 214 is not stable to base, and the lactim ether in 214 can be easily reduced. We tried different reducing agents such as DIBAL, LiBH_{4}, $\mathrm{NaBH}_{4}, \mathrm{LiAl}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}$ and Red Al without success. NaBH_{4}, or $\mathrm{LiAl}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}$ gave no reaction and all others gave complex mixtures. Then we examined other intermediates in the synthetic route to seek opportunities for reduction. Compounds 209 and 212 were successfully reduced by DIBAL. The conjugate ester in 212 was reduced to the corresponding conjugate aldehyde using DIBAL in 25% yield. The reaction was finished in several minutes. Longer reaction time, more DIBAL or higher temperature
only led to more decomposition. This reaction works only in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. In all other solvent such as THF, diethyl ether, toluene or heptane, complex mixtures were obtained. In similar conditions, $\mathbf{2 1 3}$ or $\mathbf{2 1 4}$ could not be reduced to the corresponding aldehyde or alcohol. Another interesting result was that the conjugate ester in compound 208 could be reduced to the corresponding aldehyde in 64% yield. The other ester in this compound is in a hindered environment, and was therefore untouched by the reaction.

Unfortunately, neither of the corresponding aldehydes obtained from 208 or 212 proved to be useful. The yield for the Stille coupling reaction of the corresponding aldehyde from 212 with diphenyliodonium salt $\mathrm{Ph}_{2} \mathrm{I}^{+} \mathrm{Cl}^{-}$was too poor for us to push forward (25\%). Deprotection of the Ns group from the aldehyde derived from 208 by using thiophenol and $\mathrm{K}_{2} \mathrm{CO}_{3}$ failed. Though the two products are useless, the two successful reductions gave us a hint: DIBAL should be the right reducing reagent, provided the right solvent is chosen, and perhaps some additive must be used.

The remaining question is: are there any additives that can activate the ester so that it can be selectively reduced?

We found that when one equivalent of Lewis acid $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$ was added before the addition of DIBAL, conjugate ester 214 was reduced to the corresponding alcohol in 45% yield (Table 9). When $\mathrm{Me}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$ was used instead, the yield was lower. $T H F \bullet \mathrm{BF}_{3}$ did not work at all, probably because of stronger chelation between BF_{3} and the oxygen atom in THF. ${ }^{\prime} \mathrm{Bu}(\mathrm{Me}) \mathrm{O} \cdot \mathrm{BF}_{3}$ didn't work either, probably because it can not chelate with the ester carbonyl efficiently due to hindrance. Those results seem to
demonstrate several points: first, the Lewis acid functions by selectively activating the ester carbonyl; second, the Lewis acid should be neither too strong nor too weak; finally the Lewis acid should not be sterically demanding.

Table 9

Lewis acid	Results
None	decomposition
$\mathrm{Me}_{2} \mathrm{O}^{\bullet} \mathrm{BF}_{3}$	20%
$\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$	45%
$\mathrm{THF} \cdot \mathrm{BF}_{3}$	decomposition
$\mathrm{Bu}_{3}(\mathrm{Me}) \mathrm{O}^{\prime} \cdot \mathrm{BF}_{3}$	decomposition
$\mathrm{Me}_{2} \mathrm{~S}^{\bullet} \cdot \mathrm{BF}_{3}$	70%

Eventually, we found that an ideal yield was obtained when we used one equivalent of $\mathrm{Me}_{2} \mathrm{~S} \bullet \mathrm{BF}_{3}$ prior to addition of DIBAL. It was found that only one equivalent of Lewis acid can be used. Addition of one equivalent of $\mathrm{Me}_{2} \mathrm{~S} \bullet \mathrm{BF}_{3}$ plus one equivalent of dimethyl sulfide before addition of DIBAL may also reduce the ester. However, when the reaction was scaled up some by-products were also formed. In all cases over three equivalents of DIBAL have to be used since the Lewis acid consumes one equivalent of DIBAL. Any less than that caused incomplete reduction. In this case, a mixture of alcohol and aldehyde was obtained. Only $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ can be used as solvent. All other solvents only caused decomposition. A mixed solvent of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with toluene or hexane only led to low yield.

By carefully choosing the reaction solvent and additive, we overcame the difficulties with reduction. We shall point out that using DIBAL and $\mathrm{Me}_{2} \mathrm{~S} \cdot \mathrm{BF}_{3}$ jointly to reduce a conjugate ester was never reported before.

With ideal yield, we now can access enough of alcohol $\mathbf{2 1 5}$ for our synthesis. Alcohol 215 was first treated with MsCl at the presence of collidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a mixture of allyl chloride and mesylate. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under vacuum and DMF was added to facilitate the transformation of mesylate to chloride. After several hours, an excess of $\mathrm{BnBu}_{3} \mathrm{~N}^{+} \mathrm{Cl}^{-}$was added to ensure the reaction was complete. After work-up we obtained allyl chloride 216 in 80\% yield (Scheme 56).

Scheme 56

Now we reached the second key step: the $\mathrm{S}_{\mathrm{N}}{ }^{\prime}$, reaction. Two diastereomers 217 and 218 were obtained when a solution of allyl chloride 216 in THF was refluxed with NaH (Scheme 57). The reaction showed no selectivity. This showed that the tight ion pair mechanism which favors the closed transition state did not apply to this system for some structural reasons. ${ }^{21}$

Scheme 57
${ }^{1} \mathrm{H}$ NMR spcetra provided good evidence of the $\mathrm{S}_{\mathrm{N}} 2$ ' reaction. In 216, there is only three vinyl protons. In $\mathbf{2 1 7}$ or $\mathbf{2 1 8}$ there are six vinyl protons. The methylene group in the allyl chloride had disappeared. The methyl group linked to a methine in the DKP became a singlet, and the methine proton disappeared. The two isomers 217 and 218 showed nearly the same ${ }^{1} H$ NMR pattern. There were slight differences between the CH_{2} protons on the bridges of the two isomers because they are in different magnetic environments. ${ }^{13} \mathrm{C}$ NMR and MS further confirmed the $\mathrm{S}_{\mathrm{N}} 2$ ' products. The $R_{f} s$ of the two isomers on TLC are close, but they could be separated by PTLC. The desired isomer, compound 218, is a little more polar than the undesired isomer, compound 217. The two isomers were identified by NOE experiments. NOE was observed on the allyl methylene when the o-phenyl protons in 218 were irradiated.

As we mentioned in Chapter $1, \mathrm{~S}_{\mathrm{N}}{ }^{2}$ ' reactions have been used in the Williams group to synthesize the families of paraherquamides and brevianamides ${ }^{20,21,22}$ since the 1990 's. The $\mathrm{S}_{\mathrm{N}} 2$ ' reaction here is unique because two quaternary centers are installed.

We first tried to optimize the $\mathrm{S}_{\mathrm{N}} 2$ ' reaction. When the reaction temperature was lowered to $45^{\circ} \mathrm{C}$, the reaction was still complete and much cleaner. The reaction was also cleaner when NaH in mineral oil was washed with benzene and then with THF. When benzene was used as solvent, the reaction was very sluggish. When
diethyl ether was used as the solvent, another product was observed, and no $\mathrm{S}_{\mathrm{N}} 2$ ' reaction was observed. When $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as solvent, the $\mathrm{S}_{\mathrm{N}} 2$ reaction was observed; however, with no better yield or better selectivity. In polar solvents such as DMF, the allyl chloride decomposed to a complex mixture. Addition of crown ether also caused decomposition. The $\mathrm{S}_{\mathrm{N}} 2$ ' reaction is a thermal reaction. In the past, we believed that heat was needed to improve the solubility of NaH . When NaHMDS was used to deprotonate the $\alpha-\mathrm{H}$ at $-78^{\circ} \mathrm{C}$, no reaction was observed by TLC. Even if the reaction mixture was warmed to room temperature, no reaction was observed and only starting material was seen. It seems from this phenomenon that the cyclization also needs heat to overcome the energy barrier. However, when the reaction was warmed up to $45^{\circ} \mathrm{C}$, a very polar by-product was observed on TLC and no $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ product was obtained. In summary, refluxing with washed NaH in THF is the best condition for the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction.

2.3.3 Efforts to introduce ortho functionality

According to our discussion at the beginning of this chapter, an ortho functionality on the phenyl group such as a latent amino group or ortho- bromine will greatly facilitate the synthesis of spiroquinazoline or alantrypinone. The most important consideration is that the $\mathrm{S}_{\mathrm{N}} 2$ ' reaction must tolerate those functionalities.

First, we tried to introduce an ortho-nitrophenyl by a Stille coupling reaction. By using the same chemistry as we used to synthesize δ, γ-unsaturated amino acid $\mathbf{6 b}$, we were able to prepare compound 219. The allyl chloride 222 was prepared by following the same procedure as discussed above (Scheme 58).

Scheme 58

We mixed 222 and NaH in THF and heated it for several hours. All starting material was consumed, but no new spot was observed and substrate 222 decomposed. This demonstrated that NO_{2} is not stable to such a basic conditions. In our effort to synthesize δ-aryl- δ, γ-usaturated- α-amino acids, we failed to couple two types of allyl chloride with Williams lactone template. By now we can draw the conclusion that a nitro group is not tolerated in our synthetic route. Therefore, the introduction a nitro group at an early stage is not feasible.

Another synthetic effort was to introduce a bromine atom at the ortho position (Scheme 59). Although we could prepare the functionalized allyl chloride 226 by following the same chemistry as before, we were unable to make it cyclize to form any $\mathrm{S}_{\mathrm{N}} 2$ ' product. After refluxing with NaH for several hours, only starting material was observed. Allyl chloride 226 cannot cyclize probably due to hindrance from the bromine atom.

Scheme 59

2.3.4 Unexpected sigmatropic rearrangement

It seems impossible to introduce an ortho functional group before the $\mathrm{S}_{\mathrm{N}} 2$, reaction. The only remaining choice left is to introduce an ortho functional group after $\mathrm{S}_{\mathrm{N}} 2$ ' reaction.

To push forward, we needed to prepare $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ products on a gram scale. Unfortunately we met one more technical problem. When the $\mathrm{S}_{\mathrm{N}} 2$ ' reaction was scaled up to 500 mg , a sigmatropic rearrangement product was obtained, and only a trace amount of $\mathrm{S}_{\mathrm{N}} 2$ ' products were observed (Scheme 60). The evidence of the undesired reaction was provided by various spectral analyses. When $\mathrm{C}_{6} \mathrm{D}_{6}$ was used as the solvent, nearly the same ${ }^{1} \mathrm{H}$ NMR pattern was obtained for the unexpected byproduct as that of allyl chloride 216, except that the chemical shifts of some protons were slightly different. On ${ }^{13} \mathrm{C}$ NMR, one $\mathrm{C}=\mathrm{O}$ peak at 180 ppm moved upfield to $169 \mathrm{ppm}(\mathrm{C}=\mathrm{N})$. In OR, the absorption at $1695 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}$ moved to $1685 \mathrm{~cm}^{-1}$, which is typical of $\mathrm{C}=\mathrm{N}$. The same exact mass was obtained. The R_{f} value of the undesired by- product $\mathbf{2 2 7}$ is 0.33 in 33% ethyl acetate/hexanes, in contrast to that of
allyl chloride 216 ($\mathrm{Rf}=0.2$ in 33% ethyl acetate/ hexanes). An $n \mathrm{O} e$ was observed between the methyl group and phenyl groups. This result excluded the possibility of an eperimerization product.

Scheme 60

The sigmatropic rearrangement by-product 227 has the same polarity as the the $\mathrm{S}_{\mathrm{N}} 2$ ' product 218. It was also found that when the starting material was heated without base, no sigmatropic rearrangement was observed. This therefore seems to be a base-promoted sigmatropic rearrangement (Scheme 61).

Scheme 61

We mentioned the necessity of an alkyl protecting group to facilitate the $\mathrm{S}_{\mathrm{N}} 2$, reaction. We chose the allyl group because it is small and electron rich. It is easy to introduce due to lack of no steric hindrance. We envisioned that the addition of a tertbutyl group could suppress the unexpected sigmatropic rearrangement and make the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction favor the desired diastereomer. However, we were unable to introduce it into our substrate due to problems with large steric hindrance. We did not use benzyl type protecting groups initially because we were not sure whetther they could be introduced it efficiently. However, due to the technical problems we met, we needed to try it because we did not have many options with alkyl protecting groups.

2.3.5 Second-generation $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction

We must consider using another type of protecting group due to the undesired rearrangement with the allyl protecting group. One option is benzyl-type protecting groups. At first, we avoided this choice for two reasons. First, benzyl type protecting groups on amides, especially in DKPs, are difficult to remove. For example, DDQ and CAN are widely used to remove PMB from protected alcohols, but usually they are not used to remove PMB protecting groups on amides in DKP. Second, benzyltype protecting groups are hard to introduce. For example, all conditions tried to make 229 by condensation of free amine 207 with p-anisaldehyde followed by reduction with NaCNBH_{3} or NaBH_{4} failed (Scheme 62). The imine was not observed when we tried to condense the free amine with p-anisbenzaldehyde, even in the presence of a dehydrant such as MgSO_{4} or $(\mathrm{MeO})_{3} \mathrm{CH}$.

Scheme 62

There are several kinds of benzyl protecting groups and it is well known that removal of 3,4-dimethoxybenzyl group (DMPM) is much easier than with the PMB group. The oxidation potential of DMB is 1.45 V , which is lower than that of PMB
$(1.78 \mathrm{~V}) .{ }^{63}$ We chose the 3,4 dimethoxbenzyl group with the hopes that it could be removed by DDQ.

Amide 208 reacted with 3,4-dimethoxybenzyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF to give the bis-protected amino acid 230 in good yield (Scheme 63). Removal of the 4nitrobenzenesulfonyl group from bisprotected amino acid $\mathbf{2 3 0}$ gave dimethoxybenzyl protected amino acid 231.

Scheme 63

Reaction of 231 with the acid chloride derived from Fmoc-alanine under Schotten-Baumann conditions produced dipeptide 232 (Scheme 64). Deprotection of Fmoc generated DKP 233. Stille coupling reaction with diphenyliodonium salt $\mathrm{Ph}_{2} \mathrm{I}^{+} \mathrm{Cl}^{-}$using the same conditions as previously described gave DKP 234. Compound 234 reacted with trimethyloxonium tetrafluoroborate to give compound 235. Using the conditions we optimized before, we reduced $\mathbf{2 3 5}$ to alcohol to $\mathbf{2 3 6}$. So a solution of compound 235 was cooled to $-78^{\circ} \mathrm{C}$, and then treated with $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{SMe}_{2}$. Three equivalents of DIBAL in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were then added to the reaction mixture dropwise. Using this method, compound 235 was reduced to alcohol 236 . This alcohol was then
converted into chloride 237 in good yield by treatment with MsCl and collidine followed by $\mathrm{BnBu}_{3} \mathrm{~N}^{+} \mathrm{Cl}^{-}$.

Scheme 64
When allyl chloride 237 was refluxed with NaH in THF for several hours, we were happy to find that two $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ products, 238 and $\mathbf{2 3 9}$, were formed (Scheme 65). An NOE was observed between the protons of the benzyl methylene group and one vinyl proton in the desired diastereomer. The reaction is now in favor of the nondesired product. As we demonstrated above, the $\mathrm{S}_{\mathrm{N}} 2$ ' reaction using the allyl protected substrate showed no selectivity for either diastereomer. It seems the protecting group affects the selectivity of the $\mathrm{S}_{\mathrm{N}}{ }^{\prime}$ ' reaction.

Scheme 65

The $\mathrm{S}_{\mathrm{N}} 2$ ' reaction above was successfully scaled up to several hundred milligrams without any problem. The total yield of the two isomers was nearly 53%. To obtain this yield, NaH should be washed with benzene and THF. Again, the reaction is very slow in benzene. No other solvents worked better than THF. Bases such as NaHMDS and DBU were also tested. When the temperature was below 25 ${ }^{\circ} \mathrm{C}$, no reacion was observed. When the mixture was heated to $45^{\circ} \mathrm{C}$ some very polar by-products were observed on the baseline of TLC.

Although when NaH was used as the base, the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction did work, it is obvious that some of the substrate decomposed. We found that changing of the methyl lactim ether to the ethyl lactim ether did not lead to any improvement of yield.

The ratio of the non-desired diastereomer to the desired one was $3: 1$. To get better selectivity, we examined transition metal-catalyzed allylic alkylations to build [2,2,2] bridged cycle. Refluxing of substrate in benzene with $\mathrm{Mo}(\mathrm{CO})_{6}$ and NaH only led to decomposition and no bridge cycle was formed (Scheme 66). Perhaps this result is not surprising, given that the $\alpha-\mathrm{H}$ on $\mathrm{C}-4$ is not acidic enough. Barry Trost stated in his review: "While the studies [of transition metal-catalyzed allylations with
unstabilized nucleophiles] are limited at present, the results have been disappointing." ${ }^{\text {64 }}$

Scheme 66

Although it seems that the alkyl protecting groups affect the selectivity, we did not have many options. The protecting group we chose must meet two requirements: 1) it should be stable enough to survive the synthetic route until we want to remove it; 2) it should be readily introduced. As we mentioned before, we believed that a tert-butyl group was a good choice, but we were unable to introduce it due to steric hindrance.

Eventually, we stopped screening different protecting groups. Kende has demonstrated that alantrypinone and epi-alnatrypinone can taut with each other when treated with DBU.${ }^{13}$ We believe the undesired diastereomer is still useful. It may lead to the synthesis of epi-alantrypinone, which may be converted into alantrypinone. We envisioned that a similar tautomerization may also occur at an earlier stage by the same mechanism as reported (Scheme 67). ${ }^{13}$ This requires us to make the oxindole
first, and the methyl lactim ether must be deprotected. The challenge will be how to differentiate the amide of the oxindole and amide of the DKP.

Scheme 67

2.4 Construction of quinazolinone core and future plan

2.4.1 Construction of quinazolinone core

We have developed a novel $\mathrm{S}_{\mathrm{N}} 2$ 'reaction which introduces two quaternary centers in one step. The desired and undesired diastereomers were obtained in 13\% and 39% yields respectively. The desired diastereomer may potentially be converted into alantrypinone or spiroquinazoline, but the poor yield makes it very difficult for us to continue this way. The undesired diastereomer may be converted into epialantrypinone, and Kende has converted epi-alantrypinone into alantrypinone. To achieve this conversion, we have to construct the quinazolinone core and the oxindole.

Compound 238 was first treated with DDQ in wet $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Surprisingly, the dimethoxybenzyl (DMB) group cannot be removed by DDQ. Harsher conditions were then examined (Scheme 68). We found that the dimethoxybenzyl group could be removed by treatment with t-BuLi followed by a stream of oxygen leaving the methyl lactim ether intact. ${ }^{65}$

Scheme 68

Removal of benzyl type protecting groups through a benzyl anion has been reported before. ${ }^{65}$ We found that addition of ammonium chloride is unnecessary and damages the lactim ether. We also found that addition of dimethyl sulfide is unnecessary. Addition of dimethyl sulfide did not improve the yield. Usually, dimethyl sulfide is used to break the $\mathrm{O}-\mathrm{O}$ bond. A mechanism is proposed as shown in Scheme 69. Benzyl anion 249 is formed by deprotonation, and then attacks oxygen to form benzylperoxide 250. 252 is then formed which gets a proton to deliver the free amide 248. 251 hydrolyzes to 3,4-dimethoxybenzaldehyde and $\mathrm{H}_{2} \mathrm{O}_{2}$.

Scheme 69

Product 248 has two amides. One is selectively protected in the form of a methyl lactim ether while the other one is free. Compound 248 was treated with KHMDS followed by o-azidobenzyl chloride to produce compound 253. An intramolecular aza-Wittig reaction generated the quinazolinone core in 254. We have mentioned the roles of the orthogonal groups on thee DKP. The first role is to facilitate the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction and the second is to differentiate the amides in the DKP.

