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ABSTRACT

In a series of three 17 d replicate trials, a total of

36 ileal cannulated pigs were used to determine the effects

of volatile fatty acid (VFA)inclusion in drinking water on

ileal microflora, hemolytic Escherichia coli, VFA

concentrations, pH, dry matter (DM), and pig performance.

All pigs were weaned at 21 d-of-age and assigned to one of

three treatments including: Tl)ad libitimi access to water,

T2)ad libitum access to water containing acetate(50mM),

propionate(5mM), and butyrate (3mM), and T3)ad libitum

access to water containing acetate(25mM), propionate(2.5mM),

and butyrate(1.5mM). Individual water intake was measured

daily and feed intake was measured twice weekly. All pigs

were individually caged in an environmentally controlled

room with ad libitiam access to a phase starter diet. Ileal

samples were collected at 21, 24, 28, 31, 35, and 38 d-of-

age. At 38 d-of-age, pigs were sacrificed and contents were

collected from the stomach, duodenum, ileum, cecum, and

spiral colon. Digesta were analyzed for total E. coli,

streptococci, lactobacilli, VFA, pH, and DM. Neither water

nor feed intake differed between treatments and no

differences were observed in microflora concentrations
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concentrations between treatments. Average ileal E. coli

concentrations of 6.23, 5.87, and 6.15, streptococci

concentrations of 7.55, 7.39, and 7.34, and lactobacilli

concentrations of 7.32, 7.49, and 7.15 logioCFU/g were

observed for Tl, T2, and T3 pigs, respectively. Time(day)

effects (P = .0001) were observed for E.coli, streptococci,

and lactobacilli. Additionally, VFA concentrations were

unaffected by treatment; however, day effects were observed

(P = .0001). Treatment had no effect on ileal pH or DM;

however, pH was observed to increase (P = .0001) by day 3

postweaning for all treatments. Furthermore, treatment had

no effect on pH in the various gastrointestinal sites.

Results indicate that VFA inclusion in drinking water had no

significant effect on ileal microflora, VFA, pH, DM, or

performance in weanling pigs.
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1. INTRODUCTION

Modern swine producers are faced with many challenges

in today's high intensity operations. One of the most

significant challenges is the management of newly weaned

pigs. Upon weaning, the young pig must overcome numerous

obstacles, such as the stress associated with weaning,

dietary changes, and adjustment to a new environment, along

with a decrease in maternal immunity. These factors may

increase the potential for nutritional disorders, disease,

poor feed intake and efficiency, all resulting in what is

termed as postweaning lag. The resulting lag is and has

been routinely treated with subtherapuetic levels of

antibiotics. However, the widespread use of antibiotics has

raised concerns about antibiotic residues and the

possibility of bacterial resistance to these drugs (Harper

et al., 1983). Therefore, alternative means for combating

postweaning disorders have been sought.

Diet acidification is one possible alternative to the

use of antibiotics. Several studies have been conducted to

determine the effects of organic acids on improving the

performance of weanling pigs. Organic acids such as citric

and fiamaric acid have been shown to increase performance;



however, these improvements have been variable (Kirchgessner

and Roth, 1982; Falkowski and Aherne, 1984; Giesting and

Easter, 1985) . Additionally, it has been suggested that

fermentation acids, such as propionate, play a role in

maintaining the gastrointestinal health of newly weaned pigs

(Wolin, 1969) . Therefore, the objective of this study was

to determine the effects of volatile fatty acid inclusion in

drinking water of weanling pigs on performance, intestinal

microflora, pH, and VFA concentrations.



2. REVIEW OF THE LITERATURE

Economic Impact of Weaning Disorders

The need to more efficiently utilize expensive

farrowing facilities has led swine producers to wean piglets

at earlier ages (Ravindran and Kornegay,1993). However,

weaning at 3-4 weeks, exposes the pigs to nutritional,

environmental, and social stresses that usually result in a

postweaning lag phase manifested by slow growth, scouring,

and general unthriftiness (Ravindran and Kornegay, 1993).

Death of nursery pigs has been estimated at 2.5 million of

the 98 million pigs produced annually (USDA, 1992) . These

nursery losses cost U.S. swine producers over 80 million

dollars per year, assuming a production cost of $25 per

weaned pig and a potential net profit of $10 per finished

pig (Rawls, 1993). In addition to lost income due directly

to death, chronic diarrhea (scours), poor feed efficiency,

and stunted growth associated with weaning disorders result

in untold losses due to higher feed and fuel costs,

treatment costs, increased days to market, and an

interruption in the flow of production.



Postweaning Diarrhea and the Involvement of Pathogenic

Escherichia coll

Losses due directly to scouring account for 15 percent

of total nursery phase pig deaths (USDA, 1997). Bergeland

in 1980 determined that E. coli were the etiological agent

in 48% of the cases of swine diarrhea. Additionally, K88

E. coll, a pathogenic variant, has been implicated as a

major source of diarrhea in postweaned pigs, with one study

showing 72% of strains isolated from pigs greater than 24

days old being K88 positive (Wilson and Francis, 1986).

Escherichia coli concentrations rapidly increase following

weaning with the majority of strains exhibiting hemolysis

(Kenworthy and Crabb, 1963). Simultaneous increases in

hemolytic and total E. coli correspond with the onset of

scours (Kenworthy and Crabb, 1963; Chopra et al., 1964).

Kenworthy and Allen (1966) concluded that the role of E.

coli in pathogenesis was secondary to the disturbance in

physiological function created by the change in diet. A

reduction in small intestinal absorptive area and the

appearance of a less mature enterocyte population also

increase the susceptibility of the pig to diarrhea and poor

performance during the postweaning period (Hampson, 1986).



Gastrointestinal Microflora In The Young Pig

The intestinal tract of newborn piglets is sterile at

birth (Kenworthy and Crab, 1963). The tract quickly becomes

colonized shortly after birth, which is thought to be

enhanced by the high pH of the intestinal contents prior to

gut closure (Kenworthy and Crab, 1963; Smith and Jones,

1963). Throughout its entire length, the intestinal tract

of healthy pigs is occupied by bacteria, with concentrations

of 10® to 10® CFU/g in the small intestine and 10® to 10^°

CFU/g in the cecum and colon (Kenworthy and Crabb, 1963;

Smith and Jones, 1963). It was established that lactobacilli

and streptococci were the major intestinal microflora

(Briggs et al., 1954). Subsequent work by Smith and Crabb

(1961), Kenworthy and Crabb (1963), and Smith and Jones

(1963) established that the "normal" flora of the pig were

lactobacilli, streptococci, Bacteroides spp., and

Escherichia coli. After weaning, populations of all groups

of bacteria decline, with aerobes, lactobacilli, and

bacteroides-clostridia declining to about one tenth of the

preweaning concentrations (McAllister et al., 1979). The

change in diet following weaning may lead to temporary

shifts in indigenous microflora and their metabolites.



which may provide a more conducive environment for

pathogenic colonization (McAllister et al., 1979). Mathew

et al, (1991) found that by day two postweaning (23 d-old-

pigs), ileal lactobacilli concentrations exhibited nearly a

1000 fold decrease, which coincided with an increase in pH

and an increase in E. coli concentrations. In the same

study, streptococci concentrations remained between 10^ and

10® CFU/g of intestinal contents until 20 d postweaning (41

d-old-pigs) when concentrations increased approximately 10-

fold. Mathew also found that lactobacilli and E. coli

concentrations, as well as pH, returned to near preweaning

levels over the next several days. In addition, similar

observations were made by McAllister et al. (1979) and

Hampson et al.(1985). Risley et al. (1993) observed a

decrease in jejunal lactobacilli concentrations from 5 to 16

days postweaning, whereas concentrations in the lower colon

increased during the same time period.

