

September 2022 | Vol. 3 | No. 2 p-ISSN: 2723-0325

Extension Fields Which Are Galois Extensions

Novita Dahoklory^{1*}, Henry W. M. Patty²

^{1,2} Algebra and Analysis Division, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Jl. Ir. M. Putuhena, Ambon. Indonesia Email: <u>novitadahoklory93@gmail.com</u>, <u>henrywmpatty81@gmail.com</u>

Manuscript submitted: October 2022;Accepted for publication: November 2022.

Abstract: Let K/F be an extension field where [K:F] is the dimension of K as a vector space over F. Let Aut(K/F) be the automorphism group of K/F where its order is denoted by |Aut(K/F)|. In this research, we will show that $|Aut(K/F)| \le [K:F]$. Moreover, K/F is called a Galois extension if the equality holds that is |Aut(K/F)| = [K:F]. We will also discuss about the fixed field of K/F. Furthermore, we will give a necessary and sufficient condition for an extension field K/F to be a Galois extension using the property of its fixed field.

2010 Mathematical Subject Classification : 11R32, 13B05 **Keywords:** Extension field, automorphism group, Galois extension, fixed field

1. Introduction

Let *F* and *K* be fields where $F \subseteq K$. The field *K* is called an extension field of *F* and is denoted by K/F. Moreover, we know that *K* can be viewed as a vector space over *F*. Thus, *K* have a basis where the dimension of *K* is written by [K:F]. Furthermore, we form a set of all automorphisms of *K* and we denote it by Aut(K/F) which is a group under the operation of composition in Aut(K/F). The group Aut(K/F) is called automorphism group of K/F. The number of elements in Aut(K/F) is called order of Aut(K/F) and is written as |Aut(K/F)|.

The relation between the dimension of K/F and the order of Aut(K/F) ([K:F] and |Aut(K/F)|) was discussed in several researches. In [5], the author shows that $|Aut(K/F)| \le [K:F]$. However, the equality between Aut(K/F) and [K:F] does not always hold. For example, the extension field $Q(\sqrt[3]{2})/Q$ has $Aut(Q(\sqrt[3]{2})/Q) = \{id\}$ and the basis of $(\sqrt[3]{2})/Q$ is $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ so that $|Aut(K/F)| \ne [K:F]$. Then, it motivates the definition of a Galois extension which is an extension field K/F where |Aut(K/F)| = [K:F].

Furthermore, let K/F be an extension field with its automorphism group G = Aut(K/F). Then, we form a set in K defined by

 $K^G = \{x \in K | \sigma(x) = x \text{ for every } \sigma \in G \}.$

In other words, K^G is the set of all elements in K which are mapped into itself by every $\sigma \in G$. The set K^G is a subfield in K where $F \subseteq K^G$ and is called fixed field of K.

Throughout this research, we will give some properties of an extension field and its automorphisms group. Next, we will also give a necessary and sufficient condition for K/F to be a Galois extension using the properties of its fixed field.

We refer to [1, 2, 5, 6] for some basic theories including groups in particular automorphism group and vector spaces. For extension fields and its properties also Galois extension fields, this research is based on [3,5].

2. SOME RESULTS

2.1. Extension Field and Its Automorphism Group

In this part, we will discuss about an extension field K/F with its properties related to its role as a vector space over F. Next, we will also explain the automorphism group of an extension field K/F and give some examples on finding all automorphisms of K/F. Furthermore, we will also discuss some properties of the automorphism group of K/F.

Definition 1. [3] Let *F* and *K* be fields where $F \subseteq K$. The field *K* is called an extension field of *F* (denoted by K/F).

Example 2

i. \mathbb{R} is an extension field of \mathbb{Q} .

- ii. $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Q}.\}$ is an extension field of \mathbb{Q} .
- **iii.** $\mathbb{Q}(\sqrt{2},\sqrt{3}) = (\mathbb{Q}(\sqrt{2})(\sqrt{3}) = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}|a, b, c, d \in \mathbb{Q}\}\$ is an extension field of \mathbb{Q} .

Let K/F is an extension field. We know that K can be viewed as a vector space over F. Thus, K has a basis B over F where the number of elements in B is called dimension of K denoted by [K:F]. Particularly, if $[K:F] < \infty$ then K is called **a finite extension of F** [3]. Next, we will give an example of the dimension of a finite extension field.

Example 3

Given \mathbb{Q} with its extension $\mathbb{Q}(\sqrt{2})$. Every $x \in \mathbb{Q}(\sqrt{2})$ can be expressed by

$$c = a + b\sqrt{2}.$$

Therefore, *x* can be written as a linear combination of $\{1, \sqrt{2}\}$. It is clear that $\{1, \sqrt{2}\}$ is linearly independent over \mathbb{Q} . So, $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} . Hence, $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2$.