Thus far, we have demonstrated that our consideration and selection of protecting groups is correct.

The terminal alkene in compound $\mathbf{2 5 4}$ was then oxidized to aldehyde $\mathbf{2 5 5}$ by ozonolysis. We shall point out that the residue remaining after evaporation of solvent should be purified by flash chromatography immediately, otherwise the methyl lactim ether would be deprotected. Some acidic by-product may have been formed after ozonolysis which caused deprotection of the lactim ether. Compound 254 was still contaminated with small amount of a phosphorous by-product generated in aza-Wittig reaction even after purification by flash chromatography. Aldehyde $\mathbf{2 5 5}$ was further oxidized to acid 256 using NaClO_{2} at the presence of iso-butene in a buffered solution (Scheme 70). ${ }^{66}$

Scheme 70

2.4.2 Efforts to make oxindole

Acid $\mathbf{2 5 6}$ was converted into the corresponding acid azide $\mathbf{2 5 7}$ by treatment with triphosgene and NaN_{3} in the presence of triethylamine (Scheme 71). ${ }^{67}$ Acid azide 257 was used without further purification following the reported protocol.

Formation of the acid azide was confirmed by IR absorption at $2160 \mathrm{~cm}^{-1}$, and the disappearance of the broad band at $3184 \mathrm{~cm}^{-1}$.

Unfortunately, no oxindole was formed when a solution of 257 in benzene was heated, even when using microwave conditions. Instead, we obtained a byproduct (258), which is much less polar than epi-alantrypinone. An IR absorption at $2280 \mathrm{~cm}^{-1}$ was observed, which is a characteristic absorption for the isocyanide group. Indeed cyclization to make five-membered ring by a nitrene insertion into a $\mathrm{C}-\mathrm{H}$ bond is very uncommon. No precedent has been found in the literature. The problem with this chemistry is probably due to the difficulty for the phenyl group to reach the appropriate angle such that the nitrene can insert into the phenyl C-H bond.

Scheme 71

Compound 256 was treated with hydroxylamine and DCC to yield hydroxamate 259 (Scheme 72). Due to poor solubility, compound 259 has to be used crude. Treatment of $\mathbf{2 5 9}$ with $\mathrm{P}_{2} \mathrm{O}_{5}{ }^{68}$ resulted in decomposition and no oxindole was observed. This demonstrated that substrate $\mathbf{2 5 9}$ is not stable to the condensing reagent $\mathrm{P}_{2} \mathrm{O}_{5}$. Compound 259 can be further converted into N -acetyloxyamide $\mathbf{2 6 0}$, which had to be used crude, again due to poor solubility. When compound $\mathbf{2 6 0}$ was refluxed with $\mathrm{FeCl}_{3}{ }^{68}$ in the presence of acetic acid a complex mixture was obtained.

Eventually, we tried again to introduce an ortho funcitionality on 237 by coupling 233 with a different iodide. As we mentioned in 2.3.3, although we can couple 233 with o-idonitrobenzene or o-iodobromobenzene, we were unable to make the $\mathrm{S}_{\mathrm{N}} 2$ ' reaction work.

Scheme 72

2.4.3 Conclusion and future plan

As we discussed in this chapter, we have made solid progress toward the first total synthesis of spiroquinazoline. Our progress is represented as follows:

1) We have developed a new methodology to synthesize δ, γ-usaturated- α amino acids;
2) We have developed an $\mathrm{S}_{\mathrm{N}}{ }^{2}$ ' reaction to construct a novel bicyclo[2,2,2] diazaoctane which contains two adjacent quaternary centers;
3) We successfully constructed the quinazolinone core on bicyclo[2,2,2]diazaoctane. Unfortunately, we are able to make our natural product due to the lack of an ortho functional group.

We have demonstrated that it is impossible to introduce an ortho functionality before the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction due to the congestion in the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction.

Another option is to introduce an ortho functional group after $\mathrm{S}_{\mathrm{N}} 2$ ' reaction. To do that, we would have to block the para position of the phenyl. Our new proposal is shown in Scheme 73. We could introduce an ortho iodine atom by double thallation ${ }^{70}$ followed by treatment with KI. The first thallation and iodination will occur at the para position of the phenyl group (261). The second time thallation and iodolation will happen at the ortho position of the phenyl group due to hinderance caused by the first iodine atom. After Buchward palladium catalyzed-cyclization to make oxindole 264, the extra iodine atom may be removed by hydrogenolysis.

Scheme 73

If we choose to attempt the thallation at a later stage, after the terminal alkene is oxidized to acid 256, something interesting may happen (Scheme 74). In this case, a mixed thallium (III) salt (266) may be formed first. Then, thallium will be delivered to the ortho position intramolecularly (267). If an ortho-directed thallation could happen like this, then double thallation is unnecessary. After treatment with KI, we expect to obtain only the ortho-iodo substituted product $\mathbf{2 6 8}$ directly. The acid can be converted into corresponding amide 269, which can cyclize to form oxindole 265.

Scheme 74

As has been demonstrated by Kende, epi-alantrypinone (265) can be converted into alantrypinone (266) by treatment with DBU in good yield. If we get epi-alantrypinone 265, we can easily form alantrypinone 266. We also know that Hart failed to convert alantrypinone to spiroquinazoline. Scheme 75 shows our idea to convert alantrypinone into spiroquinazoline. The two amides in alantrypinone are in very different steric environments with different hindrance. The amide on oxindole is in an open environment, which is less hindered. If we introduce a bulky protecting group, for example, trityl, the amide on oxindole will be attacked first. Then, the other amide may be protected with a Cbz protecting group to afford compound $\mathbf{2 6 7}$. Treatment of compound 267 with TFA will remove trityl protecting group to make compound 268.

Scheme 75

The oxindole may then undergo a Vilsmeier bromination reaction ${ }^{71}$ to produce bromide 269, which could be reduced to $3 H$-indole 270. At the same time, the Cbz protecting group will be removed. Following a literature precedent, treatment of 3 H indole with α-chloro acetyl chloride will give compound 271. ${ }^{72}$ We envision that this compound could be converted into spiroquinazoline simply by treatment with NH_{3} (Scheme 75).

The desired isomer 239 in the $\mathrm{S}_{\mathrm{N}} 2$, reaction could be converted into spiroquinazoline more concisely (Scheme 76).

Scheme 76

We have no doubt that the quinazolinone core in $\mathbf{2 7 0}$ could be constructed in a similar fashion to that described. The product obtained could undergo double thallation to introduce two iodine atoms on the phenyl group (271). Ozonolysis of the terminal alkene in compound 271 will produce aldehyde 272 , which could then cyclize with 2-aminoethanamide to form an imidazolidin-4-one ring. The amine will then be protected with a Cbz group (273). A Buchwald palladium catalyzed cyclization could deliver imidazoindoline ring system 274. Removal of the Cbz group and the extra iodine atom by hydrogenolysis will produce spiroquinazoline.

References

1. Substance P - the First Peptide Neurotransmitter. Otsuka, M.; Konishi, S. Trends Neurosci. 1983, 6, 317-320.
2. Spiroquinazoline, A Novel Substance P Inhibitor With a New Carbon Skeleton, Isolated From Aspergillus Flavipes. Barrow, C. J.; Sun, H. H. J. Nat. Prod. 1994, 57, 471-476.
3. UV-Guided Isolation of Alantrypinone, a Novel Penicillium Alkaloid. Larsen, T. O.; Frydenvang, K.; Frisvad, J. C.; Christophersen, C. J. Nat. Prod. 1998, 61, 1154-1157.
4. A Novel Alkaloid Serantrypinone and the Spiro Azaphilone Daldinin D from Penicillium Thymicola. Ariza, M. R.; Larsen, T. O.; Petersen, B, O.; Duus, J. Ø; Christophersen, C.; Barrero, A. J. Nat. Prod. 2001, 64, 1590-1592.
5. Receptor Assay-Guided Isolation of Anti-GABAergic Insecticidal Alkaloids from a Fungal Culture. Kuriyama, T.; Kakemoto, E.; Takahashi, N.; Imamura, K.; Oyama, K.; Suzuki, E.; Harimaya, K.; Yaguchi, T.; Ozoe, Y. J. Agric. Food Chem. 2004, 52, 3884-3887.
6. Discovery of New Natural Products by Application of X-hitting, a Novel Algorithm for Automated Comparision of Full UV Spectra, Combined with Structural Determination by NMR Spectroscopy. Larsen, T. O.; Peterson, B. O.; Duus, J. Ø; Sфresnsen, D.; Frisvad, J. C.; Hansen, M. E. J. Nat. Prod. 2005, 68, 871- 874.
7. Fumiquinazolines, Novel Metabolites of Fungus Isolated from a Saltfish. Numata, A.; Takahashi, C.; Matsushita, T.; Miyamoto, T.; Kawai, K.; Usami, Y.; Matsumura, E.; Inoue, M.; Ohishi, H.; Shingu, T. Tetrahedron Lett. 1992, 33, 16211624.
8. Synthesis of (-)-Alantrypinone. Hart, D. V.; Magomedov, N. Tetrahedron Lett. 1999, 40, 5429-5432.
9. Synthesis of ent-Alantrypinone. Hart, D. V.; Magomedov, N. J. Am. Chem. Soc. 2001, 123, 5892-5899.
10. Total Syntheses of (-)-Fumiquinazolines C, E and H. Snider, B. B.; Zeng, H. Organic Lett. 2002, 4, 1087-1090.
11. Total Syntheses of (-)-Fumiquinazolines A, B and I. Snider, B. B.; Zeng, H. Organic Lett. 2000, 2, 4103-4106.
12. A Concise Total Synthesis of (\pm)-Alantrypinone by a Novel Hetero-DielsAlder Reaction. Kende, A. S.; Fan, J.; Chen, Z. Organic Lett. 2003, 5, 3205-3208.
13. Total Synthesis of (\pm)-Alantrypinone by Hetero Diels-Alder Reaction. Chen, Z.; Fan, J.; Kende, A. S. J. Org. Chem. 2004, 69, 79-85.
14. Spiroquinazoline Support Studies: New Cascade Reactions Based on the Morin Rearrangement. Hart, D. J.; Magomedov, N. J. Org. Chem. 1999, 64, 29902991.
15. Spiroquinazoline Support Studies: Methods for the Preparation of Imidazoloindolines from Oxindoles. Barbosa, Y. A.; Hart, D. J.; Magomedov, N. Tetrahedron 2006, 62, 8748.
16. Acid-promoted Reactions in 1-Hydroxy, 1-Dimethylaminomethyl and 1-Methylene-4-arylmethyl-2,4-dihydro-1H-pyrazino[2, 1-b]-quinazoline-3,6-diones. Heredia, M. L.; de la Cuesta, E., Avendano, C. Tetrahedron 2002, 58, 6163-6170.
17. Cycloadducts of Ethene with 2(1H)-Pyrazinones and Their Convertion into 2,5-Diazabicyclo[2,2,2]octane-3,6-diones. Loosen, P. K.; Tutonda, M. G.; Khorasani, M. F.; Commpernolle, F.; Hoornaert, G. J. Tetrahedron 1991, 44, 9259-9268.
18. Biomimetic Diels-Alder Cyclization for the Construction of the Brevianamide, Paraherquamide Sclerotamide,- and VM55599 Ring Systems. Williams, R. M.; SanzCervera, J. F.; Sancenơn, F.; Marco, A.; Halligan, K. J. Am. Chem. Soc. 1998, 120, 1090-1091.
19. Studies on the Syntheses of Heterocyclic Compounds. Part 876. The Chiral Total Synthesis of Brevianamide E and Deoxybrevianamide E. Kametani, T.; Kanaya, N.; Ihara, M. J. Chem. Soc., Perkin Trans. I, 1981, 959-963
20. Paraherquamides, Brevianmides, and Asperparalines: Laboratory Synthesis and Biosynthesis. An Interim Report. Williams, R. M.; Cox, R. J. Acc. Chem. Res. 2003, 36, 127-139.
21. Asymmetric, Stereocontrolled Total Synthesis of (-)-Brevianamide B. Williams, R. M.; Glinka, T.; Kwast, E.; Coffman, H.; Stille, J. K. J. Am. Chem. Soc. 1990, 112, 808-821.
22. Stereocontrolled Total Synthesis of (+)-Paraherquamide B. Cushing, T. D.; Sanz-Cervera, J. F.; Williams, R. M. J. Am. Chem. Soc. 1996, 118, 557-579.
23. Promising Cyclization Reactions to Construct the Ring Systems of Brevianamide B. Williams, R. M.; Glinka, T. Tetrahedron Lett. 1986, 27, 3581-3584.
24. 1-Alkyl-2,4-dihydro-1H-pyrazino[2,1-b]quinazoline-3,6-diones as Glycine Templates. Synthesis of Fiscalin B. Hernandez, F.; Buenadicha, F. L.; Avendano, C.; Sollhuber, M. Tetrahedron: Asymmetry 2001, 12, 3387-3398.
25. Cyclization of N-(2-Biphenylyl)hydroxtamine Derivatives to N-Substituted Carbazoles. Wassmundt, F. W.; Babic, G. T. J. Org. Chem. 1982, 47, 3585-3587.
26. The Development of Efficient Protocols for the Palladium-Catalyzed Cyclization Reactions of Secondary Amides and Carbamates. Yang, B. H.; Buchwald, S. L. Organic Lett. 1999, 1, 35-37.
27. Synthesis of (3R, $6 R$)- and (3S, 6S)-3,6-dialkylpiperazin-2,5-dione Derivatives as Useful Intermediates to Both (R) and (S) α-Amino Acids. Porzi, G.; Sandri, S. Tetrahedron: Asymmetry 1994, 5, 453-464.
28. A Chiral Relay Auxiliary For The Synthesis of Homochiral -Amino Acids. Bull, S. D.; Davies, S. G.; Epstein, S. W.; Leech, M. A.; Ouzman, V. A. J. Chem. Soc., Perkin Trans I 1998, 15, 2321-2329.
29. Synthesis of Peptides and of Some Polydipeptides of Homoserine by an Aminolactone Method. Sheradky, T.; Knobler, Y.; Frankel, M. J. Org. Chem, 1961, 26, 2710-2714.
30. Preparation of D, DL-, and L-Homoserine Lactone from Methionine.

Natelson, S.; Natelson, E. A. Microchemical Journal 1989, 40, 226-232.
31. α-Substituted (Triphenylphosphoranylidene)Acetic Esters. New Reactions of Phosphorances With Phenylglyoxal. Shevchuk, M. I.; Tolochko, A. F.; Dombrovskii, A. V. Zh. Obsch. Khim, 1970, 40, 57-66.
32. Syntheses of Highly Functionalized δ, γ-Unsaturated- γ-Amino Acids. Chen, S., Williams, R. M. Tetrahedron 2006, 62, 11572-11579.
33. For reviews see : Williams, R. M. Synthesis of Optically Active Amino Acids, $1^{\text {st }}$ ed.; Pergamon Press, Oxford [England], New York, 1989.
34. α-Amino Acid Synthesis. O'Donnell, M. J., Ed. Tetrahedron 1988, 44, 52535614.
35. Production and Utilization of Amino Acids. Izumi, Y.; Chibata, I.; Itoh, T. Angew. Chem. Int. Ed. Engl. 1978, 17, 176-183.
36. Electrophilic Glycinates: New and Versatile Templates for Asymmetric Amino Acid Synthesis. Sinclair, P. J.; Zhai, D.; Reibenspies, J.; Williams, R. M. J. Am. Chem. Soc. 1986, 108, 1103-1104.
37. Ein einfacher Zugang $z u$ 4-Bromo-2(tert-butyldimethylsiloxy)furan aus Tetrahedro-2,4-dioxofuran. Foulon, J. P.; Jas, G. Synlett 2000, 9, 1324-1326.
38. Preparation of Aryltributyltin Having Electron-withdrawing Group by Palladium Catalyzed Reaction of Hexabutylditin with Aryl Iodide. Kosugi, M.; Ohya, T.; Migita, T. Bull. Chem. Soc. Jpn. 1983, 56, 3855-3856.
39. Studies on Organic Fluoride Compounds. XL VII. Synthesis of Trifluoromethylated Sugars Through the Aldol Reaction of 2-Trimethyloxy-4trifluoromethylfuran. Kawada, K.; Kitagawa, O.; Taguchi, T.; Hanzawa, Y.; Kobayshi, Y.; Iitaka, Y. Chem. \& Pharm. Bull. 1985, 33, 4216-4222.
40. Synthesis Of The Upper Spirotetronic Acid Fragment Of Kijanolide. Takeda, K.; Yano, S.; Sato, M.; Yoshii, E. J. Org. Chem., 1987, 52, 4135-4137.
41. Approach Toward theTotal Synthesis of Orevactaene. 2. Convergent and Stereoselective Synthesis Of The C18-C31 Domain of Orevactaene. Evidence for The Relative Configuration of the Side Chain. Organ, M. G.; Bilokin, Y. V.; Bratovanov, S. J. Org. Chem. 2002, 67, 5176-5183.
42. Studies Aimed at the Total Synthesis of Azaadirchtin. A Modeled Connection of C-8 And C-14 In Azadirachtin. Fufuzaki, T.; Kobayashi, S.; Hibi, T.; Ikuma, Y.; Ishihara, J.; Kanoh, N.; Murai, A. Org. Lett. 2002, 4, 2877-2880.
43. Palladium- and Molybdenum-catalyzed Hydrostannation of Alkynes. A Novel Access to Regio- and Stereodefined Vinylstannanes. Zhang, H. X.; Guibe, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857-1867.
44. Stereospecific Synthesis of Functional Alkenylsilanes via Silastannation of But-3-ynoic Acid. Lunot, S.; Thibonnet, J.; Duchene, A.; Parrain, J.; Abarbri, M. Tetrahedron Lett. 2000, 41, 8893-8896.
45. Synthesis of Enantiomerically Pure Unsaturated α-Amino Acids Using SerineDerived Zinc/Copper Reagents. Dunn, M, J.; Jackson, R. F. W.; Pietruszka, J.; Turner, D. J. Org. Chem, 1995, 60, 2210-2215.
46. Synthesis of N-(tert-Butoxycarbonyl)- β-Iodoalanine Methyl Ester: A Useful Building Block in the Synthesis of Nonnatural α-Amino Acids via Palladium Catalysed Cross Coupling Reactions. Jackson, R. F. W.; Perez-Gonzalez, M. Org. Synth. 2005, 81, 77-88.
47. A Convenient Procedure for the Preparation of 3-Bromopropiolic Esters. Leroy, J. Synth. Comm. 1992, 22, 567-572.
48. Synthesis of Chiral and Geometrically Defined 5,5-Diaryl-2-amino-4pentenoates: Novel Amino Acid Derivatives. Isaac, M.; Slassi, A.; Da Silva, K.; Xin, T. Tetrahedron Lett. 2001, 42, 2957-2960.
49. (Trialkylstannyl)copper (I) Reagents: Preparation and Reaction with α, β Unsaturated Carbonyl Systems. Preparation of β-Trialkylstannyl α, β-Unsaturated Ketones. Piers, E.; Wong, T.; Howard, E. M.; Chong, J. M. Can. J. Chem. 1987, 65, 78-87.
50. Use of Lithium (Trimethylstannyl)(cyano)cuprate for the Conversion of Alkyl 2Alkynoates into Alkyl (Z)- and (E)-trimethylstannyl-2-alkenoates. Piers, E.; Wong, T.; Ellis, K. A. Can. J. Chem. 1992, 70, 2058-2064.
51. Studies in Group IV Organometallic Chemistry: XXIV. Structure of Products Obtained in the Hydrostannation of Ethynes. Leusink, A. J.; Budding, H. A.; Marsamn, J. W. J. Organometal. Chem. 1967, 9, 285-294.
52. α-Methoxy- α-trifluoromethylphenylacetic Acid, a Versatile Reagent for the Determination of Enantiomeric Composition of Alcohols and Amines. Mosher, H. S.; Dale, J. A.; Dull, D. L. J. Org. Chem. 1969, 34, 2543-2549.
53. Farina, V.; Krishnamurthy, V.; Scott, W. J. The Stille Reaction, John Wiley \& Sons, New York, 1998.
54. Palladium-catalyzed Coupling of Vinyl Triflates with Organostannanes: 4-tert-Butyl-1-vinylcyclohexen-1-yl)-2-propen-1-one. Scott, W.; Crisp, G. G. T.; Stille, J. K. Org. Synth. 1989, 68, 116-129.
55. Palladium-catalyzed Coupling of Arylstannanes with Organic Sulfonates: A Comprehensive Study. Farina, V.; Krishna, B.; Marshall, D. R.; Roth, G. P. J. J. Org.