Microbial Fermentation

All species of bacteria ferment some component of the

digesta and together produce the microbial bodies and VFA

used by the host (Bergman, 1990). Diet can change the

metabolic activities of the microorganisms by providing new



or different substrates, thus influencing the amount and

nature of the fermentative end products (Hungate, 1968;

Schwartz and Gilchrist, 1975). The major substrates for

fermentation are complex carbohydrates which consist of

cellulose, hemicellulose, pectin, starches, dextran, and

soluble carbohydrates such as mono- and disaccharides, as

reviewed by Bergman (1990). The principal end products of

fermentation are VFA, especially acetate, propionate,

butyrate, and gases including carbon dioxide and methane.

Lactate can be produced, but it usually is not an important

intermediate (Glinsky et al., 1976). However, the primary

carbohydrate in sow's milk is lactose which can be converted

to lactic acid by lactobacilli present in the stomach, and

this appears to be the primary method of gastric

acidification in suckling pigs (Easter, 1988).

Volatile Fatty Acid Production

Over the past 50 years, animal studies have shown that

VFA are found in the gastrointestinal tracts of all

herbivores, most omnivores, and depending on the diet, some

carnivores (Bergman, 1990). Elsden et al. (1946) first

demonstrated that the concentrations of VFA at different

sites in the gastrointestinal tract are a direct function of



the bacterial population and are proportional to the time or

extent to which digesta are retained. Total concentrations

of VFA in the cecum, large colon, rectum, and feces of all

animals have been measured in the range of 30-240 rtiM but

more commonly average 70-120 mM (Bergman, 1990). Barcroft

et al. (1944) and Elsden et al. (1946) found the chief sites

for production of VFA in the pig to be the cecum and colon;

however, significant amounts of VFA were present in the

stomach and the small intestine. A more recent study also

showed that in the pig, VFA (mainly acetate, propionate, and

butyrate) are produced chiefly in the large intestine (Imoto

and Namioka, 1978). The molar proportions of acetate to

propionate to butyrate in the cecum, colon, or rectum of

horses, sheep, and pigs have been found to approximate

70:20:10 (Elsden et al., 1946; Glinsky et al., 1976;

Stevens, 1978). Total VFA concentrations have been found to

be lower in the upper GI tract (stomach and jejunum) than in

the lower GI tract (cecum and lower colon) (Risley et al.,

1992). Volatile fatty acid concentrations in pigs have been

shown to increase as the proportion of fiber reaching the

hindgut increases (Kass et al., 1980). Friend et al. (1962)

found that cellulose-supplemented diets generally resulted



in a lower total organic acid content than whey-supplemented

diets. Young pigs (12.5 kg) fed a conventional high-

concentrate, low fiber diet indicated a substantial degree

of microbial digestion in the stomach 2 and 4 h after

feeding, with mean VFA concentrations of 40 mM in the

cranial half of the stomach and 20 mM in the caudal half

(Argenzio and Southworth, 1974). These values returned to

normal levels by 8 h after feeding. These researchers also

discovered that the lowest concentrations of VFA were found

in the cecum 2 h after feeding, but levels increased to 212

mM at 4h.

Volatile Fatty Acid Absorption

Barcroft et al. (1944) showed that the chief sites of

VFA production and absorption in the pig are the cecum and

colon, but some production and absorption occur in the

stomach and small intestine. Among the three major VFA

found in the pig large intestine, acetate is produced and

absorbed more than propionate or butyrate, and acetate

absorption amounts to at least one-half of the total caloric

value of the three (Imoto and Namioka, 1978). Each VFA is

readily absorbed from all segments of the lower digestive

tract, and absorption appears to be mostly passive and



increases linearly with corresponding decreases in pH or

increases in VFA concentration (Hollander et al., 1986).

The rate of absorption of VFA from the riomen increases with

increasing chain length (Danielli et al., 1945). Because

VFA are weak acids with a pK of 4.8 and because the pH of

the gastrointestinal fermentation chambers is near neutral,

90-99% of the VFA are present as anions rather than as free

acids (Bergman, 1990). Absorption of the nondissociated or

acid form of the VFA can occur with luminal accumulation of

bicarbonate and an increase in pH. The dissociated form is

absorbed with the aid of sodium, but with no associated

appearance of bicarbonate in the lumen (Stevens et al.,

1980). Furthermore, Stevens et al. (1980) determined that

both mechanisms have been observed in the colon of ponies,

pigs, and humans as well as in the riomen of sheep.

Metabolisim of Volatile Fatty Acids

Metabolism of VFA first occurs at their site of

absorption and then by the liver or by peripheral tissues.

Stevens (1970) showed that metabolism by the rumen

epithelium during absorption accounted for 45% of the

acetate, 65% of the propionate, and 85% of the butyrate

absorbed from the liimen bath. Most of butyrate is oxidized
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to CO2 or to ketone bodies by rumen epitheliiim (Pennington,

1952) and by colonic mucosa of pigs (Imoto and Namioka,

1978) during its transport to the blood stream. Between 10-

15% of propionate is metabolized by the rumen of cattle;

whereas, approximately 50% of propionate is metabolized by

the rumen of sheep, giving rise to lactate, CO2, and

probably alanine (Bergman, 1990). Butyrate and propionate

not metabolized by epithelial tissue along with most of the

acetate are transported to the liver via the portal vein

(Bergman, 1990). Because of direct absorption of VFA

through the gut epithelium of pigs, portal blood has a

higher concentration of total VFA than does hepatic or

arterial blood (Imoto and Namioka, 1978). Most of the

propionate (95%) is removed from the portal blood by the

liver where it is the only VFA that can be used as a major

source for glucose production (Steinhour and Bauman, 1988).

Ninety to ninety-eight percent of acetate present in the

liver enters arterial and peripheral venous blood where it

is utilized by peripheral tissues (Bergman, 1990).

Additionally, there is substantial gut utilization of

acetate from the blood with the majority being used by

smooth muscle in the gut wall (Pethick et al., 1981).

11



Contributions of Volatile Fatty Acids

Investigations have shown that short chain fatty acids

(SOFA) play several important roles in maintaining the

health of nonruminants. It has been reported that VFA act

as the primary energy source for the intestinal mass,

contributing up to 70% of its required maintenance needs

(Henning and Hird, 1972). Large intestine VFA production

has been estimated to contribute between 5 and 28% of the

total maintenance energy requirement to the pig (Friend et

al., 1964; Imoto and Namioka, 1978). In the ruminant, VFA

production has been estimated to supply 70-80% of the

animals energy requirement (Bergman et al., 1965).