Suppose K/F is an extension field and E is a subfield in K containing F i.e. $F \subseteq E \subseteq K$. Thus, we obtain extension fields K/F and E/F. We will give a property of [K:F] and [E:F] in the following Lemma.

Lemma 4. [3] If K, E, F are fields where $F \subseteq E \subseteq K$ then [K:F] = [K:E]. [E:F]. **Proof.** Let [K:E] = m and [E:F] = n. We will show that [K:F] = [K:E]. [E:F] = mn. Suppose that $\{v_1, v_2, ..., v_m\}$ and $\{w_1, w_2, ..., w_n\}$ be basis for K/E and E/F, respectively. Take any $x \in K$. Since K is a vector space over E, x can be expressed as

 $x = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m.$ for $\alpha_1, \alpha_2, \dots, \alpha_m \in E$. Note that *E* is a vector space over *F*, we obtain

$$\alpha_i = \beta_{i1} w_1 + \beta_{i2} w_2 + \dots + \beta_{in} w_n$$

for i = 1, 2, ..., m. Then,

 $x = (\beta_{11}w_1 + \beta_{12}w_2 + \dots + \beta_{1n}w_n)v_1 + \dots + (\beta_{m1}w_1 + \beta_{m2}w_2 + \dots + \beta_{mn}w_n)v_m$

 $= \beta_{11}v_1w_1 + \beta_{12}v_1w_2 + \dots + \beta_{1n}v_1w_n + \dots + \beta_{m1}v_mw_1 + \beta_{m2}v_mw_2 + \dots + \beta_{mn}v_mw_n.$ Thus, *K* is generated by $B = \{v_iw_j | i = 1, 2, ..., m, j = 1, 2, ..., n\}$. Now, we will show that *B* is linearly independent. Suppose that

$$c_{11}v_1w_1 + c_{12}v_1w_2 + \dots + c_{1n}v_2w_n + \dots + c_{m1}v_mw_1 + c_{m2}v_mw_2 + \dots + c_{mn}v_mw_n = 0$$

So,

 $(c_{11}w_1 + c_{12}w_2 + \dots + c_{1n}w_n)v_1 + \dots + (c_{m1}w_1 + c_{m2}w_2 + \dots + c_{mn}w_n)v_m = 0.$

Since $\{v_1, v_2, \dots, v_m\}$ is linearly independent, we obtain $c_{i1}w_1 + c_{i2}w_2 + \dots + c_{in}w_n = 0$ for $i = 1, 2, \dots, m$. Also, since $\{w_1, w_2, \dots, w_n\}$ is linearly independent, it means $c_{i1} = c_{i2} = \dots = c_{in} = 0$. Thus, $c_{ij} = 0$ for $i = 1, 2, \dots, m$.

and j = 1, 2, ..., n. We have *B* is a basis of *K* over *F*. Hence, $B = \{v_i w_j | i = 1, 2, ..., m, j = 1, 2, ..., n\}$ and [K: F] = mn.

Furthermore, for every extension field K/F, we form the set of all automorphism of K which is defined by $Aut(K/F) = \{\sigma: K \to K \text{ automorphism } | \sigma(x) = x \text{, for all } x \in F \}.$

Aut(K/F) is a group under the operation of composition. We will give some examples of Aut(K/F) from an extension field K/F.

Example 5

Suppose an extension field $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ with its basis $B = \{1, \sqrt{2}\}$. It is known that each automorphism can be defined by a function

$$\rho: B \to \mathbb{Q}(\sqrt{2}).$$

The function will then be extended to $\rho': \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$. Because σ is an element in $Aut(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$, we have $\sigma(1) = 1$ and $\sigma(a) = \sigma(1, a) = a$. $\sigma(1) = a$. 1 = a for every $a \in \mathbb{Q}$. Note that,

$$0 = \sigma(1) = \sigma((\sqrt{2})^2 - 2) = \sigma(\sqrt{2})^2 - 2.$$

So, $\sigma(\sqrt{2})^2 = 2$ and $\sigma(\sqrt{2}) = \sqrt{2}$ or $-\sqrt{2}$. So, we get two automorphisms of $\mathbb{Q}(\sqrt{2})$ which is defined by $\sigma_1: B \to \mathbb{Q}(\sqrt{2})$

$$\begin{array}{c}
0_1 \cdot B \to \mathbb{Q}(\sqrt{2} \\
1 \mapsto 1 \\
\sqrt{2} \mapsto \sqrt{2}
\end{array}$$

and

$$\sigma_2 \colon B \to \mathbb{Q}(\sqrt{2})$$
$$1 \mapsto 1$$
$$\sqrt{2} \mapsto -\sqrt{2}.$$