Chem. 1993, 58, 5434.
56. Photocycloaddition Chemistry of 2-(Trimethylsilyl)cyclopentenone and 5(Timethylsily)uracil. The Utility of a Trimethylsiyl Group as a Removable Directing Group in Photochemistry. Shih, C.; Fritzen, E. L.; Swenton, J. S. J. Org. Chem. 1980, 45, 4462-4471.
57. Kinetics of Oxidative Addition of Zerovalent Palladium to Aromatic Iodides. Fauvarque, J. F.; Pflüger, F.; Troupel, M. J. Organometal. Chem. 1981, 208, 419-427.
58. Kinetic Investigation of Some Electronic and Steric Factors in Oxidative Addition Reactions to Vaska's Compound. Ugo, R.; Pasini, A.; Cenini, S. J. Am. Chem. Soc. 1972, 94, 7364-7370.
59. Enantioselcetive Synthesis of α-Methylserines. Schollkopf, U.; Hartwig, W.; Groth, U. Angew Chem. Int. Ed. Eng. 1980, 19, 212-213.
60. N-tert- Butoxycarbonyl (Boc) Deprotection Using Boron Trifluoride Etherate.

Evans, E. F.; Lewis, N. J.; Kapfer, I.; Macdonald, G.; Taylor, R. J. K.; Synth. Comтй. 1997, 27, 1819-1820.
61. Synthesis of Cyclic Dipeptides by Ring-Closing Metathesis. Reichwein, J. F.; Liskamp, R. M. J. Eur. J. of Org. Chem. 2000, 12, 2335-2344.
62. Palladium-catalyzed Coupling of Organostannanes with Hypervalent Iodonium Salts. Kang, S.; Lee, H.; Jang, S.; Kim, T.; Kim, J. Synth. Commun. 1997, 26, 4311-4318.
63. On the Selectivity of Deprotection of Benzyl, MPM (4-Methoxybenzyl) and DMPM (3,4-Dimethoxybenzyl) Protecting Groups for Hydroxy Functions. Horita, K.; Yoshioka, T.; Oikawa, Y.; Yonemitsu, O. Tetrahedron 1986, 42, 3021-3028.
64. Asymmetric Transition Metal-Catalysed Allylic Alkylations. Trost, B.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395-422.
65. Carbanion-Mediated Oxidative Deprotection of Non-Enolizable Benzylated Amides. Williams, R. M.; Kwast, E. Tetrahedron Lett. 1989, 30, 451-454.
66. Oxidation of α, β-Unsaturated Aldehydes. Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091-2096.
67. Intramolecular Amidation of Arylalkylhydroxamic Acids. Potapov, V. M.; Dem'yanovich, V. M.; Vendrova, O. E.; Khlebnikov, V. A. Khimiya Geterotsiklicheskikh Soedinnenii 1983, 5, 655-660.
68. A Mild and Efficient Method for the Preparation of Acyl Azides from Carboxylic Acids Using Triphosgene. Gumaste, V. K.; Bhawal, B. M.; Deshmukh, A. R. A. S. Tetrahedron Lett. 2002, 43, 1345-1346.
69. A Novel Electrophilic N-Amidation via Electron Deficient Complexes: Action of Ferric Chloride on Acetyloxyamides. Cherest, M.; Lusinchi, X. Tetrahedron Lett. 1989, 30, 715-718.
70. Thallium in Organic Synthesis. IX. Facile Thallation of Aromatic Compounds with Thaallium (III) Trifluoroacetate. Mckillop, A.; Fowler, J. S.; Zelesko, M. J.; Hunt, J. D. Tetrahedron Lett. 1969, 29, 2423-2426.
71. Synthesis of 2-Indolinones (Oxindoles) Related to Mitomycin A. Raphael, R. A.; Ravenscroft, P. J. Chem. Soc., Perkin Trans. 1 1988, 7, 1823-1828.
72. Cycloadditions of $3 H$-Indoles. Le Count, D. J.; Marson, A. P. J. Chem. Soc., Perkin Trans. 1 1988, 3, 451-455.

Chapter 3. Experimental Section.

General Procedures

Unless otherwise noted, materials were obtained from commercially available sources and used without further purification. Toluene, diethyl ether, THF and dimethylformamide were degassed with argon and passed through a solvent system (J.C. Meyer of Glass Contour). The molecular sieves were activated by heating at 150 ${ }^{\circ} \mathrm{C}$ at 1 mm Hg for 3 h in a vacuum oven.

All reactions involving hydroscopic substances were conducted with flame- or oven- dried glassware under an inert atmosphere (Ar) dried by passage of atmospheric gases through a column packed with CaSO_{4}.

Chromatographic separations were performed with EM Science TLC plates (silica gel $60, \mathrm{~F} 254,20 \times 20 \mathrm{~cm}$ X250 $\mu \mathrm{m}$) or with EM science 230-240-mesh silica gel under positive air pressure. Reactions and chromatographic fractions were monitored and analyzed with EM Science TLC plates. Visualization of TLC was achieved with ultraviolet light or heating of TLC plates submerged in a 5% solution of phosphomolydic acid in 95\% ethanol.

Nuclear magnetic resonance (NMR) spectra were acquired using Bruker AC300 , Varian 300 or 400 spectrometers. NMR chemical shifts are given in parts per
million (ppm) relative to internal CHCl_{3}, benzene or methanol. Proton $\left({ }^{1} \mathrm{H}\right)$ NMRs are tabulated in the following order: number of protons, multiplicity (s , singlet; d , doublet; t , triplet; q, quartet; and m, multiplet) and coupling constant in hertz. When appropriate, the multiplicity of a signal in denoted as "br" to indicate that the signal was broad.

Infrared spectra were recorded on a Perkin-Elmer 1600 series FT-IR as thin films from methylene chloride and were reported as $\lambda_{\max }$ in wave numbers $\left(\mathrm{cm}^{-1}\right)$,

Mass spectra were obtained on Fisons VG Autospec. Optical rotations were obtained on a Rudolph Research automatic polarimeter Autopol III operating at 589 nm .

4-Bromo-2,5-dihydro-2-oxofuran (169) ${ }^{36}$.

Tetronic acid $(0.9 \mathrm{~g}, 9 \mathrm{mmol})$ was added to a mixture of $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 0.9 mL DMF and cooled to $0^{\circ} \mathrm{C}$. The suspension was stirred for 5 minutes and oxayl bromide ($2.23 \mathrm{~g}, 1 \mathrm{~mL}, 10.8 \mathrm{mmol}$) was added over 6 minutes. The color of the mixture turned from yellow to green gradually. The mixture was stirred for 1 h at 0 ${ }^{\circ} \mathrm{C}$ and 2 h at room temperature. 25 mL water was added. The two phases were separated and the aqueous phase was extracted with ether (10 mL X 4). The organic layers were combined and washed with water, saturated aqueous NaHCO_{3} and saturated NaCl solution. The solvent was removed by rotary evaporation and the residue was recrystallized from diethyl ether to obtain yellow crystals $1.22 \mathrm{~g}(83 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.82(2 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}), 6.31(1 \mathrm{H}, \mathrm{t}, J=1 \mathrm{~Hz})$.

Tributyl(2-nitrophenyl)stannane (171) ${ }^{37}$.

A stirred solution of hexabutylditin ($1.4 \mathrm{~g}, 2.4 \mathrm{mmol}$), 2-iodo-nitrobenzene $(0.5 \mathrm{~g}, 2 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6 \mathrm{mg}, 0.006 \mathrm{mmol})$ in 20 mL toluene was heated at $60^{\circ} \mathrm{C}$ for 72 h under argon. After evaporation to remove the solvent, the residue was washed with aqueous KF solution to remove tributyltin iodide. The aqueous layer was
extracted with benzene and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification was performed by flash column chromatography to give 0.66 g of yellow oil (80%). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.45-2.05(27 \mathrm{H}, \mathrm{m}), 7.35-8.55(4 \mathrm{H}, \mathrm{m})$.

4-(2'-Nitrophenyl)-2,5-dihydro-2-oxofuran (172).

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(57 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{CuBr}(26 \mathrm{mg}, 0.13 \mathrm{mmol})$ were added to a solution of $\mathbf{1 7 1}(1.565 \mathrm{~g}, 3.8 \mathrm{mmol})$ and $\mathbf{1 6 9}(0.6192 \mathrm{~g}, 3.8 \mathrm{mmol})$ in THF at room temperature. The mixture was refluxed under Ar for 15 h . After cooling, THF was evaporated and 2 mL benzene was added. The mixture was separated through flash column chromatography and 0.7819 g yellow needle crystals were obtained (100%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.08(2 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.16(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}) \cdot{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 72.9,118.7,125.3,126.8,130.4,131.4,134.1,147.3$, 163.5, 172.7. IR (NaCl , neat) $1785,1745,1648,1605,1573,1522 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{4} 206.0453(\mathrm{M}+1)$, found 206.0444. $R_{f} 0.3$ (eluted with 50% ethyl acetate/ hexane).

(Z)-(2'-Nitrophenyl)but-2-ene-1,4-diol (173).

102.5 mg of lactone $172(0.5 \mathrm{mmol})$ was dissolved in 2.5 mL dry THF and cooled to $-76{ }^{\circ} \mathrm{C} .2 .5 \mathrm{~mL} 1 \mathrm{~N}$ DIBAL solution in THF (2.5 mmol) was added to the solution dropwise over 5 minutes. The mixture was stirred for 30 minutes at $-76^{\circ} \mathrm{C}$ and then warmed to RT overnight, then quenched with 3 g ice and extracted with ether (10 mL X 3). The extracts were combined and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine. The solvent was rotovaped and residue was separated by flash chromatography (eluted with 50% ethyl acetate/hexanes) to give 61 mg of orange oil $(60 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.49(1 \mathrm{H}, \mathrm{br}), 2.61(1 \mathrm{H}, \mathrm{br}), 4.39(2 \mathrm{H}, \mathrm{d}, J=$ $6.4 \mathrm{~Hz}), 4.47(2 \mathrm{H}, \mathrm{s}), 5.77(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 7.36-8.1(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 58.9,61.8,124.6,128.7,131.1,132.0,133.5,137.3,141.3,148.1 . \mathrm{IR}$ (NaCl , neat) $3336,2872,1607,1570,1524,1347 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{4} \mathrm{Na} 232.0586(\mathrm{M}+\mathrm{Na})$, found 232.1884. $R_{f} 0.3$ (eluted with 100% ethyl acetate).

(Z)-4-t-Butyldiphenylsilyoxy-(2'-nitrophenyl)but-2-ene-1-ol (174).

39.1 mg of compound $\mathbf{1 7 3}(0.187 \mathrm{mmol})$ was dissolved in $2 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ and cooled to $-60{ }^{\circ} \mathrm{C} .52 \mathrm{mg}(0.187 \mathrm{mmol})$ of t-butyldiphenylsilyl chloride, 0.04 mL triethyl amine (0.29 mmol) and 1 mg of DMAP (4-dimethylamino pyridine) were added. The mixture was stirred and warmed to rt overnight. Removal of the solvent followed by separation through flash chromatography yielded 49 mg of 174 (60 \%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.06(9 \mathrm{H}, \mathrm{s}), 2.06(1 \mathrm{H}, \mathrm{s}), 2.07(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz})$, $4.28(2 \mathrm{H}, \mathrm{dd}, J=6.0,0.9 \mathrm{~Hz}), 4.31(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 5.68(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 7.2-$ $8.0(14 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.3,27.0,60.7,61.8,124.5,128.0$, $130.1,131.2,132.0,133.2,135.8,137.1,139.8,148.5$. IR (NaCl, neat) 3422,3071 , 2957, 1608, 1571, $1525 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{NaSi}$ $470.1758(\mathrm{M}+\mathrm{Na})$, found 470.1757. $R_{f} 0.5$ (eluted with 50% ethyl acetate / hexanes).

(Z)-1-Chloro-4-t-butyldiphenylsilyoxy -(2'-nitrophenyl)but-2-ene (180).

330 mg of compound $174(0.762 \mathrm{mmol})$ and N -chlorosuccinimide (204 mg , 1.43 mmol) were dissolved in $12 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and cooled to $-78{ }^{\circ} \mathrm{C} .0 .224 \mathrm{~mL}$ of methyl sulfide (3.05 mmol) was added. The mixture was stirred and warmed to rt
overnight. Removal of the solvent followed by separation through flash chromatography yielded 206 mg of $\mathbf{1 8 0}(60 \%)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.06$ $(9 \mathrm{H}, \mathrm{s}), 4.25(2 \mathrm{H}, \mathrm{s}), 4.48(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 7.2-8.2(4 \mathrm{H}$, $\mathrm{m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 19.3,26.9,42.4,60.8,124.8,128.1,129.0$, $130.0,133.3,133.4,113.5,134.5,135.4,135.8,136.4$. IR (NaCl , neat) 3071,3050 , $1609,1571,1526,1472 \mathrm{~cm}^{-1} \cdot R_{f} 0.3$ (eluted with 10% ethyl acetate / hexanes).
(Z)-1-Bromo-4- t-butyldiphenylsilyoxy -(2'-nitrophenyl)but-2-ene (181).

Compound 180 ($200 \mathrm{mg}, 0.443 \mathrm{mmol}$) was dissolved in 25 mL anhydrous acetone, and 385 mg of anhydrous $\mathrm{LiBr}(4.43 \mathrm{mmol})$ was added. The mixture was stirred at RT under Ar overnight and then concentrated in vacuo. 20 mL water and 20 ml ether were added. The layers were separated and the aqueous layers were extracted with ether (20 mL X 3). The extracts were combined and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash chromatography (eluted with 25% ether/hexanes) to give 143 mg of $\mathbf{1 8 1}$ as a yellow oil (65%). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.06(9 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{s}), 4.47(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 5.73(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz})$, 7.2-8.2 (4H, m, 14 H$).{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 19.4,26.94,30.4,42.4,60.8$, $124.8,128 . .0,128.05,129.1,130.0,133.4,133.5,134.7,135.4,135.7,135.77,135.8$,
136.5. IR (NaCl , neat) $3070,3049,1608,1525,1472,1428 \mathrm{~cm}^{-1} \cdot R_{f} 0.3$ (eluted with 10 \% ethyl acetate / hexanes).

1-Methoxy-4-[(2-propynyloxy)methyl]benzene (184) ${ }^{40}$.

To a solution of propargyl alcohol $183(1.8 \mathrm{~mL}, 1.73 \mathrm{~g}, 30.9 \mathrm{mmol})$ in dry THF (50 mL) at rt was added $\mathrm{NaH}(1.71 \mathrm{~g}, 42.8 \mathrm{mmol}, 60 \%$ dispersion in mineral oil). After stirring for $30 \mathrm{~min}, \mathrm{NaI}(6.41 \mathrm{~g}, 42.8 \mathrm{mmol})$, (dried 24 h at $70^{\circ} \mathrm{C}$ at 0.5 Torr) and 4-methoxybenzyl chloride ($5.85 \mathrm{~mL}, 6.75 \mathrm{~g}, 43.1 \mathrm{mmol}$) were added. The reaction mixture was heated at reflux for 18 h , cooled to $0^{\circ} \mathrm{C}$ and quenched with 80 mL of water. The layers were separated and the aqueous layers were extracted with ether ($4 \times 75 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash chromatography (1:9 ether/hexanes) to give 5.4 g of 184 as a yellow oil $(80 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.51(1 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.17(2 \mathrm{H}, \mathrm{s}), 4.57(2 \mathrm{H}, \mathrm{s}), 6.92$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$.

Methyl 4-(p-methoxybenzyloxy) -2-butynoate (185) ${ }^{41}$.

To a solution of $\mathbf{1 8 4}(2.28 \mathrm{~g}, 12.9 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ was added $n-\mathrm{BuLi}$ (1.53 M solution in hexane, $8.5 \mathrm{~mL}, 13.0 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred
at $-78^{\circ} \mathrm{C}$ for 30 min . To this solution was added methyl chloroformate $(1.0 \mathrm{~mL}, 12.9$ mmol) and stirring was continued for 1 h . The mixture was diluted with saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and the aqueous layer extracted with ether ($30 \times 3 \mathrm{~mL}$). The organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (10% ethyl acetate/hexanes) to afford $185(2.80 \mathrm{~g}, 12.0 \mathrm{mmol}, 92 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.80$ $(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.26(2 \mathrm{H}, \mathrm{s}), 4.55(2 \mathrm{H}, \mathrm{s}), 6.86-6.90(2 \mathrm{H}, \mathrm{m}), 7.25-7.29(2 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 53.1,55.5,56.5,71.9,78.1,84.0,114.1,128.9,130.2$, 153.8, 159.8.

Methyl (E)-4-(p-methoxybenzyloxy) -3-(tributylstannyl)-2-butenoate (186) and Methyl (E)-4-(p-methoxybenzyloxy) -4-(tributylstannyl)-2-butenoate (187)

A degassed solution of $\mathrm{Bu}_{3} \mathrm{SnH}(3.86 \mathrm{~mL}, 14.4 \mathrm{mmol})$ in 10 mL THF was added over 10 min to a solution of $\mathbf{1 8 5}(3.28 \mathrm{~g}, 14.4 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(166 \mathrm{mg}$, 0.072 mmol) in 30 mL THF, which was stirred at $20^{\circ} \mathrm{C}$ under Ar for 5 hrs . THF was removed under reduced pressure. The residue was purified by flash chromatography (10\% ethyl acetate/hexanes) to afford 5.0 g of $186(68 \%)$ and 2.07 g of $187(28 \%)$ as colorless oils. The first product was 186 . ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.7-1.6$ $(27 \mathrm{H}, \mathrm{m}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.48(2 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 5.92(1 \mathrm{H}$, $\mathrm{t}, J=3.0 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): \delta 11.1,13.9,27.5,29.2,51.3,55.4,72.7,74.3,113.8,123.8,123.6,129.9$, $130.5,159.3,165.0,177.2$. IR (NaCl , neat) $2954,1713,1612,1587,1514 \mathrm{~cm}^{-1} \cdot R_{f} 0.3$ (eluted with 10% ethyl acetate/ hexanes).

The second was product 187 . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.7-1.6(27 \mathrm{H}$, $\mathrm{m}), 3.68(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.43(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 4.47(2 \mathrm{H}, \mathrm{s}), 6.31(1 \mathrm{H}, \mathrm{t}, J=$ $4.8 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 10.4,13.9,27.5,29.1,51.6,55.4,70.4,72.6,114.0,129.7,130.3,136.5$, 152.7, 159.4, 171.0. IR (NaCl , neat) $2955,1708,1612,1586,1514 \mathrm{~cm}^{-1} \cdot R_{f} 0.3$ (eluted with 100 \% ethyl acetate).

Methyl (E)-4-(p-methoxybenzyloxy) -3-(o-nitrobenzyl)-2-butenoate (188).