In addition to contributing energy, VFA may also

perform other functions. Several studies have shown SOFA

are more conducive to the growth of commensal organisms

while hindering the growth of pathogenic species (Wolin,

1969; Lee and Gemmell, 1972; Fay and Farias, 1975). Malbert

(1994) reported ileal VFA aid in the regulation of gastric

emptying. As reviewed by Bergman (1990), VFA have been

shown to be potent stimulators of insulin secretion,

cholesterol metabolism, and of GI blood flow, as well as

epithelial cell proliferation.

12



Postweaning Changes In Gastrointestinal pH and Volatile

Fatty Acid Concentrations

It has been adequately demonstrated that the weanling

pig is ill-prepared, enzymatically, to digest the complex

carbohydrates found in most cereal-based weaning diets

(Corring et al., 1978). Additionally, HCl production in the

stomach of early weaned pigs is also inadequate, which

results in gastric pH being higher than acidic values found

in the mature animal (Kidder and Manners, 1978). Pigs weaned

at 21 d-of-age exhibited an increase in ileal pH, and a

decrease in acetate, butyrate, isovalerate, and total VFA

concentrations within two days postweaning (Mathew et al.,

1993; Mathew et al., 1994). Ileal pH was greater from 23 d-

of-age through 27 d-of-age, and pH change was greater from

the last d preweaning (20 d- of-age) to the first day

postweaning (23 d-of-age) (Mathew et al., 1994). These

findings support the work done by Smith and Jones (1963),

who also reported an increase in intestinal pH following

weaning. Mathew et al. (1994) postulated that the increase

in pH could be due to the initial fasting period observed

with many newly weaned pigs. It has also been reported that

the toxin produced by some enterotoxigenic E. coli can

13



increase pH by increasing cAMP activity in mucosal

enterocytes, resulting in a flow of electrolytes and fluids

out of the cells thus increasing liomen pH (Moon et al.,

1986). Concentrations of VFA in the ileum are higher prior

to weaning compared to any other time postweaning (Mathew et

al., 1993). The decrease in ileal VFA corresponds with an

increase in lactate concentrations (Mathew et al., 1994).

Concentrations of acetic and propionic acids decrease

immediately following weaning with concentrations beginning

to increase by day 3 postweaning and generally stabilizing

thereafter (Risley et al., 1991). The change in VFA patterns

may be indicative of a shift in metabolic pathways as

enteric microflora adapt to a change in the pigs diet.

Short chain fatty acids have been shown to be affected by

diet in the pig (Friend et al., 1963).

Acidification of Weanling Pig Diets

The interest in acidifying weanling pig diets began

with the discovery that young pigs have limited capacity to

maintain proper gastric pH (Manners, 1976). However, the

first attempt to use acidification in pig diets was directed

at the alleviation of postweaning scours (Cole et al.,

1968). Since then, numerous studies have attempted to

14



stabilize GI pH and to enhance postweaning performance by

using a variety of acidifying agents. Organic acids such as

citric, fumaric, formic, propionic, malic, and lactic acids

have been evaluated by a number of researchers (Sciopioni et

al., 1978; Kirchgessner and Roth 1982; Giesting and Easter,

1985; Mathew et al., 1991). Use of the inorganic acids such

as hydrochloric, sulfuric, and phosphoric acids was

investigated by Giesting and Easter (1986); however,

attempts were met with disappointing results.

Microfloral Response to Diet Acidification

Cole et al. (1968) showed that the addition of 0.8%

lactic acid to drinking water reduced the niomber of

hemolytic as well as total E. coli concentrations in the

duodenum and jejunum of weanling pigs. When utilized in

Antibiotic Medixom 3, a combination of 60 |jmoles of acetate,

20 ^moles of propionate, and 15 |jmoles of butyrate per ml

resulted in significant inhibition of E. coli growth at

various pH values (Wolin, 1969). Sciopioni et al. (1978)

noted reduced numbers of E. coli along with anaerobic

microflora in the GI tract of starter pigs after diet

supplementation with fumaric or citric acid. The

15



multiplication of E. coli 0141:K85 was reduced by

acidification with a corresponding reduction in mortality

(Thomlinson and Lawrence, 1981). In ileal cannulated pigs,

the addition of 1% propionic acid in the feed decreased E.

coli concentrations (Mathew et al., 1991). In contrast to

the previous studies, Risley et al.(1993) did not see a

response of enterotoxigenic E. coli challenged pigs to

organic acids. Additionally, organic acid supplementation

did not affect lactobacilli or E. coli concentrations

throughout the GI tract (Risley et al., 1992).

Influence of Acid Supplementation on Performance

The effects of acid supplementation on performance have

been highly variable, with some researchers reporting

improvements of up to 14% in postweaning growth and up to

11% in feed efficiency, while others have reported

depressions in both growth and feed efficiency (Ravindran

and Kornegay, 1993). Cole et al.(1968) found that drinking

water consisting of 0.8 to 1% lactic acid significantly

improved growth rate and feed efficiency. Sciopioni et al.

(1978) reported improved performance and increased dry

matter and protein digestibility in early weaned pigs fed

diets supplemented with 1% citric acid. Additionally,

16



increased gains were also observed for the first 3 weeks,

but total gains were not different by 6 weeks postweaning.

Giesting et al. (1991) observed that the addition of fumaric

acid improved feed efficiency in both corn-soybean and dried

whey diets for at least 4 weeks postweaning.

In contrast to these studies, Kornegay et al.(1976)

reported no beneficial effects from the addition of 1%

citric acid to the diets of 7-d-old weaned pigs. The

inclusion of fumaric or citric acids to the diets of pigs

weaned at 4 weeks of age did not significantly affect daily

feed intake (Falkowski and Aherne, 1984). This study also

indicated acid inclusion had no significant effect on

apparent digestibility of protein or dry matter. Sciopioni

et al.(1978) noted depressions in performance upon the

supplementation of malic acid to weanling pig diets.

Giesting and Easter (1985) reported that the addition of 2%

propionic acid in the feed had no beneficial effects on

growth or feed efficiency in weanling pigs, but resulted in

depressed feed intake. Furthermore, Giesting and Easter

(1986) demonstrated that the addition of hydrochloric,

sulfuric, and phosphoric acids resulted in severe

depressions in intake and growth.

17



Influence of Acid Supplementation on Intestinal pH

Inadequate activation of pepsinogen for protein

digestion in the newly weaned pig is the result of

insufficient HCl production by the parietal cells of the

stomach (Manners, 1976). Furthermore, low acid levels allow

the intestinal pH to remain high, providing a suitable

environment for the proliferation of opportunistic bacteria.

It has been speculated that supplementation with organic

acids may decrease stomach and intestinal pH preventing the

spread of pathogenic bacterial species. However, Burnell et

al.(1988) reported little or no decrease in pH of the

stomach or small intestine when 1% citric acid was given to

weanling pigs for 7 to 21 days. Risley et al.(1991) noted

similar results when fumaric or citric acid was included in

starter pig diets. Sciopioni et al.(1978) reported a

nonsignificant reduction in stomach and jejunal pH of

weanling pigs by feeding diets containing 1% citric acid.