Then, those two functions are extended to

$$\sigma_1': \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$

$$a.1 + b.\sqrt{2} \mapsto a.\sigma_1(1) + b.\sigma_1(\sqrt{2})$$

and

$$\begin{aligned} \sigma_2 \colon \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2}) \\ a.1 + b.\sqrt{2} \mapsto a.\sigma_1(1) + b.\sigma_1(-\sqrt{2}) \\ \text{Therefore, } Aut(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = \{\sigma_1', \sigma_2'\} = \{id, \sigma_2\}. \end{aligned}$$

Example 6

Given an extension field $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ where

$$\mathbb{Q}(\sqrt[3]{2}) = \{a. 1 + b. \sqrt[3]{2} + c. \sqrt[3]{4}\}.$$

So, $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is a basis of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} . We will use the same way from **Example 5** to find all automorphisms of $\mathbb{Q}(\sqrt[3]{2})$. We construct all automorphisms in $\mathbb{Q}(\sqrt[3]{2})$ from bijective function which is defined by

$$\rho: B \to \mathbb{Q}(\sqrt[3]{2}).$$

We obtain $\sigma(1) = 1$ and $\sigma(a) = \sigma(1, a) = a$. $\sigma(1) = a$. $1 = a$ for every $a \in Q$. So,
 $0 = \sigma(0) = \sigma((\sqrt[3]{2})^3 - 2) = \sigma((\sqrt[3]{2})^3 - \sigma(2) = \sigma(\sqrt[3]{2})^3 - 2$

So,

$$\sigma\left(\sqrt[3]{2}\right)^3 = 2.$$

We know that the roots of $x^3 - 2 = 0$ are $\sqrt[3]{2} e^{\frac{1}{3} \cdot 2\pi i \sqrt[3]{2}} \sqrt[3]{2} e^{\frac{2}{3} \cdot 2\pi i}$, and $\sqrt[3]{2}$. Note that $\sqrt[3]{2} e^{\frac{1}{3} \cdot 2\pi i \sqrt[3]{2}} \sqrt[3]{2} e^{\frac{2}{3} \cdot 2\pi i} \notin \mathbb{Q}(\sqrt[3]{2})$, so $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}$. Using the same way, we will also only have $\sigma(\sqrt[3]{4}) = \sqrt[3]{4}$. Hence, we can only form one automorphism defined by

$$\sigma_1 \colon B \to \mathbb{Q}(\sqrt[3]{2})$$
$$1 \mapsto 1$$
$$\sqrt[3]{2} \mapsto \sqrt[3]{2}$$
$$\sqrt[3]{4} \mapsto \sqrt[3]{4}$$

Then, we extend σ_1 to σ_1' defined by

$$\sigma_1': \mathbb{Q}(\sqrt[3]{2}) \to \mathbb{Q}(\sqrt[3]{2})$$

$$a. 1 + b. \sqrt[3]{2} + c. \sqrt[3]{4} \mapsto a. \sigma_1(1) + b. \sigma_1(\sqrt[3]{2}) + c. \sigma_1(\sqrt[3]{4})$$

$$a. 1 + b. \sqrt[3]{2} + c. \sqrt[3]{4} \mapsto a. 1 + b. \sqrt[3]{2} c + \sqrt[3]{4}.$$

Thus, σ_1' is the identity function of $\mathbb{Q}(\sqrt[3]{2})$. In conclusion, we obtain $Aut(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{\sigma_1'\} = \{id\}$.

Next, we will give a property of Aut(K/F) in the following lemma.

Proposition 7. [5] If $\{\sigma_1, \sigma_2, ..., \sigma_n\}$ is the set of automorphisms of *K* then $\{\sigma_1, \sigma_2, ..., \sigma_n\}$ is linearly independent (i.e. if $\alpha_1 \sigma_1 + \alpha_2 \sigma_2 + \cdots + \alpha_n \sigma_n = 0$ then $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$).

Proof.

Suppose that $\{\sigma_1, \sigma_2, ..., \sigma_n\}$ is the set of automorphisms of *K*. We will prove that $\{\sigma_1, \sigma_2, ..., \sigma_n\}$ is linearly independent using induction method on *k* elements of the given set.