4.932 g of compound $\mathbf{1 8 7}$ (9.4 mmol), 2.34 g of o-iodo nitrobenzene $(9.4$ $\mathrm{mmol})$ and 48 mg of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(0.188 \mathrm{mmol})$ were dissolved in 30 mL dry DMF and heated to $70^{\circ} \mathrm{C}$ for 12 hrs , and then cooled to rt .50 mL water and 50 ml ether were added. The layers were separated and the aqueous layers were extracted with ether (3 X 50 mL). The extracts were combined and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash chromatography (1:3 acetate/hexanes) to give 1.87 g of 188 as a yellow oil (55.7%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.64(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}$, s), $4.55(2 \mathrm{H}, \mathrm{s}), 4.76(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 6.42(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 6.9(2 \mathrm{H}, \mathrm{d}, J=8.7$
$\mathrm{Hz}), 7.32(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.32-8.2(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 52.1$, $55.5,69.1,73.0,114.1,124.8,129.2,129.8,130.1,130.7,132.6,133.9,146.7,159.5$, $165.0,171.4$. IR (NaCl , neat) $1723,1611,1585,1525,1514,1464 \mathrm{~cm}^{-1} \cdot R_{f} 0.3$ (eluted with 25 \% ethyl acetate/ hexanes).

(Z)-4-(p-Methoxybenzyloxy) -(2'-nitrophenyl)but-2-ene-1-ol (189).

1.635 g of compound $\mathbf{1 8 8}$ (4.58 mmol) was dissolved in 25 mL dry THF and cooled to $-78{ }^{\circ} \mathrm{C} .10 \mathrm{~mL} 1 \mathrm{~N}$ DIBAL solution in THF (5.03 mmol) was added to the solution dropwise in 5 minutes. The mixture was stirred for 30 minutes at $-78^{\circ} \mathrm{C}$ and then warmed to rt overnight, and quenched with 20 g ice and extracted with ether (20 $\mathrm{mL} X 3$). The extracts were combined and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine. The solvent was rotovaped, and the residue separated by flash chromatography (50% ethyl acetate/hexanes). 0.74 g of a yellow oily liquid was obtained. 0.54 g starting material was recovered (50% based on recovery). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 3.82(3 \mathrm{H}, \mathrm{s}), 4.23(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 4.42(2 \mathrm{H}$, s), $4.53(2 \mathrm{H}, \mathrm{s}), 5.73(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}), 7.3-8.0(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 55.5,62.0,65.7,72.6,114.1$, $124.6,128.6,128.7,129.9,132.0,133.4,137.3,142.5,148.3,159.6$. IR (NaCl , neat $)$ $3425,1611,1585,1570,1525,1515 \mathrm{~cm}^{-1} . R_{f} 0.3$ (eluted with 50% ethyl acetate/ hexanes).
(Z)-1-Chloro-4-(p-methoxybenzyloxy)-(2'-nitrophenyl)but-2-ene (190).

330 mg of compound $\mathbf{1 8 9}(0.52 \mathrm{~g}, 1.48 \mathrm{mmol})$ and N -chlorosuccinimide (400 $\mathrm{mg}, 3.0 \mathrm{mmol}$) was dissolved in $12 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and cooled to $-78{ }^{\circ} \mathrm{C} .0 .9 \mathrm{~mL}$ of methyl sulfide (5.9 mmol) was added. The mixture was stirred and warmed to rt overnight. Removal of the solvent followed by separation through flash chromatography (eluted with 20% ethyl acetate/ hexanes) yielded 0.458 mg of $\mathbf{1 9 0}$ (83.4 \%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.83(3 \mathrm{H}, \mathrm{s}), 4.29(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 4.39$ $(2 \mathrm{H}, \mathrm{s}), 4.53(2 \mathrm{H}, \mathrm{s}), 5.75(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{d}, J$ $=8.7 \mathrm{~Hz}), 7.4-8.2(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 42.4,55.5,65.6$, $72.3,114.1,124.9,129.2,129.8,130.1,132.1,133.2,136.3,137.7,147.6,159.5$. IR (NaCl , neat) $1611,1585,1571,1524,1514,1464 \mathrm{~cm}^{-1} \cdot R_{f} 0.2$ (eluted with 20% ethyl acetate/ hexanes).
(Z)-1-Bromo-4-(p-methoxybenzyloxy) -(2'-nitrophenyl)but-2-ene (191).

Compound 190 ($303 \mathrm{mg}, 0.87 \mathrm{mmol}$) was dissolved in 25 mL anhydrous acetone and 750 mg of anhydrous $\mathrm{LiBr}(8.6 \mathrm{mmol})$ was added. The mixture was stirred under Ar overnight and then concentrated in vacuo. 20 mL water and 20 ml
ether were added. The layers were separated, and the aqueous layers were extracted with ether ($3 \times 20 \mathrm{~mL}$). The extracts were combined and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash chromatography $(25 \%$ ethyl acetate/hexanes) to give 240 mg of 191 as a yellow oil (70%). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 3.83(3 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 4.54(2 \mathrm{H}, \mathrm{s}), 5.73(1 \mathrm{H}$, $\mathrm{t}, J=6.4 \mathrm{~Hz}), 6.92(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.4-8.2(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 30.3,55.5,65.7,72.3,114.1,124.9,129.2,129.8,130.1$, $132.3,133.3,133.7,136.4,137.7,147.5,159.6$. IR (NaCl , neat) $1610,1584,1524$, $1514,1343 \mathrm{~cm}^{-1} \cdot R_{f} 0.3$ (eluted with 100% ethyl acetate).

4.2. (S)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)hex-2-ynedioate

 (195). ${ }^{45}$

A suspention of zinc ($9.83 \mathrm{~g}, 150.4 \mathrm{mmol}$) in 11.2 mL dry THF and $1,2-$ dibromoethane ($0.65 \mathrm{~mL}, 7.53 \mathrm{mmol}$) was heated under Ar to $60^{\circ} \mathrm{C}$ for 3 min . After cooling the mixture to $35^{\circ} \mathrm{C}$, trimethylsilyl chloride ($0.194 \mathrm{~mL}, 1.53 \mathrm{mmol}$) was added and the mixture was vigorously stirred for 30 min . At this point the reaction vessel was kept $35^{\circ} \mathrm{C}$, compound $193(8.25 \mathrm{~g}, 25.1 \mathrm{mmol})$ in 50 mL dry THF was slowly added, and the mixture was stirred for $15-40 \mathrm{~min}$ until no starting material remained. The solution of zinc reagent was then converted to the zinc-copper reagent

194 by the following procedure, the solution of zinc reagent was cooled to $-10^{\circ} \mathrm{C}$, and a solution prepared from $\mathrm{CuCN}(2.27 \mathrm{~g}, 25.1 \mathrm{mmol})$ and $\mathrm{LiCl}(2.15 \mathrm{~g}, 50.2$ mmol) in 50 mL dry THF was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then cooled to $-55^{\circ} \mathrm{C}$. A solution of ethyl 3-bromoprop-2-ynoate ($5.91 \mathrm{~g}, 33.4 \mathrm{mmol}$) in 67 mL dry THF was introduced followed by stirring at $-55^{\circ} \mathrm{C}$ for 20 h . After quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with ethyl acetate ($3 \times 400 \mathrm{~mL}$), the combined organic layers were washed with 400 mL water, dried over MgSO_{4} and concentrated in vacuo. The residue was separated by silica gel flash chromatography (eluted with 20% ethyl acetate/ hexanes) to give 6.2 g of 195 as a yellow oil $(77 \%) .[\alpha]^{20}{ }_{\mathrm{D}}+55.7\left(c 0.670, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $0.79(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.38(9 \mathrm{H}, \mathrm{s}), 2.39(1 \mathrm{H}, \mathrm{dd}, J=17.4 \mathrm{~Hz}, 5.4 \mathrm{~Hz}), 2.54(1 \mathrm{H}, \mathrm{dd}$, $J=17.4 \mathrm{~Hz}, 5.1 \mathrm{~Hz}), 3.18(3 \mathrm{H}, \mathrm{s}), 3.81(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{ddd}, J=7.8 \mathrm{~Hz}$, $5.4 \mathrm{~Hz}, 5.1 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 14.3,23.3$, 28.7, $52.5,52.6,62.1,76.6,80.3,83.6,153.5,155.4,170.7$. IR (NaCl , neat) 3366 , 2980, 2240, 1748, 1712, 1507. HRMS (FAB+) calc. mass for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{6} 300.1447$ (M+1), found: 300.1453. $R_{f} 0.33$ (eluted with 20% ethyl acetate/ hexanes).

(S)-1-tert-Butyl 6-methyl 5-(tert-butoxycarbonylamino)hex-2-ynedioate

 (196).

A procedure similar to the one described above for the preparation of 195 was used for the synthesis of $\mathbf{1 9 6}$ starting from $2.1 \mathrm{~g}(6.38 \mathrm{mmol})$ of compound $\mathbf{3}$ and 1.44 $\mathrm{g}(7.02 \mathrm{mmol})$ of tert-butyl 3-bromoprop-2-ynoate. 1.0 g product was obtained (48\%). $[\alpha]^{20}{ }_{\mathrm{D}}+52.5\left(c 1.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.24(9 \mathrm{H}, \mathrm{s}), 1.37(9 \mathrm{H}$, s), $2.39(1 \mathrm{H}, \mathrm{dd}, J=17.1 \mathrm{~Hz}, 5.4 \mathrm{~Hz}), 2.53(1 \mathrm{H}, \mathrm{dd}, J=17.1 \mathrm{~Hz}, 5.1 \mathrm{~Hz}), 3.15(3 \mathrm{H}$, s), $4.34(1 \mathrm{H}$, ddd, $J=7.8 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 5.1 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 23.1,28.1,28.6,52.3,52.5,77.8,80.2,81.3,83.0,152.7,155.4$, 170.8. IR (NaCl , neat) $3366,2980,2244,1750,1709,1505$. HRMS (FAB+) calc. mass for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{6} 328.1760(\mathrm{M}+1)$, found 328.1746. $R_{f} 0.33$ (eluted with 20% ethyl acetate/ hexanes).
(S,E)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(trimethylstannyl) hex-2-enedioate (198). ${ }^{49}$

To a cold $\left(-20{ }^{\circ} \mathrm{C}\right)$, stirred solution of 5.2 g of hexamethylditin (15.87 $\mathrm{mmol})$ in 150 mL dry THF was added a solution of $10.7 \mathrm{~mL}(17.12 \mathrm{mmol})$ of a 1.6 M solution of methyl lithium in ether. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 15 min to afford a pale yellow solution of $\mathrm{Me}_{3} \mathrm{SnLi}$. This solution was then cooled to $-78{ }^{\circ} \mathrm{C}$ and $1.66 \mathrm{~g}(18.52 \mathrm{mmol})$ of solid CuCN was added in one portion. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min and at $-48^{\circ} \mathrm{C}$ for 15 min to afford a bright orange solution. This solution was then cooled to $-78^{\circ} \mathrm{C}$ and $0.95 \mathrm{~mL}(16.0 \mathrm{mmol})$ of dry ethanol was
added. After 5 min , a solution of compound 195 in 50 mL dry THF was added dropwise and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for $4 \mathrm{~h} .200 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{4} \mathrm{OH}$ buffer (consisting of a 9: 1 ratio of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}: 28 \% \sim 30 \% \mathrm{NH}_{4} \mathrm{OH}, \mathrm{PH}=8$) was added, the mixture was opened to the atmosphere, and warmed to RT, and was stirred vigorously until the aqueous phase became a deep blue color. The organic phase was separated and the aqueous phase was extracted thoroughly with ether. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel flash column chromatography (eluted with 15% ethyl acetate/ hexanes) to give 5.0 g of compound 198 as a yellow oil (81\%). $[\alpha]^{20}{ }_{\mathrm{D}}+60.8\left(c 2.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.18(9 \mathrm{H}, \mathrm{s})$, $0.95(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.36\left(9 \mathrm{H}, \mathrm{s},{ }^{2} J_{\text {Sn-H }}=54.3 \mathrm{~Hz}\right), 2.89(1 \mathrm{H}, \mathrm{dd}, J=12.0 \mathrm{~Hz}, 3.9$ $\mathrm{Hz}), 3.28(3 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}, \mathrm{t}, J=12.0 \mathrm{~Hz}), 3.95(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.68(1 \mathrm{H}, J=12.0$ $\mathrm{Hz}, 8.1 \mathrm{~Hz}, 3.9 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.22\left(1 \mathrm{H}, \mathrm{s},{ }^{3} J_{S n \cdot H}=69.0 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-8.7,28.7,28.9,37.2,52.3,54.5,79.5,81.0,133.4,156.2,164.9$, 165.5, 172.8. IR (NaCl, neat) $3371,2977,1751,1717,1598,1507,1446 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{Sn}: 494.1565$ (M+1), found: 494.1557. $R_{f} 0.33$ (eluted with 15% ethyl acetate/ hexanes).
(S,E)-1-Ethyl 6-methyl 3-(2-bromophenyl)-5-(tert-butoxycarbonylamino) hex-2-enedioate (6a).

A solution of o-iodobromobezene $(41.2 \mathrm{mg}, 0.146 \mathrm{mmol}), \mathrm{CuI}(6.67 \mathrm{mg}, 35$ $\mu \mathrm{mol}), \mathrm{AsPh}_{3}(10.7 \mathrm{mg}, 35 \mu \mathrm{~mol})$, and $\mathrm{Pd}_{2} \mathrm{dba}_{3}(9.45 \mathrm{mg}, 8.74 \mu \mathrm{~mol})$ in 1.2 mL dry DMF under Ar was treated with compound 198 ($61.3 \mathrm{mg}, 0.132 \mathrm{mmol}$). The reaction mixture was then stirred for 2 h . The solution was then diluted with EtOAc (5 mL) and washed with water. The combined aqueous layers were extracted with EtOAc (2 X 5 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to dryness. The resulting oil was purified by silica gel chromatography (eluted with 25% ethyl acatate/hexanes) to yield 41.0 mg of $\mathbf{6 a}$ as a yellow oil (68\%). $[\alpha]^{20}{ }_{\mathrm{D}}+53.2\left(c \quad 1.17, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.91(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $1.41(9 \mathrm{H}, \mathrm{s}), 3.13(3 \mathrm{H}, \mathrm{s}), 3.33(1 \mathrm{H}, \mathrm{dd}, J=12.4 \mathrm{~Hz}, 4.0 \mathrm{~Hz}), 3.88(2 \mathrm{H}, \mathrm{q}, J=7.2$ $\mathrm{Hz}), 4.02(1 \mathrm{H}, \mathrm{t}=12.4 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \mathrm{ddd}, J=12.4 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 4.0 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{s})$, $5.96(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 6.58-7.25(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.4,28.7$, $35.4,52.1,53.3,60.9,79.6,121.8,124.6,127.9,128.9,130.1,130.9,133.6,142.5$, $156.2,167.0,172.5$. IR (NaCl , neat) $3382,2978,1748,1717,1645,1507,1436 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{Br}: 456.1021\left(\mathrm{M}+1,{ }^{80} \mathrm{Br}\right)$, found: 456.1005. $R_{f} 0.30$ (eluted with 25% ethyl acetate/ hexanes).

(S,E)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(2-nitrophenyl)

hex-2-enedioate (6b).

A 25 mL flask equipped with a magnetic stir bar was charged with 80 mg (0.308 mmol) of $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ and 10 mL of DMF. n-Tributyltin hydride $(182 \mu \mathrm{~L}$, 0.339 mmol) was added dropwise and a black precipitate formed immediately. The mixture was stirred for 10 minutes and was added to a solution of 1.98 g compound $198(4.27 \mathrm{mmol})$ and $1.12 \mathrm{~g}(4.49 \mathrm{mmol})$ of o-iodonitrobenzene in 50 mL DMF in three portions (one portion every 5 h). The mixture was stirred overnight. The reaction was then quenched with water and the mixture was extracted with ether (3 X 100 mL). The combined organic extracts were washed with 300 mL water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was separated by silica gel flash column chromatography (eluted with 25% ethyl acetate/ hexanes) to give 850 mg of 6b as a yellow oil along with 800 mg of unreacted 198 (47% conversion and 79% yield based on recovered 198). $[\alpha]^{20}{ }_{\mathrm{D}}+17.8\left(c 0.835, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.89(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.42(9 \mathrm{H}, \mathrm{s}), 3.11(3 \mathrm{H}, \mathrm{s}), 3.16(1 \mathrm{H}, \mathrm{dd}, J=12.9 \mathrm{~Hz}$, $3.6 \mathrm{~Hz}), 3.85(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{t}, J=12.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{ddd}, J=12.9$ $\mathrm{Hz}, 9.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{s}), 5.9(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.5-7.6(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 14.8,28.4,35.6,52.1,53.3,79.6,81.4,124.2,125.3,128.9,131.7$, $133.6,137.3,147.4,153.4,156.3,166.3,172.4$. IR (NaCl , neat) $3389,2979,1747$, $1716,1640,1608,1528,1367,1347 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8}$: $451.2080(\mathrm{M}+1)$, found: $451.2086 . R_{f} 0.30$ (eluted with 25% ethyl acetate/ hexanes).
(S,E)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(3-cyanophenyl) hex-2-enedioate (6c).

A procedure similar to the one described above for the preparation of $\mathbf{6 a}$ was used for the synthesis of $\mathbf{6 c}$ starting from $19.5 \mathrm{mg}(0.0421 \mathrm{mmol})$ of compound $\mathbf{1 9 8}$ and $10.6 \mathrm{mg}(0.0464 \mathrm{mmol})$ of 3-iodobenzonitrile. Yield: $12.0 \mathrm{mg}(71 \%) .[\alpha]^{20}{ }_{\mathrm{D}}$ $+46.7\left(c 0.405, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.99(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.36$ $(9 \mathrm{H}, \mathrm{s}), 3.16(3 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{dd}, J=13.4 \mathrm{~Hz}, 10.0 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{dd}, J=13.4 \mathrm{~Hz}$, $9.6 \mathrm{~Hz}), 3.96(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{ddd}, J=10.0 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 8.4 \mathrm{~Hz}), 5.71$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{s}), 6.40-7.20(3 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.5,28.6,33.4,52.1,53.5,60.9,79.8,113.9,118.7,122.8,129.7$, $130.9,131.1,132.6,141.5,153.0,155.9,166.7,172.2$. IR (NaCl , neat) 3371,2878 , 2231, 1744, 1713, 1632, $1510 \mathrm{~cm}^{-1}$. HRMS ($\mathrm{FAB}+$) calc. mass for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}$ $403.1869(\mathrm{M}+1)$, found 403.1869. $R_{f} 0.30$ (eluted with 25% ethyl acetate/ hexanes).
(S,E)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(5-oxocyclopent-1-enyl)hex-2-enedioate (6d).

A procedure similar to the one described above for the preparation of $\mathbf{6 a}$ was used for the synthesis of $\mathbf{6 d}$ starting from 21.0 mg (0.0454 mmol) of compound $\mathbf{1 9 8}$ and $8.05 \mathrm{mg}(0.05 \mathrm{mmol})$ of 4-bromocyclopent-2-enone. Yield: $13.3 \mathrm{mg}(77 \%)$. $[\alpha]^{20}{ }_{\mathrm{D}}+46.5\left(c 0.550, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.91(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz})$, $1.39(9 \mathrm{H}, \mathrm{s}), 1.58(2 \mathrm{H}, \mathrm{m}), 1.78(2 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{dd}, J=13.5 \mathrm{H}, 5.1 \mathrm{~Hz})$, $3.33(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, J=13.5 \mathrm{~Hz}, 10.8 \mathrm{~Hz}), 3.91(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.70(1 \mathrm{H}$, ddd, $J=10.8 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 6.9 \mathrm{~Hz}), 6.37(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{t}, J=3.0 \mathrm{~Hz})$, $7.66(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 14.7,26.3,28.9,32.6,36.2,52.4,54.5$, $61.0,79.8,122.5,140.5,144.0,156.4,163.0,168.4,172.8,205.7$. IR (NaCl , neat) 3371, 2978, 1746, 1708, 1625, 1510, $1367 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{7} 382.1866(\mathrm{M}+1)$, found 382.1873. $R_{f} 0.30$ (eluted with 50% ethyl acetate/ hexanes).
(S,E)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(5-oxo-2,5-dihydrofuran-3-yl)hex-2-enedioate (6e).