The feeding of 1.5% fumaric or citric acid resulted in

nonsignificant reduction in stomach and jejunal pH (Risley

et al., 1992). Similar results were reported by Burnell et

al.(1988) when 7-week-old weanling pigs were fed a starter

diet with 1% sodium citrate. These findings suggest that

18



the supplementation of starter diets with organic acids does

not substantially reduce GI pH.
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3. MATERIALS AND METHODS

Surgical Procedure

In each of three replicate trials, twelve 15-d-old

nursing pigs were surgically fitted with T-cannulas in the

medial ileum, in accordance with the University of Tennessee

Office of Laboratory Animal Care. The cannulas were made at

Purdue University Mechanical Engineering Department (West

Lafayette, IN) from Delrin 600 plastic and were similar in

design to those described by Walker et al.(1986).

After the pigs were fasted for 24 hours and moved to

the surgical suite, they were pre-anesthetized by

intramuscular injection of 1 ml (100 mg) of ketamine

hydrochloride (Ketaset, Fort Dodge Laboratories, Fort Dodge,

lA) plus .1 ml (1 mg) acepromazine malate and .3 ml (3 mg)

of atropine sulfate (Butler Company, Columbus, OH).

Halothane (Fluotane, Fort Dodge Laboratories) anesthetic gas

was delivered by a non-rebreathing delivery system,

initially at 2% level and a flow rate of 1.5 1/min of O2.

Initial delivery of halothane was made using a cone mask

until the proper plane of anesthesia was reached, after

which pigs were intubated with a 3.0 mm I.D., cuffed. Murphy

Eye tracheal tube (Mallincrodt Critical Care, Glens Falls,
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NY). The left flank of the pig was prepared for surgery by

shaving, followed by 3 betadine and alcohol scrubs. A 3 cm

dorsoventral incision, using a number 10 scalpel blade

attached to a niomber 3 scalpel handle, was made

approximately 2 cm posterior to the last rib. A laparotomy

was performed to locate the distal end of the cecum and the

mesenteric attachment of the distal loop of the ileum. The

ileum was exteriorized and placed on a sterile 4x4 gauze pad

soaked with sterile saline to keep the ileum from drying

during the surgical procedure. A purse string suture was

placed in the muscularis layer on the anti-mesenteric

surface of the ileum approximately 4 cm anterior to the

ileo-cecal junction using 3-0 PDS II monofilament suture

with a Taper RB-1 needle (Ethicon, Somerville, NJ). A 1 cm

incision was made into the lumen betwen the stitches of the

purse string suture, the flange of the cannula was inserted

into the incision and the purse string suture was drawn up

to secure the intestinal wall to the cannula. The purse was

tied using a surgeon's knot followed by a minimum of 3

square knots.

A hole, 1 cm in diameter, was cut into the body wall

approximately 1.5 cm dorsal to the incision using a brass
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cork borer. The stem of the cannula was brought out through

this opening by securing the stem of the cannula with Allis

forceps and pulling it through the hole. A washer threaded

onto the exposed cannula was turned down in order to draw

the intestine, muscle layers and body wall securely together

without twisting the intestine or applying too much pressure

to the skin or muscle.

The incision was closed using 1-0 PDS II monofilament

suture with a Taper TP-1 needle (Ethicon) in a simple

continuous pattern for the peritoneum and muscle layers. A

separate skin closure was performed using 3-0 PDS II

monofilament with a Taper RB-1 needle (Ethicon) in a

continuous subcuticular pattern. All sutures were secured

with a surgeon's knot and a minimum of 3 square knots.

At the end of surgery, the use of halothane was

discontinued and the endotracheal tube was removed following

evidence of a swallowing reflex. Antibiotic ointment was

applied prior to placing a 4x4 gauze pad over the incision.

Pigs were wrapped with 2 inch cling gauze and 3 inch

Elasticon tape (Johnson and Johnson, New Brunswick, NJ) in

order to protect the incision and cannula. The pigs were

observed until fully recovered from the effects of the

22



anesthesia, at which time they were returned to the Blount

Swine Farm, placed on their respective sow for a 5 d

recovery period. Pigs were observed daily and bandages were

changed as necessary until weaning.

Experimental Design

Pigs were weaned at 21 d-of-age and moved to individual

cages in the Brehm Animal Science Building on the Knoxville

campus, where they were randomly assigned to one of three

treatments including: Tl)ad libitum access to water, T2) ad

libitum access to water containing acetate (50 mM),

propionate (5mM), and butyrate (3mM), and T3) ad libitum

access to water containing acetate (25mM), propionate

(2.5mM), and butyrate (1.5mM). Water intake was measured

daily by weighing each individual's water container. All

pigs were allowed ad libitum access to a typical Phase I

starter diet (Table 1) with antibiotics omitted. Pigs were

fed the starter diet from weaning until the end of the

trial. Feed was collected and weighed twice weekly to

determine feed intake. Pigs were weighed weekly to

determine body weight, rate of gain and feed efficiency.

Fecal scour scores were taken daily by the same individual

in order to maintain consistency. Scores ranged from 1 to
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Table '1

Composition of Creep and Nursery Diet

Nutrient kg/lOOkg

Ground corn 55.95

Soybean meal 24.30

Blood meal 3.00

Dried whey 10.00

Fish meal 2.00

Fat 2.00

Limestone 0.65

Dicalcium Phosphate 1.20

Salt 0.35

Vitamin/mineral premix* 0.50

DL Methionine 0.05

*Nutrient (amount/kg of feed): Ca, 849 mg; Zn, 150 mg; Fe,
132 mg; Mn, 20 mg; Cu, 12 mg; Se, 0.31 mg; Vit. A, 1298 lU;
Vit. D, 3260 lU; Vit. E, 2.4 lU; Menadione (sodium

bisulphite form), 143 ^ig; Vit. B12, 3.3 ̂ g; Riboflavin, 880
|j,g; d-Pantothenic Acid, 2.6 mg; Niacin, 4.4 mg.
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4, with 1 being little or no scouring and 4 being profuse

watery scours. Room temperature was maintained at

approximately 30°C with humidity ranging from 65 to 70%.

Artificial lighting was provided by florescent fixtures,

with a photoperiod consisting of 12 h on and 12 h off. On

day 3 postweaning, all pigs were orally challenged with 2 ml

of suspension containing a minimum of 10'° cfu/ml of wild

type enterotoxigenic E. coli variant 0157:K88:H13 {£. coll

Reference Center, University Park, PA) . The challenge

organism was grown overnight in 50 ml of naldixic acid (Rep

1) or spectinomycin (Rep 2-3) treated Luria-Bertani (LB)

(Bertani, 1952) broth at 37°C in a G24 Environmental

Incubator Shaker (New Brunswick Scientific Co., Edison, NJ).