A procedure similar to the one described above for the preparation of 6 a was used for the synthesis of $\mathbf{6 e}$ starting from $45.0 \mathrm{mg}(0.097 \mathrm{mmol})$ of compound $\mathbf{1 9 8}$ and $17.4 \mathrm{mg}(0.107 \mathrm{mmol})$ of 4-bromofuran-2(5H)-one. Yield: $21.1 \mathrm{mg}(57 \%) \cdot[\alpha]^{20}{ }_{\mathrm{D}}$ $+36.0\left(c 2.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.93(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.35$ $(9 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=13.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{dd}, J=13.2 \mathrm{~Hz}, 9.6 \mathrm{~Hz}), 3.24$
$(3 \mathrm{H}, \mathrm{s}), 3.87(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.96(2 \mathrm{H}, \mathrm{s}), 4.69(1 \mathrm{H}, \mathrm{ddd}, J=9.6 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 4.8$ $\mathrm{Hz}), 5.34(1 \mathrm{H}, \mathrm{s}), 5.62(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $14.4,28.6,32.3,52.4,53.9,61.3,70.0,80.0,120.3,123.2,143.9,155.9,162.1,166.0$, 171.9, 172.2. IR (NaCl , neat) $3376,2979,1789,1752,1714,1630,1599,1507 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{8} 384.1658(\mathrm{M}+1)$, found 384.1673. $R_{f} 0.30$ (eluted with 50% ethyl acetate/ hexanes).
(S,E)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(thiophen-3-yl)hex-2-enedioate (6f).

A procedure similar to the one described above for the preparation of 6 a was used for the synthesis of $\mathbf{6 f}$ starting from $19.6 \mathrm{mg}(0.0423 \mathrm{mmol})$ of compound $\mathbf{1 9 8}$ and $9.8 \mathrm{mg}(0.0466 \mathrm{mmol})$ of 3-iodothiophene. Yield: $13.0 \mathrm{mg}(80 \%) .[\alpha]^{20}{ }_{\mathrm{D}}+46.1(c$ $\left.0.460, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) : $\delta 0.99(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.38(9 \mathrm{H}, \mathrm{s})$, $3.27(1 \mathrm{H}, \mathrm{dd}, J=12.9 \mathrm{~Hz}, 5.1 \mathrm{~Hz}), 3.28(3 \mathrm{H}, \mathrm{s}), 3.76(1 \mathrm{H}, \mathrm{dd}, J=12.9 \mathrm{~Hz}, 9.9 \mathrm{~Hz})$, $3.96(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{ddd}, J=7.8 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 5.1 \mathrm{~Hz}), 6.22(1 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{s}), 6.65(1 \mathrm{H}, \mathrm{dd}, J=5.1 \mathrm{~Hz}, 3.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{dd}, J=5.1 \mathrm{~Hz}, 1.5$ $\mathrm{Hz}), 7.35(1 \mathrm{H}, \mathrm{dd}, J=3.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 14.8,28.9,33.4$, $52.3,54.9,60.8,79.7,118.5,125.8,125.9,126.9,141.3,148.7,156.1,167.8,172.6$. IR (NaCl , neat) $3366,2978,1745,1711,1698,1619,1503,1450 \mathrm{~cm}^{-1}$. HRMS
(FAB+) calc. mass for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{~S} 384.1481(\mathrm{M}+1)$, found 384.1489. $R_{f} 0.40$ (eluted with 20 \% ethyl acetate/ hexanes).
(S,E)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(5-formylfuran-2$\mathrm{yl})$ hex-2-enedioate ($\mathbf{6 g}$).

A procedure similar to the one described above for the preparation of $\mathbf{6 a}$ was used for the synthesis of $\mathbf{6 g}$ starting from $53.5 \mathrm{mg}(0.116 \mathrm{mmol})$ of compound $\mathbf{1 9 8}$ and 28.2 mg (0.127 mmol) of 5-iodofuran-2-carbaldehyde. Yield: 38.4 mg (84%). $[\alpha]^{20}{ }_{\mathrm{D}}+27.2\left(c 1.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.94(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz})$, $1.36(9 \mathrm{H}, \mathrm{s}), 3.17(1 \mathrm{H}, \mathrm{dd}, J=13.2 \mathrm{~Hz}, 5.7 \mathrm{~Hz}), 3.29(3 \mathrm{H}, \mathrm{s}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=13.2$ $\mathrm{Hz}, 9.9 \mathrm{~Hz}), 3.90(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{ddd}, J=9.9 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 5.7 \mathrm{~Hz}), 6.02$ $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.37(1 \mathrm{H}, \mathrm{d}, 4.2 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{d}, 4.2 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{s}), 9.13(1 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.4,28.6,31.1,52.3,54.7,61.0,79.9,113.9,119.6$, 121.1, 140.6, 153.4, 156.2, 156.7, 167.2, 172.2, 177.7. IR (NaCl , neat) 3366,2978 , 1746, 1713, 1683, 1623, 1500, $1447 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{8}$ $396.1658(\mathrm{M}+1)$, found 396.1649. $R_{f} 0.25$ (eluted with 25% ethyl acetate/ hexanes).
(S,E)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(4-formylphenyl)

hex-2-enedioate (6 h).

A procedure similar to the one described above for the preparation of $\mathbf{6 b}$ was used for the synthesis of $\mathbf{6 h}$ starting from 45.0 mg (0.0972 mmol) of compound 198 and $21.6 \mathrm{mg}(0.117 \mathrm{mmol})$ of 4-iodobenzaldehyde. Yield: $26.4 \mathrm{mg}(67 \%) .[\alpha]^{20}{ }_{\mathrm{D}}$ $+66.8\left(c 0.467, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.99(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.37$ $(9 \mathrm{H}, \mathrm{s}), 3.19(3 \mathrm{H}, \mathrm{s}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=13.2 \mathrm{~Hz}, 5.1 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{dd}, J=13.2 \mathrm{~Hz}$, $9.9 \mathrm{~Hz}), 3.87(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{ddd}, J=9.9 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 5.1 \mathrm{~Hz}), 5.80$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.03(1 \mathrm{H}, \mathrm{s}), 7.12(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 7.39(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz})$, $9.59(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 14.5,28.7,33.4,52.1,53.7,60.9,79.7$, $122.7,130.0,130.2,137.4,145.7,154.2,155.9,166.9,172.4,191.0$. IR $(\mathrm{NaCl}$, neat $)$ $3371,2979,1745,1704,1604,1511 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{7}$ $406.1866(\mathrm{M}+1)$, found 406.1874. $R_{f} 0.30$ (eluted with 33% ethyl acetate/ hexanes).
(S,E)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-2-(tri-n-butyl stannyl)hex-2-enedioate (199) and (S,E)-1-ethyl 6-methyl 5-(tert-butoxycarbonyl amino)-3-(tri-n-butylstannyl)hex-2-enedioate (200).

A solution of compound $195(347.8 \mathrm{mg}, 022 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4(5 \mathrm{mg}, 4.3$ mmol) in dry THF (10 mL) under Ar was treated with n-tributyltin hydride (343 mL , 0.24 mmol). The reaction mixture was then stirred for 2 h and the solvent was evaporated to dryness. The resulting oil was purified by silica gel chromatography (eluted with 5\% ethyl acetate/hexanes). The first eluting compound was 200 (66 mg , 10%) and the slower eluting substance was 199 (487 mg , yield 71%). Data for 199: $[\alpha]^{20}{ }_{\mathrm{D}}+33.5\left(c 1.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.96(9 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $1.01(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.02(6 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}), 1.37(6 \mathrm{H}, \mathrm{m}), 1.42(9 \mathrm{H}, \mathrm{s}), 1.59(6 \mathrm{H}$, $\mathrm{m}), 2.90(2 \mathrm{H}, \mathrm{m}), 3.28(3 \mathrm{H}, \mathrm{s}), 3.95(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{ddd}, J=13.2 \mathrm{~Hz}$, $7.2 \mathrm{~Hz}, 0.4 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 6.09\left(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz},{ }^{3} J_{S_{n}-H}=45.0 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 11.0,14.3,14.7,28.0,28.7,29.6,35.2,52.1,54.0,60.8$, 79.6, 141.1, 146.9, 156.1, 171.1, 172.8. IR (NaCl, neat) 3364, 2957, 2928, 2872, 2854, 1754, 1719, 1607, $1500 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{26} \mathrm{H}_{50} \mathrm{NO}_{6} \mathrm{Sn}$: $591.2671(\mathrm{M}+1)$, found: 591.2647. $R_{f} 0.33$ (eluted with 10% ethyl acetate/ hexanes). Data for 200: $[\alpha]^{20}{ }_{\mathrm{D}}+54.3\left(c 3.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.93(9 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}), 0.94(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.02(6 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 1.36(6 \mathrm{H}, \mathrm{m}), 1.41(9 \mathrm{H}$, s), $1.58(6 \mathrm{H}, \mathrm{m}), 2.97(1 \mathrm{H}, \mathrm{dd}, J=12.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 3.31(3 \mathrm{H}, \mathrm{s}), 3.92(2 \mathrm{H}, \mathrm{q}, J=7.0$
$\mathrm{Hz}), 4.02(2 \mathrm{H}, \mathrm{t}, J=12.4 \mathrm{~Hz}), 4.71(1 \mathrm{H}, \mathrm{ddd}, J=12.4 \mathrm{~Hz}, 12.4 \mathrm{~Hz}, 8.4 \mathrm{~Hz}), 6.23$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.34\left(1 \mathrm{H}, \mathrm{s},{ }^{3} J_{S n \cdot H}=60.0 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 10.7$, $14.2,14.5,28.1,28.8,29.7,37.6,52.2,54.6,60.6,79.5,132.1,156.5,165.3,168.1$, 173.0. IR (NaCl, neat) $3364,2957,2929,2872,2854,1754,1719,1607,1503 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{26} \mathrm{H}_{50} \mathrm{NO}_{6} \mathrm{Sn}: 591.2671(\mathrm{M}+1)$, found: 591.2671. R_{f} 0.30 (eluted with 15% ethyl acetate / hexanes).
(S,Z)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-2-(4-methoxy phenyl) hex-2-enedioate (7a).

A procedure similar to the one described above for the preparation of $\mathbf{6 a}$ was used for the synthesis of 7a starting from 40.0 mg (0.0678 mmol) of compound 199 and $17.4 \mathrm{mg}(0.0745 \mathrm{mmol})$ of 1-iodo-4-methoxybenzene. Yield: 20.4 mg (74%). $[\alpha]^{20}{ }_{\mathrm{D}}+20.9\left(c 0.675, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.94(3 \mathrm{H}, \mathrm{t}, J=7.1$ $\mathrm{Hz}), 1.42(9 \mathrm{H}, \mathrm{s}), 2.81(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.25(3 \mathrm{H}, \mathrm{s}), 3.28(3 \mathrm{H}, \mathrm{s}), 4.01(2 \mathrm{H}, \mathrm{q}, J=$ $7.1 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 5.71(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$, $6.72(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.4$, $28.7,33.5,52.1,54.1,55.1,61.2,79.8,114.4,129.3,130.6,131.6,138.5,156.1$, $160.4,168.6,172.8$. IR (NaCl, neat) $3371,2978,1745,1715,1608,1513 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{7} 408.2022(\mathrm{M}+1)$, found 408.2003. $R_{f} 0.33$ (eluted with 33 \% ethyl acetate/ hexanes).
(S,Z)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-2-(3-cyanophenyl) hex-2-enedioate (7b).

A procedure similar to the one described above for the preparation of $\mathbf{6 a}$ was used for the synthesis of $\mathbf{7 b}$ starting from $41.3 \mathrm{mg}(0.070 \mathrm{mmol})$ of compound 199 and $17.6 \mathrm{mg}(0.077 \mathrm{mmol})$ of 3-iodobenzonitrile. Yield: $22.0 \mathrm{mg}(79 \%) .[\alpha]^{20}{ }_{\mathrm{D}}$ $+27.4\left(c 0.625, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.84(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.41$ $(9 \mathrm{H}, \mathrm{s}), 2.82(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.25(3 \mathrm{H}, \mathrm{s}), 3.88(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{q}, J$ $=7.5 \mathrm{~Hz}), 5.53(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$, 6.8-7.4 (4H, m). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 14.3,28.7,33.7,52.3,53.8,61.5,80.1$, $113.5,118.9,129.2,131.5,131.8,132.1,136.1,138.1,139.5,156.0,166.8,172.5$. IR $\left(\mathrm{NaCl}\right.$, neat) $3373,2979,2231,1745,1716,1511,1438 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} 403.1869(\mathrm{M}+1)$, found 403.1864. $R_{f} 0.30$ (eluted with 25% ethyl acetate/ hexanes).
(S,Z)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-2-(5-oxocyclopent-1-enyl)hex-2-enedioate (7c).

A procedure similar to the one described above for the preparation of 6 a was used for the synthesis of $\mathbf{7 c}$ starting from $42.4 \mathrm{mg}(0.0718 \mathrm{mmol})$ of compound 199 and $12.7 \mathrm{mg}(0.079 \mathrm{mmol})$ of 4-bromocyclopent-2-enone. Yield: 19.7 mg (72%). $[\alpha]^{20}{ }_{\mathrm{D}}+20.2\left(c 0.130, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.01(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $1.66(9 \mathrm{H}, \mathrm{s}), 1.68(2 \mathrm{H}, \mathrm{m}), 1.85(2 \mathrm{H}, \mathrm{m}), 2.83(2 \mathrm{H}, \mathrm{m}), 3.30(3 \mathrm{H}, \mathrm{s}), 4.05(2 \mathrm{H}, \mathrm{q}, J=$ $7.2 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{m}), 5.64(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{t}, J$ $=2.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.5,26.3,28.7,33.2,35.3,52.2,53.9,61.4$, $79.7,130.0,135.6,140.5,156.0,160.0,167.0,172.6,205.6$ IR (NaCl , neat) 3367 , $2978,1745,1709,1509,1367 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{7}$ $382.1866(\mathrm{M}+1)$, found 382.1874. $R_{f} 0.33$ (eluted with 50% ethyl acetate/ hexanes).

(S,Z)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-2-(5-oxo-2,5-

 dihydrofuran-3-yl)hex-2-enedioate (7d).

A procedure similar to the one described above for the preparation of $\mathbf{6 a}$ was used for the synthesis of $\mathbf{7 d}$ starting from $36.0 \mathrm{mg}(0.061 \mathrm{mmol})$ of compound 199 and $10.93 \mathrm{mg}(0.0671 \mathrm{mmol})$ of 4-bromofuran-2($5 H$-one. Yield: $16.0 \mathrm{mg}(69 \%)$. $[\alpha]^{20}{ }_{\mathrm{D}}+20.8\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.82(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $1.37(9 \mathrm{H}, \mathrm{s}), 2.65(1 \mathrm{H}, \mathrm{m}), 2.66(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 3.21(3 \mathrm{H}, \mathrm{s}), 3.81(2 \mathrm{H}, \mathrm{q}, J=7.2$ $\mathrm{Hz}), 4.11(2 \mathrm{H}, \mathrm{s}), 4.40(1 \mathrm{H}, \mathrm{dd}, J=14.1 \mathrm{~Hz}, 8.1 \mathrm{~Hz}), 5.36(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.54$ $(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 5.98(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 14.2,28.6,33.7,52.4$,
$53.5,61.8,70.5,80.3,117.5,129.5,140.4,155.9,158.7,164.9,172.1,172.9$. IR (NaCl , neat) $3364,2979,1785,1750,1716,1634,1516 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{8} 384.1658(\mathrm{M}+1)$, found 384.1649. $R_{f} 0.30$ (eluted with 50% ethyl acetate/ hexanes).
(S,Z)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-2-(thiophen-3-yl)hex-2-enedioate (7e).

A procedure similar to the one described above for the preparation of $\mathbf{6 a}$ was used for the synthesis of $\mathbf{7 e}$ starting from $35.6 \mathrm{mg}(0.0603 \mathrm{mmol})$ of compound 199 and $13.9 \mathrm{mg}(0.0633 \mathrm{mmol})$ of 3-iodothiophene. Yield: $19.4 \mathrm{mg}(84 \%) .[\alpha]^{20}{ }_{\mathrm{D}}+17.0$ (c $0.635, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.91(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.40(9 \mathrm{H}, \mathrm{s})$, $2.76(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.25(3 \mathrm{H}, \mathrm{s}), 3.96(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{q}, J=7.5$ $\mathrm{Hz}), 5.64(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{dd}, J=5.1 \mathrm{~Hz}, 3.3$ $\mathrm{Hz}), 6.94(1 \mathrm{H}, \mathrm{dd}, J=5.1 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{dd}, J=3.3 \mathrm{~Hz}, 1.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) : $\delta 14.6,28.9,33.5,52.3,54.2,61.5,79.9,123.2,125.9,127.2,132.3$, $133.4,138.6,156.0,168.5,172.6$. IR (NaCl , neat) $3372,2978,1743,1717,1506$, 1436, $1366 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{~S} 384.1481$ (M+1), found 384.1486. $R_{f} 0.30$ (eluted with 25% ethyl acetate/ hexanes).
(S,Z)-1-Ethyl 6-methyl 5-(tert-butoxycarbonylamino)-2-(5-formylfuran-2-yl)hex-2-enedioate (7f).

A procedure similar to the one described above for the preparation of 6 a was used for the synthesis of $\mathbf{7 f}$ starting from 40.3 mg (0.0683 mmol) of compound 199 and $16.7 \mathrm{mg}(0.0751 \mathrm{mmol})$ of 5-iodofuran-2-carbaldehyde. Yield: $20.5 \mathrm{mg}(76 \%)$. $[\alpha]^{20}{ }_{\mathrm{D}}-1.3\left(c 0.555, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathrm{H}} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.92(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $1.39(9 \mathrm{H}, \mathrm{s}), 2.78(2 \mathrm{H}, \mathrm{m}), 3.23(3 \mathrm{H}, \mathrm{s}), 3.93(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{m}), 5.42$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{t}, J=$ $7.95 \mathrm{~Hz}), 9.22(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 14.3,28.6,33.2,52.2,53.7,61.8$, $80.0,111.8,121.8,127.0,137.5,152.8,154.9,155.9,165.0,172.4,177.0 . \mathrm{IR}(\mathrm{NaCl}$, neat) $3365,2979,1742,1716,1678,1500,1439 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{8} 396.1658(\mathrm{M}+1)$, found 396.1640. $R_{f} 0.30$ (eluted with 33 \% ethyl acetate/ hexanes).
(S,E)-1-tert-Butyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(trimethy Istannyl)hex-2-enedioate (201).

A procedure similar to the one described above for the preparation of $\mathbf{1 9 8}$ was used for the synthesis of $\mathbf{2 0 1}$ starting from 0.91 mg (2.78 mmol) of compound $\mathbf{1 9 6}$ and $1.09 \mathrm{~g}(3.34 \mathrm{mmol})$ of hexamethylditin. Yield: $729 \mathrm{mg}(53 \%) .[\alpha]^{20}{ }_{\mathrm{D}}+60.8(c$ $\left.2.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.13\left(9 \mathrm{H}, \mathrm{s},{ }^{2} J_{S n \cdot H}=54.3 \mathrm{~Hz}\right), 1.36(9 \mathrm{H}$, s), $1.42(9 \mathrm{H}, \mathrm{s}), 2.89(1 \mathrm{H}, \mathrm{dd}, J=12.0 \mathrm{~Hz}, 3.9 \mathrm{~Hz}), 3.28(3 \mathrm{H}, \mathrm{s}), 3.95(1 \mathrm{H}, \mathrm{t}, J=12.0$ $\mathrm{Hz}), 4.68(1 \mathrm{H}, \mathrm{ddd}, J=12.0 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 3.9 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.22(1 \mathrm{H}$, $\left.\mathrm{s},{ }^{3} J_{S n-H}=69.0 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-8.7,28.7,28.9,37.2,52.3,54.5$, $79.5,81.0,133.4,156.2,164.9,165.5,172.8$. IR (NaCl, neat) $3371,2977,1751,1717$, $1598,1507,1446 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{Sn} 494.1565(\mathrm{M}+1)$, found 494.1557. $R_{f} 0.33$ (eluted with 15% ethyl acetate/ hexanes).
(S,E)-1-tert-Butyl 6-methyl 5-(tert-butoxycarbonylamino)-3-(2-nitro phenyl)hex-2-enedioate (202).

A procedure similar to the one described above for the preparation of $\mathbf{6 b}$ was used for the synthesis of $\mathbf{2 0 2}$ starting from 404 mg (1.03 mmol) of compound $\mathbf{2 0 1}$ and 284 mg (1.14 mmol) of o-iododnitrobenzene. 94.9 mg product was obtained along with the recovery of 246 mg compound $201(25 \%$ conversion and 66% yield based on recovered 201). $[\alpha]^{20}{ }_{\mathrm{D}}+17.8\left(c 0.835, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.36$ $(9 \mathrm{H}, \mathrm{s}), 1.42(9 \mathrm{H}, \mathrm{s}), 3.11(3 \mathrm{H}, \mathrm{s}), 3.16(1 \mathrm{H}, \mathrm{dd}, J=12.9 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{t}, J=$ $12.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}$, ddd, $J=12.9 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{s}), 6.02(1 \mathrm{H}, \mathrm{d}, J=$
$9.0 \mathrm{~Hz}), 6.5-7.6(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 28.4,28.8,35.6,52.1,53.3$, $79.6,81.4,124.2,125.3,128.9,131.7,133.6,137.3,147.4,153.4,156.3,166.3,172.4$. IR (NaCl , neat) $3389,2979,1747,1716,1640,1608,1528,1367,1347 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8} 451.2080(\mathrm{M}+1)$, found 451.2086. $R_{f} 0.30$ (eluted with 25 \% ethyl acetate/ hexanes).

5-(4-Nitro-benzenesulfonylamino)-3-(trimethyl-stannanyl)-hex-2-enedioic

 acid 1-ethyl ester 6-methyl ester (208).
$932 \mathrm{mg}(2.013 \mathrm{mmol})$ of amino acid 198 was deprotected by the same procedure as reported before. The residue thus obtained was dissolved in 15 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $20 \mathrm{~mL} 5 \%$ aqueous NaHCO_{3} was added. A solution of 446.1 mg (2.013 mmol) of 4-nitobenzenesulfonyl chloride in $15 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added over a period of 5 min at room temperature. The resulting mixture was stirred overnight. The organic layer was separated and the aqueous layer was extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was evaporated in vacuo and the residue was separated through flash chromatography (25% ethyl acetate/hexanes). $894 \mathrm{mg}(1.63 \mathrm{mmol})$ of product $\mathbf{2 0 8}$ was obtained as yellow oil (81\%). $[\alpha]^{20}{ }_{\mathrm{D}}+39.9\left(c\right.$ 2.63, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.15\left(9 \mathrm{H}, \mathrm{s},{ }^{3} J_{S n \cdot H}=54 \mathrm{~Hz}\right), 0.95(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.76(2 \mathrm{H}$, ddd, J $=12.3 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 2.96(3 \mathrm{H}, \mathrm{s}), 3.66(1 \mathrm{H}, \mathrm{dt}, J=12.3 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 3.94(2 \mathrm{H}$, $\mathrm{qd}, J=7.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{m}), 6.27\left(1 \mathrm{H}, \mathrm{t}, J=0.9 \mathrm{~Hz},{ }^{3} J_{\text {Sn } n}=65 \mathrm{~Hz}\right), 6.90$ $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.55(4 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-9.0,14.4,37.1,52.2$,
$56.5,61.2,124.2,128.5,132.9,147.3,150.1,166.0,166.2,171.4 . \operatorname{IR}(\mathrm{NaCl}$, neat $)$ $3268,3107,1744,1709,1693,1606,1532,1435 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SSn}$: $550.0432(\mathrm{M}+1)$, found: 550.0440. $R_{f} 0.25$ (eluted with 20% ethyl acetate / hexanes).

5-[Allyl-(4-nitro-benzenesulfonyl)-amino]-3-(trimethyl-stannanyl)-hex-2-

 enedioic acid 1-ethyl ester 6-methyl ester (209).

To a solution of compound $208894 \mathrm{mg}(1.63 \mathrm{mmol})$ and $676 \mathrm{mg} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}$ (4.89 mmol) in dry DMF 10 mL , allyl bromide $211 \mu \mathrm{~L}$ (2.443 mmol) was added. After stirring for 16 h , the reaction mixture was poured into water (40 mL). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$ and the combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give product $\mathbf{2 0 9}(1.33 \mathrm{mmol}, 786 \mathrm{mg})$ as an yellow oil in 82% yield. $[\alpha]_{\mathrm{D}}^{20}-22.8\left(c 2.77, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 0.27\left(9 \mathrm{H}, \mathrm{s},{ }^{3} J_{S_{n} \cdot H}=55 \mathrm{~Hz}\right), 0.96(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.07$ $(3 \mathrm{H}, \mathrm{s}), 3.40-3.70(2 \mathrm{H}, \mathrm{m}), 3.95(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{ddt}, J=15.0 \mathrm{~Hz}, 6.0$ $\mathrm{Hz}, 1.5 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{ddt}, J=15.0 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 4.98$ $(1 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{dq}, J=17.1 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{m}), 6.29(1 \mathrm{H}, \mathrm{t}, J=$ $\left.1.5 \mathrm{~Hz},{ }^{3} J_{S_{n} \cdot H}=68 \mathrm{~Hz}\right), 7.60(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) : $\delta-7.8,14.6,35.7,49.7,52.1,60.3,61.1,119.1,124.2,131.5$, $134.8,146.7,150.2,164.3,170.3,171.2$. IR (NaCl , neat) $2982,1742,1708,1684$,

1606, 1532, 1507, $1456 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SSn}$: $591.0823(\mathrm{M}+1)$, found: 591.0811. $R_{f} 0.30$ (eluted with 20% ethyl acetate / hexanes).

5-Allylamino-3-(trimethyl-stannanyl)-hex-2-enedioic acid 1-ethyl ester 6-

 methyl ester (210)).

To a solution of compound $209(1.34 \mathrm{mmol}, 786 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.7 \mathrm{mmol}$, 926 mg) in dry DMF (10 mL) was added $\mathrm{PhSH}(4.02 \mathrm{mmol}, 442 \mu \mathrm{~L})$. After stirring for 1 h , the reaction mixture was poured into water $(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$ and the combined organic layers were washed with 1 $\mathrm{N} \mathrm{NaHCO} 33 \times 15 \mathrm{~mL})$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography (eluted with 20% ethyl acatate/hexanes) afforded compound $210(3.16 \mathrm{mmol}, 407 \mathrm{mg})$ as a yellow oil in 75% yield. $[\alpha]^{20}{ }_{\mathrm{D}}-12.6\left(c \quad 1.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.14\left(9 \mathrm{H}, \mathrm{s},{ }^{3} J_{S n \cdot H}=54 \mathrm{~Hz}\right), 1.0(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.58$ $(1 \mathrm{H}, \mathrm{b}), 2.93(1 \mathrm{H}, \mathrm{ddt}, J=13.5 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{ddt}, J=13.5 \mathrm{~Hz}, 6.3 \mathrm{~Hz}$, $1.2 \mathrm{~Hz}), 3.20(1 \mathrm{H}, \mathrm{ddd}, J=13.5 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.41(1 \mathrm{H}, \mathrm{dd}, J=$ $9.9 \mathrm{~Hz}, 4.5 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{ddd}, J=13.8 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 5.70(1 \mathrm{H}, \mathrm{m}), 6.36(1 \mathrm{H}$, $\left.\mathrm{t}, J=1.5 \mathrm{~Hz},{ }^{3} J_{S_{n}-H}=74 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-7.2,14.7,38.1,51.6$, $51.7,60.0,62.0,116.7,130.5,136.8,164.5,169.9,175.2$. IR (NaCl , neat) 3314,3078 , 1738, 1713, 1595, $1435 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{Sn}: 405.1051$ $(\mathrm{M}+1)$, found: $405.1071 . R_{f} 0.30$ (eluted with 20% ethyl acetate / hexanes).

5-\{Allyl-[2-(9H-fluoren-9-ylmethoxycarbonylamino)-propionyl]-amino\}-3-

 (trimethyl-stannanyl)-hex-2-enedioic acid 1-ethyl ester 6-methyl ester (211)

To a vigorously stirred two-phase system consisting of a solution of the compound 210 ($400 \mathrm{mg}, 0.99 \mathrm{mmoL}$) in $10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and $10 \mathrm{~mL} 2 \%$ aqueous NaHCO_{3} was added dropwise a solution of Fmoc-Ala acid chloride in $5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ over a period of 5 min prepared from 324 mg Fmoc-Ala at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 15 min . The organic layer was separated and the aqueous layer was extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was evaporated in vacuo and the residue was separated through flash chromatography (25\% ethyl acetate/hexanes). $634 \mathrm{mg}(0.91 \mathrm{mmol})$ of product 211 was obtained as a white solid $(92 \%) .[\alpha]^{20}{ }_{\mathrm{D}}-12.8$ $\left(c 3.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 0.34\left(9 \mathrm{H}, \mathrm{s},{ }^{3} J_{S n \cdot H}=54 \mathrm{~Hz}\right), 0.99(3 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 1.16(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 3.26(3 \mathrm{H}, \mathrm{s}), 3.65(2 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{m}), 3.97$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.08(1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}), 4.70$ $(1 \mathrm{H}, \mathrm{m}), 5.08(1 \mathrm{H}, \mathrm{dd}, J=10.4 \mathrm{~Hz}, 0.8 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{dd}, J=13.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}), 6.0$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.9(1 \mathrm{H}, \mathrm{m}), 6.3\left(1 \mathrm{H},{ }^{3} J_{S_{n} \cdot H}=68 \mathrm{~Hz}\right), 7.14(2 \mathrm{H}, \mathrm{m}), 7.22(2 \mathrm{H}, \mathrm{t}, J$ $=7.6 \mathrm{~Hz}), 7.52(2 \mathrm{H}, \mathrm{dd}, J=16.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-0.73,14.7,19.3,34.3,47.7,48.0,50.3,52.2,60.1,61.4,67.4$, $118.4,120.6,125.8,126.0,130.2,134.6,142.06,142.12,144.8,145.0,156.0,164.5$, 171.7, 173.4, 173.5. IR (NaCl, neat) 3415, 3317, 3066, 3040, 1739, 1708, 1652, 1593,

1506, $1450 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Sn}$: $699.2092(\mathrm{M}+1)$, found: 699.2083. $R_{f} 0.30$ (eluted with 25% ethyl acetate /hexanes).

4-(1-Allyl-5-methyl-3,6-dioxo-piperazin-2-yl)-3-(trimethyl-stannanyl)-but-

2-enoic acid ethyl ester (212)

To a solution of compound 211 ($634 \mathrm{mg}, 0.91 \mathrm{mmol}$) in 20 mL THF, cooled to $0{ }^{\circ} \mathrm{C}$, was added $175 \mu \mathrm{~L}$ piperidine (2.07 mmol) in one portion. The reaction mixture was stirred at room temperature overnight. The solvent was evaporated in vacuo and residue separated through flash chromatography (75\% acetate/ hexanes). 370 mg of product 212 was obtained $(0.417 \mathrm{mmol}, 92 \%)$ as a yellow oil. $[\alpha]^{20}{ }_{\mathrm{D}}+43.6$ (c $\left.1.77, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 0.18\left(\mathrm{~s}, 9 \mathrm{H},{ }^{3} J_{S n \cdot H}=54 \mathrm{~Hz}\right), 0.98(3 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 1.30(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 3.02(\mathrm{dd}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, 12 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{m})$, $3.69(\mathrm{ddd}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 12 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{dd}, 1 \mathrm{H}, J=6.9, \mathrm{~Hz}, 15.0 \mathrm{~Hz})$, $3.88(1 \mathrm{H} . \mathrm{m}), 3.94\left(2 \mathrm{H}, \mathrm{q},{ }^{3} J=7.2 \mathrm{~Hz}\right), 4.09(1 \mathrm{H}, \mathrm{q}, J=4.8 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{ddt}, J=$ $16.5 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 5.02(1 \mathrm{H}, \mathrm{dd}, J=10.2 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 5.28(\mathrm{dd}, 1 \mathrm{H}, J=17.1$ $\mathrm{Hz}, 1.5 \mathrm{~Hz}), 5.55(1 \mathrm{H}, \mathrm{br}), 5.79(1 \mathrm{H}, \mathrm{m}), 6.30\left(\mathrm{~s}, 1 \mathrm{H},{ }^{3} J_{S_{n} \cdot H}=69 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-7.61,14.6,22.5,38.4,47.1,52.2,60.2,60.6,118.4,130.5,133.6$, $164.3,166.5,167.8,169.9$. IR (NaCl , neat) $3230,1707,1678,1594,1461,1368 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Sn}$: 445.1149 (M+1), found: 445.1150. R_{f} 0.30 (eluted with 100% ethyl acetate).

ethyl ester (213)

A solution of diphenyliodonium chloride $(82.6 \mathrm{mg}, 0.261 \mathrm{mmol}), \mathrm{CuI}(5.43$ $\mathrm{mg}, 0.0285 \mathrm{mmol}), \mathrm{AsPh}_{3}(8.72 \mathrm{mg}, 0.0285 \mathrm{mmol})$ and $\mathrm{Pd}_{2} \mathrm{dba}_{3}(6.52 \mathrm{mg}, 7.12 \mu \mathrm{~mol})$ in 3 mL dry DMF under Ar was treated with compound 212 ($105.15 \mathrm{mg}, 0.2373$ mmol). The reaction mixture was then stirred for 4 hours. The solution was then diluted with EtOAc (6 mL) and washed with water. The combined aqueous layers were extracted with 3 mL EtOAc. The combined organic were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The resulting oil was purified by silica gel chromatography (75% ethyl acetate/ hexanes) to yield 213 as a yellow oil 54.8 mg $(65 \%) \cdot[\alpha]^{20}+54.7\left(c 32.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.99(3 \mathrm{H}, \mathrm{t}, J=$ $7.2 \mathrm{~Hz}), 1.42(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{q}, J=3.6 \mathrm{~Hz})$, $3.70(1 \mathrm{H}, \mathrm{qd}, J=6.9 \mathrm{~Hz}, 0.9 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{m}), 3.95(1 \mathrm{H}, \mathrm{dd}, J=7.2 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 4.0$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{ddt}, J=15 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{m}), 4.79(1 \mathrm{H}$, $\mathrm{m}), 4.83(1 \mathrm{H}, \mathrm{m}), 5.5(1 \mathrm{H}, \mathrm{m}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.5-7.5(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.8,22.3,35.6,47.7,52.6,58.7,60.6,118.7,121.0,127.9,129.3,129.7$, 133.0, 155.5, 166.5, 167.1, 167.4. IR (NaCl, neat) 324, 1709, 1689, 1667, 1597, 1452 cm^{-1}. HRMS (FAB+) calc. mass for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}: 357.1814(\mathrm{M}+1)$, found: 357.1822. $R_{f} 0.30$ (eluted with 100% ethyl acetate).

4-(1-Allyl-3-methoxy-5-methyl-6-oxo-1,2,5,6-tetrahydro-pyrazin-2-yl)-3-

 phenyl-but-2-enoic acid ethyl ester (214).

To a one-necked 5 mL round-bottomed flask, equipped with a magnetic stirrer bar, was added $94 \mathrm{mg}(0.264 \mathrm{mmol})$ of compound $\mathbf{2 1 3}$, and 3 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then $43 \mathrm{mg}(0.29 \mathrm{mmol})$ trimethyloxonium tetrafluoroborate and $66.5 \mathrm{mg}(0.792 \mathrm{mmol})$ of NaHCO_{3} was added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h and then poured into 5 mL of ice. The aqueous layer was extracted twice with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed twice with 10 mL of brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotary evaporation. The residue was separated by flash chromatography to give 214 as a pale yellow oil $72.1 \mathrm{mg}(74 \%) .[\alpha]^{20}{ }_{\mathrm{D}}+133.3(c$ $\left.1.67, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.01\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right), 1.69\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}\right.$ $=7.2 \mathrm{~Hz}), 3.18(3 \mathrm{H}, \mathrm{s}), 3.32(1 \mathrm{H}, \mathrm{dd}, J=12.9 \mathrm{~Hz}, 9.3 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz})$, $3.75(1 \mathrm{H}, \mathrm{ddd}, J=12.9 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 0.9 \mathrm{~Hz}), 3.99(2 \mathrm{H}, \mathrm{qd}, J=7.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}), 4.10$ $(1 \mathrm{H}, \mathrm{ddd}, J=9.3 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 0.9 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{dd}, J=7.5 \mathrm{~Hz}, 1.2 \mathrm{~Hz}) .4 .80(1 \mathrm{H}, \mathrm{ddt}$, $J=14.7 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{dd}, J=10.2 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{qd}, J=$ $17.1 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 5.73(1 \mathrm{H}, \mathrm{m}), 6.17(1 \mathrm{H}, \mathrm{s}), 7.0-7.3(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.8,22.1,36.2,46.9,52.8,55.9,57.0,60.6,118.3,120.3,127.5,129.1$, $129.6,133.7,141.2,155.3,160.4,166.4,170.1$. IR (NaCl , neat) $2981,1700,1659$,

1624, 1576, 1558, 1742, $1457 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$: $371.1971(\mathrm{M}+1)$, found: $371.1968 . R_{f} 0.35$ (eluted with 75% ethyl acetate / hexanes).
(3S,6R,E)-1-Allyl-6-(4-hydroxy-2-phenyl-but-2-enyl)-5-methoxy-3-methyl-1,6-dihydropyrazin-2(3H)-one (215).

$179 \mathrm{mg}(0.483 \mathrm{mmol})$ of compound 214 was dissolved in $6 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $-78{ }^{\circ} \mathrm{C}$ under Ar. $50.8 \mu \mathrm{~L}(0.483 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{~S} \cdot \mathrm{BF}_{3}$ was added dropwise. The reaction mixture was stirred for 30 minutes. 1.93 mL 1M DIBAL (1.93 mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The reaction mixture was stirred for 10 min and was then quenched with 5 mL saturated aqueous solutiuon of sodium potassium tartrate, The reaction mixture was stirred vigorously overnight at rt . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was combined and concentrated. Flash column (5% methanol/ethyl acetate) gave 136.3 mg product 215 as a yellow oil $(86 \%) \cdot[\alpha]^{20}{ }_{\mathrm{D}}+68.0\left(c 0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 1.63(3 \mathrm{H}, \mathrm{d}, J=$ $7.2 \mathrm{~Hz}), 1.75(1 \mathrm{H}, \mathrm{br}), 2.78(\mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{ddd}, J=15.3 \mathrm{~Hz}, 7.5 \mathrm{~Hz}$, $0.9 \mathrm{~Hz}), 3.33(3 \mathrm{H}, \mathrm{s}), 3.86(1 \mathrm{H}, \mathrm{dt}, J=6.9 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{m}), 4.43(1 \mathrm{H}, \mathrm{qd}$, $J=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 4.75(2 \mathrm{H}, \mathrm{m}), 5.44(1 \mathrm{H}, \mathrm{m}), 5.95(1 \mathrm{H}, \mathrm{t}, J=3.3 \mathrm{~Hz}), 6.0(1 \mathrm{H}, \mathrm{m})$, 7.0-7.4 (5H, m) ${ }^{13}{ }^{1} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 22.6,35.5,47.2,53.1,55.2,56.9,60.1$, $118.5,127.2,128.9,129.1,132.6,132.9,137.4,160.4,170.4 . \mathrm{IR}(\mathrm{NaCl}$, neat) 3408 (br), 1694, 1651, 1639, 1493, 1470, $1442 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for
$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}: 329.1865(\mathrm{M}+1)$, found: 329.1869. $R_{f} 0.25$ (eluted with 5% methanol/ ethyl acetate).