Following incubation, the culture was centrifuged at 15000 x

g in a Beckman J2-Hs centrifuge (Beckman Instruments, Palo

Alto, CA) using a JA-20 rotor to pellet the cells. The

supernatant was poured off and 2 wash cycles were performed

on the pellet using 50 ml of phosphate buffered saline

(PBS). The cells were resuspended by vortexing. Two

milliliters of the mixture were then orally administered to

the pigs using a 3 ml syringe attached to a 4 inch piece of

tygon tube. To enumerate bacteria in the challenge
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suspension, a portion of the mixture was serially diluted

and plated on naldixic (Rep l)or spectinomycin (Rep 2-3)

treated lactose MacConkey agar (Difco, Detroit, MI) and

incubated overnight at 37°C in a Precision Scientific

(Chicago, XL) model 4EM convection incubator. Colonies

were visually counted to verify that a minimiam of 10^°

cfu/ml of culture was administered to each pig.

Sample Collection and Analysis

Heal samples were collected at 21, 24, 28, 31, 35, and

38 d-of-age with the 21 d collection being a preweaning

sample. Samples were collected by attaching a sterile

balloon to the open cannula. Because the interval between

outflows of digesta varied widely between pigs, balloons

were replaced frequently and immediately placed on ice until

sufficient sample could be collected for analysis. This

procedure was followed to minimize the possibility of

bacterial proliferation and (or) fermentation in the

balloons. When sufficient material had been collected,

samples were taken immediately to the laboratory, assayed

for pH and prepared for microbial and SCFA analysis. Sample

pH was determined using a Corning #345 pH meter (Corning,

New York, NY) with a high performance glass electrode (cat.
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#476390). Dry matter was determined by drying approximately

5 g of digesta at 90° C for 24 h.

Microbial Analysis

For bacterial assays, 10-fold serial dilutions were

made from 1—g aliguots of ileal contents, using PBS as a

diluent. One hundred microliters of each dilution were

spread in duplicate on Petri dishes containing growth media

specific for each bacterial type. Total E. coli were

determined by growth on lactose MacConkey agar (Difco,

Detroit, MI). Escherlchia coli were confirmed by subjecting

two typical colonies per pig per d to biochemical analysis

(API 20E, BioMerieux Vitek, Syosset, NY). Total

lactobacilli were determined by growth on Rogosa agar

(Difco) using an overlay method to minimize oxygen exposure

during growth. In that method, 100 fxl sample aliguots were

spread on solid Rogosa agar (30 ml) and plates were allowed

to dry at 37°C for 30 min in a convection incubator.

Following drying, approximately 10 ml of liguid Rogosa agar

(42°C) was poured over the cultures and allowed to solidify,

prior to returning plates to the incubator for the remainder

of the incubation period. Total streptococci were
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determined by growth on Streptosel agar (Becton Dickinson,

Cockeysville, MD). Bacterial samples were incubated at

37°C for 24 h (£. coli) or 72 h (lactobacilli and

streptococci). All bacteria were enumerated by visual

counting of colonies, using the best replicate set from

dilutions that resulted in 20 to 200 colonies per plate.

Hemolytic E. coll Detection

For detection of the challenge organism, alpha and beta

hemolysis was determined. The challenge organism was grown

in naldixic acid or spectinomycin treated LB. To determine

hemolysis one hundred E. coli colonies per pig for each day

were transferred from the lactose MacConkey plates to blood

agar plates covered with either naldixic or spectinomycin.

Plates were then incubated at 37°C for 24 h. Alpha

hemolysis was determined by a zone of partial clearing

around the colony; whereas, beta hemolysis was determined by

a zone of total clearing around the colony. Only those E.

coli colonies exhibiting beta hemolysis were determined to

be hemolytic.

Short-chain Fatty Acid Analysis

Volatile fatty acid concentrations were determined

using a gas chromatographic method adapted from Playne
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(1985). In the analysis, approximately 10 g of intestinal

content was centrifuged at 15,000 x g at 4°C for 15 min in a

Beckman, model J2-HS centrifuge with a JA-20.1 rotor

(Beckman Instruments). One and one-half milliliters of

supernatant were mixed with 300 ̂ 1 of 25% metaphosphoric

acid (H3PO4) (5:1 ratio) and incubated at room temperature

for 30 min. Following centrifugation to remove the

precipitate, 1 (xl of sample was injected into a Hewlett

Packard model 5890 gas chromatograph (Hewlett Packard,

Avodale, PA) with an HP-FFaP 10-m x 0.53-mm x l-pn capillary

column packed with cross-linked polyethylene glycol-TPA. A

flame ionization detector was used with an oven temperature

of 200°C and a detector temperature of 250°C for

determination of acetate, propionate, butyrate, isobutyrate,

valerate, and isovalerate concentrations.

Collection of Gastrointestinal Contents and Tissues

At 38 d-of-age, pigs were sacrificed by lethal

injection of 1200 mg of sodium pentobarbitol via the

anterior vena cava. A midline incision was made and GI

samples were immediately obtained from the stomach,

duodeniom, ileum, cecum, and spiral colon. Samples were
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analyzed for microflora and SCFA as described previously.

Tissue samples were taken from the duodenum and ileum and

preserved in 10% buffered formalin. Tissue samples were

fixed and stained, using a general staining combination of

hematoxylin and eosin, on slides for histological

examination.

Statistical Analysis

The statistical model consisted of a randomized

complete block design using repeated measures analysis with

individual pig serving as the experimental unit. Data were

analyzed using the Mixed Model Procedure of SAS (1996).

Differences between least square means were separated using

pairwise t-tests. Differences between days were separated

using Pdmix procedures. Microbial concentrations were

transformed (logio) prior to statistical analysis.
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4.RESULTS

Performance

Addition of VFA to drinking water tended (P = .11) to

increase the consiamption of water in T2 pigs compared to T3

pigs; however, intake in T2 and T3 pigs did not differ from

the controls. Feed intake for the first week on trial

tended (P =.07) to be greater for T2 pigs compared to T3

pigs; however, intake in T2 and T3 pigs did not differ from

the controls (Table 2). No intake differences (P = .33)

were observed among treatments during the second week;

however, there was a tendency (P = .09) for higher intake in

T2 pigs compared to T3 pigs. Gain tended (P = .09) to be

greater during week 1 for T2 compared to T3. No differences

(P = .46) were observed between treatments for overall gain.

Feed efficiencies were not different (P = .23, P = .39, and

P = .51) between treatments for week 1, week 2, and total,

respectively.

Daily fecal scores indicated minimal scouring with the

lowest score recorded being a 2 (data not shown). From all

visual indications, pigs remained relatively healthy

throughout the study.
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Table 2

Effect of VFA inclusion in drinking water on performance of weanling pigs'

Week 1 Week 2 Total

Treatment Feed Intake Gain Gain/Feed Feed Intake Gain Cain/Feed Feed Intake Gain Gain/Feed

Tib 1.54 1.07 0.62 3 .25 2 .64 0 . 83 5.43 4.06 0.75

T2

00
to

1.36 0.76 3 .47 2 .51 0.74 5.96 4.15 0.71

T3 1.21 0.55 0.14 3 .09 2.35 0.78 4.81 3.67 0 .77

SEM" 0.26 0 .20 0 .23 0.38 0.16 0.08 0.72 0.41 0.05

trials with a total of 12 pigs per treatment.
''Tl = control, T2 = high VFA treatment, T3 = low VFA treatment
"SEM = average standard error of the mean



 

Microflora

Escherichia coli concentrations were not affected (P

=.22) by the addition of VFA to the drinking water (Figure

1). However, a time (day) effect (P = .0001) was observed

with E. coli concentrations decreasing in all treatments

groups by 3 d postweaning and decreasing again 10 d

postweaning. In addition, a tendency existed for a

treatment by day interaction (P = .10), with concentrations

of E. coli being lower by 14 d postweaning in T2 pigs

compared to controls.

Recovery of the challenge organism, as indicated by

beta hemolysis, was minimal. Detection of hemolytic E. coli

accounted for less than 0.5% of the colonies examined. No

differences (P = .71) between treatments were observed for

hemolytic E. coli, nor were any day effects (P = .39)

observed.

The addition of VFA to drinking water did not change (P

= .37) concentrations of lactobacilli in the ileum of pigs

compared to the control diet (Figure 2). However,

lactobacilli concentrations were observed to decrease (P =

.0001) in all treatment groups by 3 d postweaning. By 7 d

postweaning, concentrations had increased (P = .0001), but
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Figure 1: Effect of VFA inclusion in drinking water on ileal
E. coll concentrations in weanling pigs. Data represent
least squares means from three replicate trials with a total
of 12 pigs per treatment.

Average SEM over all days = .61
Tl=control, T2=high VFA, T3=low VFA
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Figure 2: Effect of VFA inclusion in drinking water on ileal
lactobacilli concentrations in weanling pigs. Data represent

least squares means from three replicate trials with a total
of 12 pigs per treatment.
Average SEM over all days = 0.22
Tl^control, T2=high VFA, T3=low VFA
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did not reach those observed preweaning.

In all treatment groups, ileal streptococci

concentrations were observed to decrease (P = .0001) by 3 d

postweaning (Figure 3). An increase (P =.0001) in

streptococci levels was observed by 7 d postweaning, but

concentrations never reached those prior to weaning.

Furthermore, streptococci concentrations were not influenced

(P = .61) by the addition of VFA to the drinking water of

weanling pigs.

Short-chain Fatty Acids

Ileal concentrations of VFA were not influenced by the

addition of VFA to the drinking water (Table 3). Acetate

levels for all treatment groups decreased (P =.0001) from

day 0 to day 7 postweaning, with day 7 concentrations being

the lowest throughout the study (Figure 4). Concentrations

increased following day 7 postweaning; however, the highest

concentration reached postweaning was approximately one-half

of the preweaning concentration. For all treatments,

propionate concentrations decreased (P = .0001) nearly 6-

fold by day 3 postweaning, with concentrations remaining

constant for the remainder of the study (Figure 5).

Furthermore, butyrate concentrations decreased (P = .0001)
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Figure 3: Effect of VFA inclusion in drinking water on ileal
streptococci concentrations in weanling pigs. Data represent
least squares means from three replicate trials with a total
of 12 pigs per treatment.
Average SEM over all days = .20
Tl=control, T2=high VFA, T3=low VFA
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Table 3

Effect of VFA inclusion in drinking water on ileal VFA

concentrations."

Acetate'''^ Propionate " Butyrate Total

Days II" H T3 11 T2 13 n T2 T3 11 T2 T3

0 79.31 66.74 73.9 12.15 12.07 12.38 9.69 9.07 7.94 106.2 91.31 97.23

3 34.32 27.11 32.68 2.87 2.31 2.43 0.91 0.78 1.39 39.81 31.41 37.51

7 28.21 24.71 31.47 3.03 1.79 2.94 0.97 0.79 1.05 33.77 28.78 37.29

10 32.11 41.61 38.98 2.83 3.67 1.74 1.13 2.46 1.36 37.96 49.46 43.99

14 36.19 35.35 33.19 2.01 1.75 1.58 1.43 1.62 0.69 41.51 40.40 37.30

sem'' 5.64 1.12 1.10 7.31

^Data are in mmoles/l and represent least squares means from
three replicate trials with a total of 12 pigs per treatment
^Day effect, P = .0001
°T1 = control. T2 = high VFA treatment. T3 = low VFA
treatment.

■^SEM = average standard error of the mean over all days
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Figure 4: Effect of VFA inclusion in drinking water on
ileal acetate concentrations in weanling pigs. Data are in
ramoles/1 and represent least squares means from three
replicate trials with a total of 12 pigs per treatment.
Average SEM over all days = 3.29

T1 = control. T2 = high VFA treatment. T3 = low VFA

treatment
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Figure 5; Effect of VFA inclusion in drinking water on
ileal propionate concentrations in weanling pigs. Data are
in mmoles/l and represent least squares means from three
replicate trials with a total of 12 pigs per treatment.
Average SEM over all days = 0.68
T1 = control. T2 = high VFA treatment. T3 = low VFA
treatment
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8-fold by day 3 postweaning and never increased thereafter

(Figure 6). Total VFA (acetate, propionate, butyrate,

isobutyrate, valarate, and isovalarate) were not affected (P

= .75) by treatment. Concentrations were also observed to

decrease (P = .0001) by day 3 postweaning, with

concentrations remaining constant for the remainder of the

study(Figure 7).

pH and Dry Matter

Treatment had no effect on ileal pH (P = .75) or DM (P

= .81). However, ileal pH was observed to increase (P

=.0001) by day 3 postweaning for all treatment groups and

remained constant thereafter (Table 4). A time (day) effect

(P = .0001) was observed for ileal DM with a decrease

occurring by day 3 postweaning. Furthermore, ileal DM was

noted to increase (P = .0001) by day 14 postweaning, with

percent DM being greater postweaning compared to preweaning.

GASTROINTESTINAL SITES

Microflora

Escherichia coli concentrations from the

gastrointestinal sites, taken at 38 d-of-age, were not

different between treatments (P = .24, Figure 8). However,

E. coli concentrations were higher (P = .0001) in the cecum
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Figure 6: Effect of VFA inclusion in drinking water on
ileal butyrate concentrations in weanling pigs. Data are
mmoles/1 and represent least squares means from three
replicate trials with a total of 12 pigs per treatment.
Average SEM over all days = 0.71
T1 = control. T2 = high VFA treatment. T3 = low VFA
treatment.
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Figure 7: Effect of VFA inclusion in drinking water on
total ileal VFA concentrations in weanling pigs. Data are in
mmoles/1 and represent least squares means from three
replicate trials with a total of 12 pigs per treatment.
Average SEM over all days = 4.25
T1 = control. T2 = high VFA treatment. T3 = low VFA
treatment.
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Table 4

Effect of VFA inclusion in drinking water on ileal pH and
percentage of dry matter in weanling pigs'

Days pF Percentage of Dry
Postweaning Matter

tF T2 T3 tT T2 T3

0 6.67 6.83 6.51 5.18 3.99 3.65

3 7.16 6.86 6.99 2.11 2.99 1.97

7 7.17 7.08 7.20 4.17 4.46 3.03

10 7.03 7.02 6.71 4.24 3.57 3.70

14 6.94 7.21 7.16 6.87 5.54 8.07

—-g -gg

'Data represent least squares means from three replicate
trials with a total of 12 pigs per treatment.
^Day effects, P = .0001
"Tl = control. T2 = high VFA treatment. T3 = low VFA
treatment.