(3S,6R,E)-1-Allyl-6-(4-chloro-2-phenyl-but-2-enyl)-5-methoxy-3-methyl-

1,6-dihydropyrazin-2(3H)-one (216)

To a solution of $13 \mathrm{mg}(0.0332 \mathrm{mmol})$ of $215 \mathrm{in} 2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added collidine $43.8 \mu \mathrm{~L}(0.33 \mathrm{mmol})$ followed by dropwise addition of $\mathrm{MsCl} 2.83 \mu \mathrm{~L}$ $(0.0365 \mathrm{mmol})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3.5 h and $23^{\circ} \mathrm{C}$ for 14 h . At this time, the reaction mixture was concentrated and 2 mL DMF was added. After the reaction mixture was stirred at rt for $24 \mathrm{~h}, 58 \mathrm{mg}(0.166 \mathrm{mmol}) \mathrm{BnBu}_{3} \mathrm{NCl}$ was added, and the mixture was stirred at rt for additional 6 h . The reaction mixture was concentrated in high vacuum and extracted with (67% ethyl acetate/ hexanes). The combined extracts were washed with 0.005 N HCl in water, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash chromatography (33\% ethyl acetate/ hexanes) gave $13 \mathrm{mg}(88 \%)$ of the product as an oil. $[\alpha]^{20}{ }_{\mathrm{D}}+66.0\left(c 0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{HNMR}$ $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.56(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 2.65(1 \mathrm{H}, \mathrm{ddd}, J=14.7 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 0.6$ $\mathrm{Hz}), 2.73(1 \mathrm{H}, \mathrm{ddd}, J=14.7 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{ddt}, J=15.0 \mathrm{~Hz}, 7.2 \mathrm{~Hz}$, $1.2 \mathrm{~Hz}), 3.30(3 \mathrm{H}, \mathrm{s}), 3.78(1 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{~Hz}, 6.3 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{qd}, J$ $=7.5 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{dt}, J=4.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 4.63(1 \mathrm{H}, J=3.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz})$, $4.69(1 \mathrm{H}$, ddd, $J=17.1 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{ddd}, J=10.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1.5$
$\mathrm{Hz}), 5.50(1 \mathrm{H}, \mathrm{m}), 5.73(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.9-7.4(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 22.4,35.1,40.6,47.0,52.9,54.9,56.7,118.5,127.2,127.3,128.9,129.1$, $133.0,141.0,141.3,160.1,169.9,176.3$. IR (NaCl , neat) $2977,1695,1658,1465$, 1440, $1417 \mathrm{~cm}^{-1}$. HRMS ($\mathrm{FAB}+$) calc. mass for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}: 347.1526(\mathrm{M}+1)$, found: 347.1527. $R_{f} 0.33$ (eluted with 75% ethyl acetate / hexanes).

2-Allyl-6-methoxy-4-methyl-8-phenyl-8-vinyl-2,5-diaza-bicyclo[2.2.2]oct-

5-en-3-one (217) (218)

A solution of compound $216(13 \mathrm{mg}, 0.0375 \mathrm{mmol}), 60 \% \mathrm{NaH}(1.52 \mathrm{mg}$, 0.375 mmol) in 2 mL dry THF was reluxed under Ar for 6 hours. The solution was then diluted with 5 mL EtOAc and washed with water. The combined aqueous layers were extracted with EtOAc (5 mL X 2). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The resulting oil was purified by silica gel chromatography (40% ethyl acetate/ hexanes). The first compound was 217 (3 $\mathrm{mg}, 26 \%) .[\alpha]_{\mathrm{D}}^{20}+66.4\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.875(1 \mathrm{H}$, $\mathrm{dd}, J=13.8 \mathrm{~Hz}, 1.8 \mathrm{~Hz}), 1.878(3 \mathrm{H}, \mathrm{s}), 2.28(1 \mathrm{H}, \mathrm{dd}, J=14.1 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 3.52(3 \mathrm{H}$, s), $3.57(1 \mathrm{H}, \mathrm{ddt}, J=15.3 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 3.69(2 \mathrm{H}, \mathrm{dd}, J=3.6 \mathrm{~Hz}, 1.8 \mathrm{~Hz}), 3.89$ $(1 \mathrm{H}, \mathrm{ddt}, J=15.3 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 4.87(1 \mathrm{H}, \mathrm{m}), 4.91(1 \mathrm{H}, \mathrm{m}), 5.01(1 \mathrm{H}, \mathrm{dd}, J=$ $15.3 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{dd}, J=11.1 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 5.51(1 \mathrm{H}, \mathrm{m}), 6.28(1 \mathrm{H}, \mathrm{dd}, J=$
$15.3 \mathrm{~Hz}, 11.1 \mathrm{~Hz}) .6 .9 \sim 7.3(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 15.4,18.3,40.9$, $47.3,53.3,54.3,54.6,70.6,116.7,118.3,127.0,128.3,129.8,133.8,143.8,144.9$, 171.8, 172.6. IR (NaCl, neat) $1682,1650,1599,1493,1444 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}: 311.1760(\mathrm{M}+1)$, found: 311.1761. $R_{f} 0.35$ (eluted with 40\% ethyl acetate / hexanes).

The second one was $218(3.7 \mathrm{mg}, 32 \%) .[\alpha]_{\mathrm{D}}^{20}+35.4\left(c 0.308, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $1.85(3 \mathrm{H}, \mathrm{s}), 2.17(1 \mathrm{H}, \mathrm{dd}, J=13.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}), 2.27(1 \mathrm{H}$, $\mathrm{dd}, J=13.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}), 3.50(3 \mathrm{H}, \mathrm{s}), 3.51(1 \mathrm{H}, \mathrm{ddt}, J=15.2 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz})$, $3.68(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{ddt}, J=15.2 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{t}, J=$ 1.2 Hz,$), 4.91(1 \mathrm{H}, \mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{dd}, J=17.6 \mathrm{~Hz}, 0.4 \mathrm{~Hz}), 5.17$ $(1 \mathrm{H}, \mathrm{dd}, J=10.8 \mathrm{~Hz}, 0.4 \mathrm{~Hz}), 5.52(1 \mathrm{H}, \mathrm{m}), 6.10(1 \mathrm{H}, \mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}), 6.9 \sim 7.4$ (5H, m). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): 18.3, 42.2, 47.3, $54.254 .4,70.7,116.2,118.5$, $127.1,128.2,128.5,129.3,133.6,143.7,144.8,172.5,173.1$. IR (NaCl, neat) 2924 , 1683, 1648, 1557, 1496, $1444 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$: $311.1760(\mathrm{M}+1)$, found: $311.1758 . R_{f} 0.33$ (eluted with 40% ethyl acetate / hexanes).

(S,E)-1-Ethyl 6-methyl 5-((3,4-dimethoxybenzyl)(4-nitrophenyl

 thioperoxy) amino)-3-(trimethyl stannyl)hex-2-enedioate (230)

To a solution of compound $208(1.90 \mathrm{~g}, 3.46 \mathrm{mmol})$ and $5.0 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$
(36.2 mmol) in 40 mL dry DMF, 3,4-dimethoxybenzyl bromide ($1.1 \mathrm{~g}, 4.76 \mathrm{mmol}$) was added. After stirring for 16 h , the reaction mixture was poured into water $(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash column gave 2.1 g product $\mathbf{2 3 0}(3.0 \mathrm{mmol})$ as an yellow oil in 87% yield. $[\alpha]^{20}{ }_{\mathrm{D}}-11.8\left(c 4.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 0.26\left(9 \mathrm{H}, \mathrm{s},{ }^{3} J_{S n-}\right.$ $\left.{ }_{H}=54 \mathrm{~Hz}\right), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}), 3.05(3 \mathrm{H}, \mathrm{s}), 3.36(3 \mathrm{H}, \mathrm{s}), 3.44(1 \mathrm{H}, \mathrm{ddd}, J=12.3 \mathrm{~Hz}$, $4.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.64(1 \mathrm{H}, \mathrm{t}, J=11.4 \mathrm{~Hz}), 3.96(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.64$ $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{dd}, J=10.5 \mathrm{~Hz}, 4.8 \mathrm{~Hz}), 6.25(1 \mathrm{H}, \mathrm{dd}, J=1.2 \mathrm{~Hz}, 0.3$ $\left.\mathrm{Hz},{ }^{3} J_{S n-H}=51 \mathrm{~Hz}\right), 6.53(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{~Hz}, 1.8 \mathrm{~Hz}), 7.06$ $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 7.66(4 \mathrm{H}, \mathrm{q}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-7.7,14.6$, $35.7,50.8,52.2,55.8,55.9,60.3,61.4,66.0,112.0,113.3,122.0,124.3,129.1,131.2$, $146.9,150.17,150.27,150.40,164.3,170.7,171.3$. IR (NaCl , neat) $3105,1739,1706$, 1606, 1594, 1532, 1517, 1464, 1441, $1422 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{SSn}$: $700.1112(\mathrm{M}+1)$, found: 700.1127. $R_{f} 0.30$ (eluted with 20% ethyl acetate / hexanes).
(S,E)-1-Ethyl 6-methyl 5-(3,4-dimethoxybenzylamino)-3-(trimethyl stannyl)hex-2-enedioate (231)

To a solution of 2.1 g compound $230(3.00 \mathrm{mmol})$ and $4.14 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ (30 mmol) in dry 50 mL DMF was added 1.01 mL PhSH (9.91 mmol). After stirring for 1 h , the reaction mixture was poured into 100 mL water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \mathrm{X} \mathrm{3})$ and the combined organic layers were washed with $1 \mathrm{~N} \mathrm{NaHCO}_{3}(50 \mathrm{~mL} \mathrm{X} \mathrm{3})$, brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, then concentrated in vacuo. Flash column chromatography (33% ethyl acetate/ hexanes) afforded 1.23 g compound 231 as a yellow oil in 79.7% yield. $[\alpha]^{20}{ }_{\mathrm{D}}-12.7\left(c 3.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{R} f=0.30$ (eluted with 33% ethyl acetate/ hexanes). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.12(\mathrm{~s}, 9 \mathrm{H}$, $\left.{ }^{3} J_{S n-H}=54 \mathrm{~Hz}\right), 1.0(\mathrm{t}, J=7.2 \mathrm{~Hz}), 1.9(1 \mathrm{H}, \mathrm{br}), 3.38(3 \mathrm{H}, \mathrm{s}), 3.40(3 \mathrm{H}, \mathrm{s}), 3.43(1 \mathrm{H}$, $\mathrm{dd}, J=8.1 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 3.50(3 \mathrm{H}, \mathrm{s}), 3.555(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 3.66$ $(1 \mathrm{H}, \mathrm{ddd}, J=12.9 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 3.73(\mathrm{~d}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 4.02(2 \mathrm{H}, \mathrm{q}, J=$ $7.2 \mathrm{~Hz}), 6.36\left(1 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz},{ }^{3} J_{S_{n} \cdot H}=72 \mathrm{~Hz}\right), 6.58(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.8-6.9(2 \mathrm{H}$, m). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-7.6,14.7,38.1,51.8,52.8,55.9,56.0,60.1,61.8$, $112.5,113.2,121.2,130.8,132.9,149.8,150.6,164.5,169.4,175.3 . \operatorname{IR}(\mathrm{NaCl}$, neat $)$ 2979, 2953, 1734, 1713, 1593, 1516, $1464 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{1} \mathrm{O}_{6} \mathrm{Sn}$: $515.1419(\mathrm{M}+1)$, found: 515.1418. $R_{f} 0.30$ (eluted with 15% ethyl acetate / hexanes).
(S,E)-1-Ethyl 6-methyl 5-((S)-2-(((9H-fluoren-9-yl)methoxy) carbonyl amino)- N-(3,4-dimethoxy benzyl)propanamido)-3-(trimethylstannyl) hex-2enedioate (232)

To a vigorously stirred two-phase system consisting of a solution of 1.23 g compound 231 (2.39 mmoL) in $100 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and $100 \mathrm{~mL} 2 \%$ aqueous NaHCO_{3} was added dropwise a solution of acid chloride prepared from 0.819 g Fmoc-Ala (2.63 mmol) in $40 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 15 min . The organic layer was separated and the aqueous layer was extracted with 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was evaporated in vacuo and the residue was separated through flash chromatography (eluted with 25% ethyl acetate/hexanes). 1.50 g of product 232 $(1.86 \mathrm{mmol})$ was obtained as a yellow oil $(78 \%) .[\alpha]_{\mathrm{D}}^{20}-12.1\left(c 7.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.36(9 \mathrm{H}, \mathrm{s}), 1.0(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}), 3.14(3 \mathrm{H}, \mathrm{s}), 3.2(1 \mathrm{H}, \mathrm{m}), 3.37(1 \mathrm{H}, \mathrm{ddd}, J=12.9 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 3.42(3 \mathrm{H}$, s), $3.57(1 \mathrm{H}, \mathrm{m}), 3.68(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 4.02(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.10$ $(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{t}, J=11.3 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{dd}, J$ $=10.5 \mathrm{~Hz}, 6.9 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{d}, J$ $=16.8 \mathrm{~Hz}), 5.44(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.6-7.6(8 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-$ $7.1,14.7,18.6,33.9,47.9,50.7,52.0,55.9,56.2,60.0,61.8,67.5,112.1,113.1,120.6$, $121.2,125.8,126.0,127.8,129.5,129.9,142.0,144.7,145.0,150.3,150.8,156.5$,
164.5, 171.6, 173.7. IR (NaCl, neat) $3355,3065,1739,1732,1600,1652,1593,1516$, 1464, $1451 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Sn}$: $809.246(\mathrm{M}+1)$, found: 809.2457. $R_{f} 0.30$ (eluted with 33% ethyl acetate / hexanes).

(E)-Ethyl 4-((2S,5S)-1-(3,4-dimethoxybenzyl)-5-methyl-3,6-dioxopiperazin

 -2-yl)-3-(trimethyl stannyl)but-2-enoate (233)

To a solution of 1.50 g compound $232(1.86 \mathrm{mmol})$ in 60 mL THF, cooled to $0{ }^{\circ} \mathrm{C}$, was added 0.9 mL piperidine $(9.29 \mathrm{mmol})$ in one portion. The reaction mixture was stirred at room temperature overnight. The solvent was evaporated in vacuo and residue separated through flash chromatography. 800 mg of product $\mathbf{2 3 3}$ was obtained as a yellow oil $(1.45 \mathrm{mmol}, 78 \%) \cdot[\alpha]^{20}{ }_{\mathrm{D}}+41.1\left(c 0.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.20\left(9 \mathrm{H}, \mathrm{s},{ }^{3} J_{S n \cdot H}=81 \mathrm{~Hz}\right), 1.0(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.43(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, $3.1(1 \mathrm{H}, \mathrm{dd}, J=12.3 \mathrm{~Hz}, 11.1 \mathrm{~Hz}), 3.36(3 \mathrm{H}, \mathrm{s}), 3.49(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}$, dd, $J=4.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{dd}, J=4.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 3.91\left(2 \mathrm{H}, \mathrm{q},{ }^{3} J=7.2 \mathrm{~Hz}\right)$, $4.0(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=4.8,10.5 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz})$, $5.53(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 6.34\left(1 \mathrm{H}, \mathrm{s},{ }^{3} J_{S_{n} \cdot H}=69 \mathrm{~Hz}\right), 6.57(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.1-7.2$ $(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-7.54,14.6,22.6,38.4,47.4,52.3,55.9,60.3$, $112.7,113.7,121.5,130.5,130.6,150.1,150.6,164.4,167.32,167.35,168.37$, 168.38, 170.2. IR (NaCl , neat) $3233,3062,1704,1682,1662,1593,1516,1463 \mathrm{~cm}^{-1}$.

HRMS (FAB+) calc. mass for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Sn}$: $554.1528(\mathrm{M}+1)$, found: 554.1528. R_{f} 0.35 (eluted with 100 \% ethyl acetate).

(E)-Ethyl 4-((2S,5S)-1-(3,4-dimethoxybenzyl)-5-methyl-3,6-dioxopiperazin

-2-yl)-3-phenylbut-2-enoate (234)

A solution of diphenyliodonium chloride ($403 \mathrm{mg}, 1.27 \mathrm{mmol}$), $\mathrm{CuI}(58.1 \mathrm{mg}$, $0.305 \mathrm{mmol}), \mathrm{AsPh}_{3}(93.3 \mathrm{mg}, 0.305 \mathrm{mmol})$ and $\mathrm{Pd}_{2} \mathrm{dba}_{3}(69.8 \mathrm{mg}, 0.0762 \mathrm{mmol})$ in 3 mL dry DMF was treated under Ar with compound $\mathbf{2 3 3}$ ($705.5 \mathrm{mg}, 1.27 \mathrm{mmol}$). The reaction mixture was then stirred for 4 hours. The solution was then diluted with EtOAc (60 mL) and washed with water. The combined aqueous layers were back extracted with EtOAc (30 mL). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The resulting oil was purified by silica gel chromatography (eluted with 100% ethyl acetate) to yield 545 mg of $\mathbf{2 3 4}$ as a yellow oil (92\%). $[\alpha]^{20}{ }_{\mathrm{D}}+20.6\left(c 2.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.01(3 \mathrm{H}, \mathrm{t}, J$ $=6.9 \mathrm{~Hz}), 1.48(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 3.30(3 \mathrm{H}, \mathrm{s}), 3.34(1 \mathrm{H}, \mathrm{m}), 3.38(3 \mathrm{H}, \mathrm{s}), 3.82(1 \mathrm{H}$, $\mathrm{dd}, J=6.0 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 4.02(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.13(1 \mathrm{H}$, $\mathrm{t}, J=8.1 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{m}), 5.31(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{s}), 6.43(1 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}), 6.3-7.5(7 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 14.6,22.1,35.4,48.1,52.5$,
$55.8,55.9,58.5,60.6,112.5,113.1,121.0,121.3,127.9,129.3,129.8,130.1,140.5$, $150.0,150.4,155.4,166.6,167.9$. IR (NaCl , neat) $3302,3059,1706,1688,1662$, 1593, 1576, 1516, $1448 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}: 467.2182$ (M+1), found: 467.2165. $R_{f} 0.35$ (eluted with 100% ethyl acetate).