'^SEM = average standard error of the mean over all days
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Figure 8: Effect of VFA inclusion in drinking water on
stomach, duodenal, ileal, cecal, and spiral colon E. coli
concentrations in weanling pigs. Data represent least

squares means from three replicate trials with a total of 12
pigs per treatment.
Average SEM over all locations = 0.29
Tl=control, T2=high VFA, T3=low VFA
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and spiral colon than in the small intestine or stomach of

pigs for all treatments. Heal concentrations were higher

(P = .0001) than those found in the stomach or duodeniim for

all treatments.

A location effect (P = .0001) was observed for

lactobacilli concentrations, with concentrations increasing

from the duodenum to the ileiam and then increasing again

from the ileum to the cecum for all treatments (Figure 9).

No treatment effects were observed (P = .64) for

lactobacilli concentrations.

No treatment differences were detected(P = .35) for

streptococci concentrations throughout the GI tract (Figure

10) . A location effect was noted (P = .0001) with

concentrations increasing from the duodenum to the cecum,

and ileal concentrations being higher than those in the

duodenum. Cecal and spiral colon concentrations were greater

than those in the ileum.

Short-chain Fatty Acids

Volatile fatty acid concentrations from various GI

sites were not affected by treatment (Table 5). However, a

significant location effect was noted (P = .0001) with

acetate concentrations increasing from the duodenum to the
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Figure 9: Effect of VFA inclusion in drinking water on
stomach, duodenal, ileal, cecal, and spiral colon

lactobacilli concentrations in weanling pigs. Data represent

least squares means from three replicate trials with a total
of 12 pigs per treatment.
Average SEM over all locations = 0.56
Tl=control, T2=high VFA, T3=low VFA
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Figure 10: Effect of VFA inclusion in drinking water on
stomach, duodenal, ileal, cecal, and spiral colon

streptococci concentrations in weanling pigs. Data represent
least squares means from three replicate trials with a total
of 12 pigs per treatment.
Average SEM over all locations = 0.42

Tl=control, T2=high VFA, T3=low VFA
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Table 5

Effect of VFA inclusion in drinking water on
gastrointestinal VFA concentrations in weanling pigs."

Acetate" Propionate" Butyrate'' Total"

Loc" 111 JZ 12 11 T2 T3 T1 H 13 11 T2 12

STO 4.74 8.34 11.87 ND ND ND ND 0.37 ND 4.14 9.13 13.18

DUO 4.52 7.27 7.25 ND ND ND ND ND ND 5.42 7.91 8.31

IL 27.25 23.18 29.26 ND 0.34 ND 0.89 0.77 1.42 29.37 25.69 32.17

CE 69.68 60.59 71.46 28.28 25.91 31.74 14.18 12.14 10.15 116.1 101.4 115.8

COL 37.96 35.22 32.35 14.08 12.74 14.11 6.72 5.96 4.96 61.81 56.49 52.75

SEM® 6.02 4.96 1.70 8.92

®Data taken at day 17 postweaning are in mmoles/l and
represent least squares means from three replicate trials
with a total of 12 pigs per treatment
•"Location effect, P = .0001

"Loc = location

'^Tl = control. T2 = high level VFA treatment. T3 = low
level VFA'treatment.

®SEM = average standard error of the mean over all locations
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ileum and from the ileum to the cecum. Concentrations in

the spiral colon (P = .0001) were higher than the levels in

the ileum but lower than the levels found in the cecum.

Concentrations of propionate in the ceciam were significantly

higher (P = .0001) than at any other GI site; however,

spiral colon concentrations were higher (P = .0001) than

those in the stomach, duodenum, or ileum. Propionate levels

were not different (P > .11) for the stomach, duodeniam, and

ileum. Furthermore, there were no differences (P > .11) in

butyrate concentrations for the stomach, duodenum, or ileum.

A location effect (P = .0001) was observed with

concentrations increasing from the ileum to the ceciim, but a

decrease was noted from the cecum to the spiral colon.

Spiral colon concentrations of butyrate were higher (P =

.0001) than those in the stomach, duodenum, or ileum. In

addition, total VFA concentrations were not affected

(P = .53) by treatment; however, a location effect (P =

.0001) was noted with concentrations increasing from the

duodenum to the ileum and again from the ileum to the cecum.

Concentrations decreased (P = .0001) from the cecum to the

spiral colon, but concentrations in the spiral colon were

higher than those in the stomach, duodenum, or ileum. Cecal
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concentrations were the highest (P = .0001) among all sites

with levels approaching concentrations found in the rumen of

bovines.

pH and Dry Matter

Treatment had no effect on pH at the various GI sites

(Table 6). A location effect (P = ,0001) was observed with

pH increasing from the stomach to the duodenum.

Furthermore, pH was greater (P = .0001) in the spiral colon

than in the duodenum; however, duodenal, ileal, and cecal pH

were not different (P > .05), and spiral colon pH was not

different(P > .05) from the ileum or cecum. As expected, DM

content increased (P = .0001) from the duodenum to the

spiral colon, with DM of stomach content being similar to

that of the spiral colon.

51



Table 6

Effect of VFA inclusion in drinking water on

gastrointestinal pH and percentage of dry matter in
weanling pigs"

pH° Percentage of Dry
Matter''

Loo'' Tl' T2 T3 T1 T2 T3

STO 3.41 3.24 3.42 17.3 18.52 19.02

DUO 5.95 5.91 5.73 4.52 6.31 5.11

XL 6.20 6.97 5.86 9.74 9.47 8.56

CE 5.94 6.35 6.12 12.31 11.81 11.62

COL 6.36 6.61 6. 60 20.62 17.85 18.49

SEM^ 0.37 2.08

"Data represent least squares means from three replicate
trials with a total of 12 pigs per treatment.
''Location effect, P = .0001
"Loc = location

''TI = control. T2 = high VFA treatment. T3 = low VFA
treatment.

®SEM = average standard error of the mean over all locations
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5. DISCUSSION

Performance

The addition of VFA to drinking water of weanling pigs

had no significant effect on water intake, feed intake,

weight gain, or feed efficiency. These data are similar to

the findings of Kornegay et al.(1976), who reported no

beneficial effects from the addition of 1% citric acid to

the diets of 7-d-old weaned pigs. In addition, Falkowski

and Aherne (1984) reported that the inclusion of fumaric or

citric acid to the diets did not significantly affect daily

feed intake. In contrast to these findings, Kershaw et

al.(1966) and Cole et al.(1968) reported that drinking water

consisting of 0.8 to 1% lactic acid significantly improved

growth rate and feed efficiency. The tendency for feed

intake to be greater during the first week for T2 may be due

to an increase in gastric emptying and intestinal motility,

causing an increase in appetite. Malbert et al.(1994)

reported that the infusion of VFA into the ileum increased

gastric emptying and intestinal motility. The tendency for

increased water intake would be a direct response to higher

feed consumption. Similarities among intake following week

1 can possibly be explained by the adaptation of pigs to
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their respective diet.

Microflora

Cole et al. (1968) reported that drinking water

consisting of 0.8% lactic acid reduced the number of

hemolytic as well as total E. coli in the duodenum and

jejunxam of weanling pigs. In addition, Mathew et al.(1991)

found that in ileal cannulated pigs, the addition of 1%

propionic acid in the feed decreased E. coli concentrations.

In contrast to the previous findings, E. coli concentrations

in this study were not affected by the addition of VFA to

drinking water. The lack of response may be due to the

addition of lower concentrations of VFA to drinking water as

compared to the higher concentrations of organic acids used

in earlier studies. Furthermore, the typical postweaning

increase in total E. coli concentrations reported by Mathew

et al. (1996) was not observed. A decrease in total E. coli

concentrations by 3d postweaning, as observed in this study,

is similar to the observations of McAllister et al. (1979) .

These findings may be due in part to the environment in

which this study was conducted, with pigs having sole access

to feed and no contact with other animals. In a

conventional rearing system, as the one used by Mathew et
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al.(1996) disease can spread through pig to pig contact or

by contact with feces of other animals.

Minimal detection of hemolytic E. coll may have been

due in part to the absence of pig to pig or pig to feces

contact. However, because enterotoxigenic E. coll (ETEC)

serogroups characteristically adhere to the gut mucosa as a

prerequisite to virulence (Gaastra and De Graaf, 1982), an

increase in hemolytic numbers may not have been detected by

sampling of intestinal contents (Mathew et al., 1994). In

addition, the low detection of hemolytic E. coll could also

be due to poor colonization by the K88:H13 challenge

organism.

As in previous studies (Mathew et al., 1994; 1996),

significant postweaning decreases in ileal lactobacilli

concentrations by 3 days after weaning were observed. The

decrease in lactobacilli by 3 d postweaning coincides with

the significant increase in ileal pH also observed at that

time. These findings are in agreement with the observations

of Drassar and Barrow (1985) who reported that lactobacilli

thrive in acidic environments, but decrease as pH reaches

more basic levels. Furthermore, the increase in

lactobacilli concentrations by 7 d postweaning is in
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agreement with Mathew et al. (1994; 1996).

As with lactobacilli, streptococci concentrations were

observed to decrease by 3 d postweaning, followed by an

increase by 7 d postweaning. In contrast, Mathew et al.

(1996) reported that streptococci concentrations remained

relatively constant throughout the study until 21 d

postweaning, when concentrations increased approximately 10-

fold. However, similar to Mathew et al.(1994; 1996), an

increase in streptococci concentrations coincided with a

decrease in total E, coli. It is possible that streptococci

compete with E. coli for binding sites on the intestinal

mucosa and help to resist colonization, as reported with

lactobacilli (Blomberg et al., 1993).

Short-chain Fatty Acids

Changes in fermentation acids following weaning

indicate that major shifts are occurring in bacterial

populations and/or fermentative pathways. The main

objective of this study was to maintain ileal VFA

concentrations throughout the weaning transition. However,

ileal VFA concentrations were not affected by treatment,

with total VFA levels decreasing following weaning. These

shifts in VFA concentrations have been previously observed
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(Mathew et al., 1993; 1994; 1996). In agreement with Mathew

et al.(1993), concentrations of VFA were higher prior to

weaning compared to any other time during the study. These

findings may initially be due in part to decreased feed

intake associated with weaning, and later due to rapid

utilization of VFA by the growing pig. Acetate

concentrations decreased in all treatment groups from days 0

to 7 postweaning, with an increase following day 7.

Propionate concentrations decreased by day 3 postweaning,

with concentrations remaining constant through day 14

postweaning. These findings are similar to those reported

by Risley et al.(1991).

Barcroft et al.(1944) showed that some absorption of

VFA takes place in the stomach and the upper small

intestine. In addition, absorption appears to be mostly

passive and increases linearly with corresponding decreases

in pH or increases in concentration (Hollander et al.,

1986). Therefore, the lack of response to additional VFA in

the diet may be due in part to the extremely low pH of the

stomach and to an increase in VFA absorption. Furthermore,

predominant celluloytic species of bacteria are known to

utilize VFA as an energy source, thus possibly decreasing
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total VFA.

Heal pH

It has been speculated that supplementation with

organic acids may decrease intestinal pH; however, VFA

addition to drinking water in this study had no effect on

ileal pH, Burnell et al. (1988) and Risely et al. (1991)

noted similar results with the addition of citric and

fumaric acid. Additionally, pH was observed to increase by

day 3 postweaning and remained constant through day 14.

Smith and Jones (1963) and Mathew et al.(1994) also saw an

increase in intestinal pH following weaning. As demonstrated

in the current study, Mathew et al.(1994) postulated that

the increase in pH could be due to the initial fasting

period observed with many newly weaned pigs.

GASTROINTESTINAL SITES

Microflora

Increases in microflora concentrations from the stomach

to the hindgut, as observed in this study, are similar to

those observed in past research (Risely et al., 1992). One

possible explanation for these observations is the

differences in rates of passage between GI sites. Digesta

flow is more rapid in the stomach and upper GI tract as

58



compared to more distal sites, thus flushing bacteria to the

lower GI tract. In addition, slower flow rates, as found in

the hindgut, allow more time for digestion, which results in

bacterial proliferation. Furthermore, increased microflora

concentrations may be attributed to higher pH which is

typically found in the hindgut.

Short-chain Fatty Acids

The observed increases in VFA concentrations from the

stomach to the cecum follow similar patterns to those

reported for microflora. Increases in total VFA

concentrations from the duodenum to the ileum and from the

ileum to the cecum follow a similar pattern as previously

reported (Risely et al., 1992). Shorter retention times in

the stomach and upper GI tract may not allow sufficient time

for microbial degradation of fermentable substrates, thus

lowering the amount of VFA produced in those areas. Whereas

in the hindgut, longer retention times allow for higher VFA

production rates.

Unexpectedly, treatment had no effect on VFA

concentrations at any of the sampled locations. However,

due to rapid absorption and metabolism of VFA by epithelial

tissue, the additional VFA may have been utilized by stomach
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epithelium preventing the escape to adjacent locations.

Volatile fatty acids not metabolized by epithelial tissue

enters the portal vein, thus monitoring of portal vein VFA

concentrations at the stomach, may have aided in determining

where the additional VFA is being utilized.

Gastrointestinal pH

Typical patterns for pH were observed, with treatment

having no effect. The observed increases in pH from the

stomach to the spiral colon followed similar patterns to

that of microflora as well as VFA. Previous work with

organic acids indicated similar results with supplementation

having no effect on intestinal pH (Burnell et al., 1988;

Risely et al., 1991; Risely et al., 1992).
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6. IMPLICATIONS

The addition of VFA to drinking water of weanling pigs

had no significant effect on microflora, VFA, pH, or

performance. The additional VFA may have provided

supplemental energy for gastrointestinal maintenance and

growth as well as energy for whole body function; however,

specific benefits with regard to gastrointestinal health of

young pigs were not observed. Based on these data, addition

of VFA to weanling pig diets is not recommended for use in a

production environment.
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