(E)-Ethyl 4-((2S,5S)-1-(3,4-dimethoxybenzyl)-3-ethoxy-5-methyl-6-oxo-

1,2,5,6-tetrahydro pyrazin-2-yl)-3-phenylbut-2-enoate (235)

To a one-necked 100 mL round-bottomed flask, equipped with a magnetic stirrer bar, were added $480 \mathrm{mg}(1.03 \mathrm{mmol})$ of compound $\mathbf{2 3 4}$, and 50 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $865 \mathrm{mg}(10.3 \mathrm{mmol})$ of NaHCO_{3}. Then $304.4 \mathrm{mg}(2.06 \mathrm{mmol})$ of trimethyloxonium tetrafluoroborate was added. The reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 4 h and then poured into 50 g of ice. The aqueous layer was extracted twice with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed twice with 50 mL of brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotary evaporation. The residue was separated by flash chromatography to give 461 mg of $\mathbf{2 3 5}$ as a pale yellow oil ($0.96 \mathrm{mmol}, 93.2 \%) .[\alpha]_{\mathrm{D}}^{20}+70.6\left(c 4.63, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $1.02(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.76(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 3.09(3 \mathrm{H}, \mathrm{s}), 3.32(3 \mathrm{H}, \mathrm{s}), 3.37(1 \mathrm{H}$, $\mathrm{m}), 3.43(3 \mathrm{H}, \mathrm{s}), 3.85(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz})$, $4.26(1 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{s}), 6.49$
$(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.0 \sim 7.3(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.7,21.9,35.9$, $47 . .1,52.6,55.4,55.78,55.83,57.0,60.5,112.5,113.5,120.4,121.6,127.6,128.9$, $129.1,129.7,130.9,141.2,150.0,150.6,155.4,160.5,166.6,170.8 . \operatorname{IR}(\mathrm{NaCl}$, neat $)$ 1699, 1652, 1593, 1516, 1446, $1420 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}$: $481.2339(\mathrm{M}+1)$, found: $481.2335 . R_{f} 0.30$ (eluted with 75% ethyl acetate / hexanes).
(3S, 6S)-1-(3,4-Dimethoxybenzyl)-5-ethoxy-6-((E)-4-hydroxy-2-phenylbut-2-enyl)-3-methyl-1,6-dihydropyrazin-2(3H)-one (236)

461 mg (0.959 mmol) of compound 235 was dissolved in $30 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and cooled to $-78{ }^{\circ} \mathrm{C}$ under $\mathrm{Ar} .101 \mu \mathrm{~L}(0.959 \mathrm{mmol})$ of $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{SMe}_{2}$ was added dropwise. The reaction mixture was stirred for 30 minutes. 3.84 mL 1 M DIBAL in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The reaction mixture was stirred for 10 min and was then quenched with 50 mL saturated aqueous solutiuon of sodium potassium tartrate. The reaction mixture was stirred vigorously overnight at rt . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phases were combined and concentrated. Flash chromatography (eluted with $5 \% \mathrm{MeOH} /$ acetate) gave 273.4 mg of product 236 as a yellow oil (0.623 $\mathrm{mmol}, 65 \%) \cdot[\alpha]_{\mathrm{D}}^{20}+26.4\left(c 2.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.68(3 \mathrm{H}$, $\mathrm{d}, J=7.2 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 3.32(3 \mathrm{H}, \mathrm{s}), 3.29(3 \mathrm{H}, \mathrm{s}), 3.30(1 \mathrm{H}, \mathrm{m}), 3.33$ $(3 \mathrm{H}, \mathrm{s}), 3.40(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{dt}, J=6.6 \mathrm{~Hz}$,
$0.9 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 4.57(2 \mathrm{H}, \mathrm{qd}, J=7.2 \mathrm{~Hz}, 0.9 \mathrm{~Hz}), 5.52(1 \mathrm{H}, J=14.4$ $\mathrm{Hz}), 5.93(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 6.35-7.4(8 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 22.4$, $35.6,53.0,54.6,55.8,55.9,57.0,60.1,112.6,113.0,121.4,127.3,129.9,133.2$, $137.1,141.6,150.1,150.6,160.9,171.4$. IR (NaCl , neat) $3415,1694,1656,1640$, 1593, 1516, 1494, $1463 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}: 439.2233$ $(\mathrm{M}+1)$, found: $439.2230 . R_{f} 0.30$ (eluted with 5% methanol / ethyl acetate).
(3S,6S)-6-((E)-4-Chloro-2-phenylbut-2-enyl)-1-(3,4-dimethoxybenzyl)-5-ethoxy-3-methyl-1,6-dihydropyrazin-2(3H)-one (237)

To a solution of $220 \mathrm{mg}(0.502 \mathrm{mmol})$ of 236 in $20 \mathrm{mLCH} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added collidine $528 \mu \mathrm{~L}(0.502 \mathrm{mmol})$ followed by dropwise addition of MsCl 37.7 $\mu \mathrm{L}(0.552 \mathrm{mmol})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3.5 h and $23^{\circ} \mathrm{C}$ for 14 h. At this time, the reaction mixture was concentrated and 20 mL DMF was added. After the reaction mixture was stirred at rt for $24 \mathrm{~h}, 783 \mathrm{mg}(251 \mathrm{mmol}) \mathrm{BnBu}_{3} \mathrm{NCl}$ was added, and the mixture was stirred at rt for additional 6 h . The reaction mixture was concentrated in high vacuum and extracted and with $\mathrm{EtOAc} / \mathrm{Et}_{2} \mathrm{O}(2 / 1)$. The combined extracts were washed with 100 mL X 30.005 N HCl in water, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash column (75\% ethyl acetate/ hexanes) gave 190 mg of product 237 as an oil (83\%). $[\alpha]^{20}{ }_{\mathrm{D}}+25.1\left(c 3.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.64(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), 3.24$ $(3 \mathrm{H}, \mathrm{s}), 3.29(3 \mathrm{H}, \mathrm{s}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.38(1 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 3.67(1 \mathrm{H}$, $\mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{qd}, J=6.9,0.9 \mathrm{~Hz})$, $5.44(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 22.5$, $35.2,40.6,47.5,52.9,54.6,55.8,55.8,55.9,56.9,112.5,113.0,121.3,127.3,127.4$, $129.9,140.9,141.3,150.2,150.7,160.4,170.5$. IR (NaCl , neat) $1736,1699,1695$, 1656, 1652, 1607, 1592, 1516, 1494, 1464, $1444 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}: 457.1894(\mathrm{M}+1)$, found: 458.1878. $R_{f} 0.30$ (eluted with 75% ethyl acetate /hexanes).

$\mathrm{S}_{\mathrm{N}} \mathbf{2}^{\prime}$ Reaction

$60 \% \mathrm{NaH}(9.5 \mathrm{mg}, 0.234 \mathrm{mmol})$ was first washed with benzene and then with THF under Ar. A solution of compound 237 ($420 \mathrm{mg}, 0.919 \mathrm{mmol}$) in 50 mL dry THF was added. The mixture was heated to $60^{\circ} \mathrm{C}$ under Ar for 6 hours. The reaction was then cooled to rt and 30 mL hexane was added to quench the reaction. The solution was then diluted with 50 mL EtOAc and washed with water. The combined
aqueous layers were back extracted with EtOAc (50 mL X 2). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The resulting oil was purified by silica gel chromatography (eluted with 50% ethyl acetate/ hexanes). The first compound is 238: $151 \mathrm{mg}, 39.1 \% .[\alpha]^{20}{ }_{\mathrm{D}}+28.4\left(c 1.84, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.88(1 \mathrm{H}, \mathrm{dd}, J=13.5 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 1.93(3 \mathrm{H}, \mathrm{s}), 2.23(1 \mathrm{H}, \mathrm{dd}, J=13.5$ $\mathrm{Hz}, 3.6 \mathrm{~Hz}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.42(3 \mathrm{H}, \mathrm{s}), 3.47(3 \mathrm{H}, \mathrm{s}), 3.83(1 \mathrm{H}, \mathrm{m}), 4.26(1 \mathrm{H}, \mathrm{d}, J=$ $15.6 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, J=11.1$ $\mathrm{Hz}), 6.32(1 \mathrm{H}, \mathrm{dd}, J=17.4,11.1 \mathrm{~Hz}), 6.5-7.5(8 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $18.4,41.1,48.6,53.5,54.2,54.8,55.9,70.6,112.3,112.7,116.8,121.2,126.9,129.8$, $143.8,144.8,150.2,150.8,172.0,173.1 . \mathrm{IR}(\mathrm{NaCl}$, neat) 2944, 1679, 1649, 1593, 1516, 1493, $1445 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}: 421.2127$ (M+1), found: 421.2136. $R_{f} 0.33$ (eluted with 50% ethyl acetate / hexanes).

The second compound is 239: 50.5mg, 13.1\%. $[\alpha]^{20}{ }_{\mathrm{D}}+98\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.85(1 \mathrm{H}, \mathrm{dd}, J=15.9 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 1.94(3 \mathrm{H}, \mathrm{s}), 2.18(1 \mathrm{H}$, $\mathrm{dd}, J=15.9 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 3.36(3 \mathrm{H}, \mathrm{s}), 3.41(3 \mathrm{H}, \mathrm{s}), 3.47(3 \mathrm{H}, \mathrm{s}), 3.82(1 \mathrm{H}, \mathrm{m}), 4.26$ $(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, J=17.7 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}$, $J=11.1 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{dd}, J=17.7,11.1 \mathrm{~Hz}), 6.5-7.5(8 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 18.4,41.0,48.5,53.5,54.3,55.8,55.9,70.5,112.3,112.7,116.8,126.9$, $130.1,143.8,144.8,150.1,150.8,172.0,173.1 . \mathrm{IR}(\mathrm{NaCl}$, neat) 2944, 1676, 1647, 1592, 1516, 1496, $1444 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}: 421.2127$ $(\mathrm{M}+1)$, found: $421.2110 . R_{f} 0.30$ (eluted with 50% ethyl acetate / hexanes).
(4S)-6-Eethoxy-4-methyl-8-phenyl-8-vinyl-2,5-diazabicyclo[2.2.2]oct-5-en-

3-one (248)

A stirred solution of compound $238(55 \mathrm{mg}, 0.131 \mathrm{mmol})$ in 3 mL dry THF under Ar was cooled to $-78{ }^{\circ} \mathrm{C}$ and 0.77 mL of t-BuLi was added. After 10 min of stirring at $-78^{\circ} \mathrm{C}$, a stream of oxygen was passed through the brown solution for 15 $\min .10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and several drops of water were added. The mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography to yield 16 mg of $\mathbf{2 4 8}(45 \%) \cdot[\alpha]_{\mathrm{D}}^{20}+88(c 0.55$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.74(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}, 1.8 \mathrm{~Hz}), 1.82(\mathrm{~s}, 3$ H), $2.16(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 3.39(\mathrm{dd}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, 1.8 \mathrm{~Hz}), 3.45(3 \mathrm{H}$, s), $5.09(\mathrm{dd}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 5.20(\mathrm{dd}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 6.26(\mathrm{dd}$, $1 \mathrm{H}, J=10.8 \mathrm{~Hz}, 17.4 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{br}), 7.0-7.4(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 17.7,41.8,50.7,53.0,54.2,70.3,116.9,126.9,128.9,129.8,143.8,144.9$, 172.5, 176.9. IR (NaCl , neat) $3218,3084,1690,1649,1598,1516,1493,1447 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}: 271.1447(\mathrm{M}+1)$, found: 271.1443. $R_{f} 0.30$ (eluted with 75% ethyl acetate / hexanes).
(4S)-2-(2-Azidophenylcarbonyl)-6-methoxy-4-methyl-8-phenyl-8-vinyl-

2,5-diazabicyclo[2.2.2]oct-5-en-3-one (253)

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of compound $\mathbf{2 4 8}(16 \mathrm{mg}, 0.0593 \mathrm{mmol})$ in dry THF was added dropwise 0.154 mL of 0.5 M KHMDS in toluene under Ar . The solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and was then was treated with a solution of o-azidobenzoyl chloride (0.0711 mmol) in 1 mL THF and was left to warm to rt over 24 h while protected from light. The solvent was evaporated and the residue was chromatographed on silica gel (eluted with 25% ethyl acetate/hexanes) to give 16 mg compound 253 (65%). $[\alpha]^{20}{ }_{\mathrm{D}}+75.7\left(c 0.667, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dd}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}, 1.8 \mathrm{~Hz}), 1.96(1 \mathrm{H}, \mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}), 3.45$ $(3 \mathrm{H}, \mathrm{s}), 5.06(\mathrm{~d}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}), 5.17(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}) ,5.76(1 \mathrm{H}, \mathrm{dd}, J=1.8,3.6$ $\mathrm{Hz}), 6.14(\mathrm{dd}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, 17.4 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{~Hz}, 0.9 \mathrm{~Hz}), 6.74(1 \mathrm{H}$, $\mathrm{dt}, J=7.8 \mathrm{~Hz}, 0.9 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{dt}, J=7.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 7.0-7.4(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 17.9,39.2,51.1,52.2,54.4,71.8,117.2,118.8,125.0,127.2$, $127.9,128.2,128.9,129.5,131.5,137.6,142.5,144.3,166.8,171.0,171.5 . \operatorname{IR}(\mathrm{NaCl}$, neat) $2128,2100,1737,1686,1649,1598,1580,1488,1447 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{3}: 416.1723(\mathrm{M}+1)$, found: 416.1728 . $R_{f} 0.50$ (eluted with 25 \% ethyl acetate / hexanes).

Compound (254)

A solution of 16 mg of compound $253(0.0383 \mathrm{mmol})$ and $10.4 \mu \mathrm{~L}$ tributylphosphine $(0.0422 \mathrm{mmol})$ in dry toluene was stirred at RT for 3 h under Ar. The solution was evaporated under reduced pressure and the residue was chromatographed on silica gel (eluted with 25% ethyl acetate/ hexanes) yielding 9.9 mg of compound $254(70 \%) .[\alpha]^{20}{ }_{\mathrm{D}}+80.5\left(c 0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.87(1 \mathrm{H}, \mathrm{dd}, J=14.4 \mathrm{~Hz}, 2.1 \mathrm{~Hz}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{dd}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}$, $3.6 \mathrm{~Hz}), 3.44(3 \mathrm{H}, \mathrm{s}), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=17.1 \mathrm{~Hz}) ,4.68(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}), 6.05(\mathrm{dd}, J$ $=2.1 \mathrm{~Hz}, 3.6 \mathrm{~Hz}), 7.0-7.4(7 \mathrm{H}, \mathrm{m}), 7.78(1 \mathrm{H}, \mathrm{ddd}, J=8.1 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 0.6 \mathrm{~Hz}), 8.48$ $(1 \mathrm{H}$, ddd, $J=8.1 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 0.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 18.6,38.9,48.7$, $52.7,54.3,69.6,116.5,121.2,127.0,127.1,127.5,128.5,128.9,129.5,134.5,142.3$, 144.6, 148.5, 157.1, 159.6, 171.7. IR (NaCl, neat) 3061, 1681, 1647, 1608, 1564, 1493, 1469, $1445 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}: 372.1712(\mathrm{M}+1)$, found: 372.1711. $R_{f} 0.30$ (eluted with 25% ethyl acetate / hexanes).

Compound (255)

8.0 mg of compound $\mathbf{2 5 4}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $-78^{\circ} \mathrm{C}$. A stream of ozone was passed through until the solution turned blue. The solution was bubbled with air until the blue color disappeared. Several drops of dimethyl sulfide were added. The mixture was concentrated under reduced pressure and separated by flash chromatography to give 6.4 mg of compound $\mathbf{2 5 5}(80 \%) .[\alpha]^{20}{ }_{\mathrm{D}}+100.7(c 0.407$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.38(1 \mathrm{H}, \mathrm{dd}, J=10.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}), 2.11(\mathrm{~s}$, $3 \mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{dd}, J=10.5 \mathrm{~Hz}, 2.7 \mathrm{~Hz}), 3.36(3 \mathrm{H}, \mathrm{s}), 5.98(1 \mathrm{H}, \mathrm{dd}, J=1.5 \mathrm{~Hz}, 2.7$ $\mathrm{Hz}), 6.9-7.4(7 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{ddd}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 0.3 \mathrm{~Hz}), 8.35(1 \mathrm{H}$, ddd, J $=6.0 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 0.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 18.9,35.4,48.0,54.4,61.9$, $67.4,121.2,127.4,127.6,127.9,128.9,129.3,129.5,134.6,139.3,155.4,159.3,172.3$, 198.5. IR (NaCl, neat) $2946,1722,1682,1643,1608,1565,1495,1469,1448 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}: 374.1499(\mathrm{M}+1)$, found: 374.1500. $R_{f} 0.35$ (eluted with 25% ethyl acetate / hexanes).

Compound (256)

A solution of $\mathrm{NaClO}_{2}(7.4 \mathrm{mg}, 0.082 \mathrm{mmol})$ and $\mathrm{KH}_{2} \mathrm{PO}_{4}(12.2 \mathrm{mg}, 0.090$ $\mathrm{mmol})$ in 0.2 mL water was added to a stirred solution of $6.0 \mathrm{mg}(0.0214 \mathrm{mmol})$ of compound 255 in 1.2 mL tert-butanol and 0.3 mL 2-methyl-2-butene at rt. The mixture was diluted with EtOAc and water. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford a residue. Purification of the crude residue by silica gel chromatography afforded 5.0 mg of 256 as a white solid (80%). $[\alpha]^{20}{ }_{\mathrm{D}}{ }^{-}$ $143\left(c 0.143, \mathrm{CH}_{3} \mathrm{OH}\right){ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.65(3 \mathrm{H}, \mathrm{s}), 2.90(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.8 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{dd}, J=10.8 \mathrm{~Hz}, 2.7 \mathrm{~Hz}), 5.70(1 \mathrm{H}, \mathrm{bs}), 7.0-8.4(9 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta 14.3,28.4,36.6,52.3,61.0,119.3,123.6,124.8,125.1$, $125.6,126.2,126.4,127.5,132.2,135.8,138.3,146.6,157.0,166.0,167.7$. IR (NaCl , neat) $3184,1705,1620,1609,1469,1443 \mathrm{~cm}^{-1}$. HRMS (FAB+) calc. mass for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}: 376.1297(\mathrm{M}+1)$, found: 376.1299. $R_{f} 0.20$ (eluted with 5% methanol / ethyl acetate).

Appendix

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectrums

${ }^{1} \mathrm{HNMR}, \mathrm{CDCl}_{3}$, 300 MHz , filename: csy110-1

${ }^{1} \mathrm{HNMR}, \mathrm{CDCl}_{3}$, 300 MHz , filename: csy132-1

${ }^{1} \mathrm{HNMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, filename: csy170-2

${ }^{13} \mathrm{CNMR}, \mathrm{CDCl}_{3}$, 100 MHz , filename: csy170-2-cl3

${ }^{13} \mathrm{CNMR}, \mathrm{CDCl}_{3}, 75 \mathrm{MHz}$, filename: csy 191-1-c13

${ }^{1} \mathrm{HNMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, filename: csy192-2

${ }^{13} \mathrm{CNMR}, \mathrm{CDCl}_{3}, 75 \mathrm{MHz}$, filename: csy 192-2-cl3

${ }^{1} \mathrm{HNMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, filename: csy203-1

${ }^{1} \mathrm{HNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, filename: csy609-1

${ }^{13} \mathrm{CNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}$, filename: csy609-1-1

${ }^{1} \mathrm{HNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$, filename: csy588-1

Whel

${ }^{1} \mathrm{HNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, filename: csy618-1

${ }^{1} \mathrm{HNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, filename: csy615-1

 pom ! ${ }^{1} \mathrm{HNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, filename: csy562-1

${ }^{13} \mathrm{CNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$, filename: csy564-1-c13

| 180 | 160 | 140 | 120 | 100 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 160 | 60 | 40 | 20 | 0 | 1 |
| 20 | | | | | |

${ }^{13}$ CNMR, $\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}$, filename: csy644-1-c13

${ }^{1} \mathrm{HNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$, filename: csy515-1

${ }^{13} \mathrm{CNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$, filename: csy603-1-c13

\qquad

${ }^{1} \mathrm{HNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, filename: csy604-1

${ }^{13} \mathrm{CNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$, filename: csy604-1-c13

$\begin{array}{lllllllllllllllllll}180 & 170 & 160 & 130 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 1 \\ 20 & 10\end{array}$
${ }^{13} \mathrm{CNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}$, filename: csy605-1-c13

${ }^{1} \mathrm{HNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, filename: csy684-1

${ }^{13}$ CNMR, $\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}$, filename: csy684-1-c13

[^0]

\qquad
HNMR, $\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, filename: csy696-1

${ }^{13}$ CNMR, $\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$, filename: csy696-1-c13

${ }^{5}$
${ }^{1} \mathrm{HNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, filename: $\operatorname{csy} 697-2$

${ }^{13} \mathrm{CNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}$, filename: csy703-1-c13

[^1]

${ }^{1} \mathrm{HNMR}, \mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$, filename: csy714-1

\[

$$
\begin{gathered}
{ }^{13} \mathrm{CNMR}, \mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz} \text {, filename: csy714-1-cl }
\end{gathered}
$$
\]

[^0]:
 ${ }^{13} \mathrm{CNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$, filename: csy695-1-c13

[^1]: $\begin{array}{llllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 100 & 40 & 30 & 20 & 10 & 0\end{array}$
 ${ }^{13} \mathrm{CNMR}, \mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}$, filename: csy705-1-c13