- i. For k = 1. We take any σ_i for i = 1, 2, ..., n where $\alpha_i \sigma_i = 0$. It means $(\alpha_1 \sigma_1)(x) = \alpha_1(\sigma_1(x)) = 0$. Note that K is a field and σ_i is an automorphism, then we have $\sigma_1(x) \neq 0$ for every nonzero $x \in K$. Therefore, $\alpha_i = 0$.
- ii. It holds for *k* where $\{\sigma_1, \sigma_2, ..., \sigma_k\}$ is linearly independent.
- iii. We will prove that also holds for k + 1. Suppose that

$$\alpha_1 \sigma_1 + \alpha_2 \sigma_2 + \dots + \alpha_{k+1} \sigma_{k+1} = 0$$

where $\alpha_1, \alpha_2, \dots, \alpha_{k+1} \in F$. So, for every $x \in K$
 $(\alpha_1 \sigma_1 + \alpha_2 \sigma_2 + \dots + \alpha_{k+1} \sigma_{k+1})(x) = 0.$

Thus,

$$\alpha_1 \sigma_1(x) + \alpha_2 \sigma_2(x) + \dots + \alpha_{k+1} \sigma_{k+1}(x) = 0.$$
 (i)

Because $\{\sigma_1, \sigma_2, ..., \sigma_n\}$ are distinct, there is a nonzero $y \in K$ such that $\sigma_1(y) \neq \sigma_2(y)$. Using equation (i), we obtain

$$\Leftrightarrow \alpha_1 \sigma_1(xy) + \alpha_2 \sigma_2(xy) + \dots + \alpha_{k+1} \sigma_{k+1}(xy) = 0 \Leftrightarrow \alpha_1 \sigma_1(x) \sigma_1(y) + \alpha_2 \sigma_2(x) \sigma_2(y) + \dots + \alpha_{k+1} \sigma_{k+1}(x) \sigma_{k+1}(y) = 0$$
(ii)

From (i), we obtain

$$\alpha_1 \sigma_1(x) = -\alpha_2 \sigma_2(x) - \dots - \alpha_{k+1} \sigma_{k+1}(x)$$
(iii)

Then, we substitute (iii) to (ii)

$$\Leftrightarrow (-\alpha_{2}\sigma_{2}(x) - \alpha_{3}\sigma_{3}(x) - \dots - \alpha_{k+1}\sigma_{k+1}(x) \)\sigma_{1}(y) + \alpha_{2}\sigma_{2}(x)\sigma_{2}(y) + \dots + \alpha_{k+1}\sigma_{k+1}(x)\sigma_{k+1}(y) = 0 \Leftrightarrow -\alpha_{2}\sigma_{2}(x)\sigma_{1}(y) - \alpha_{3}\sigma_{3}(x)\sigma_{1}(y) \dots - \alpha_{k+1}\sigma_{k+1}(x)\sigma_{1}(y) + \alpha_{2}\sigma_{2}(x)\sigma_{2}(y) + \dots + \alpha_{k+1}\sigma_{k+1}(x)\sigma_{k+1}(y) = 0 \Leftrightarrow -\alpha_{2}\sigma_{2}(x)\sigma_{1}(y) - \alpha_{3}\sigma_{3}(x)\sigma_{1}(y) - \dots - \alpha_{k+1}\sigma_{k+1}(x)\sigma_{1}(y) + \alpha_{2}\sigma_{2}(x)\sigma_{2}(y) + \alpha_{3}\sigma_{3}(x)\sigma_{3}(y) + \dots + \alpha_{k+1}\sigma_{k+1}(x)\sigma_{k+1}(y) = 0 \Leftrightarrow \alpha_{2}\sigma_{2}(x)(\sigma_{2}(y) - \sigma_{1}(y)) + \alpha_{3}\sigma_{3}(x)(\sigma_{3}(y) - \sigma_{1}(y)) \dots + \alpha_{k+1}\sigma_{k+1}(x)(\sigma_{k+1}(y) - \sigma_{1}(y)) = 0 \Leftrightarrow \alpha_{2}(\sigma_{2}(y) - \sigma_{1}(y))\sigma_{2}(x) + \alpha_{3}(\sigma_{3}(y) - \sigma_{1}(y))\sigma_{3}(x) + \dots + \alpha_{k+1}(\sigma_{k+1}(y) - \sigma_{1}(y))\sigma_{k+1}(x) = 0 \Leftrightarrow (\alpha_{2}(\sigma_{2}(y) - \sigma_{1}(y))\sigma_{2} + \alpha_{3}(\sigma_{3}(y) - \sigma_{1}(y))\sigma_{3} \dots + \alpha_{k+1}(\sigma_{k+1}(y) - \sigma_{1}(y))\sigma_{k+1}(x) = 0$$

Using the assumption for *k*, we obtain $\alpha_2(\sigma_2(y) - \sigma_1(y)) = \alpha_2(\sigma_2(y) - \sigma_1(y)) = \dots = \alpha_{k+1}(\sigma_{k+1}(y) - \sigma_1(y)) = 0.$

Note that $\alpha_2(\sigma_2(y) - \sigma_1(y)) = 0$ and $(y) \neq \sigma_1(y)$, so we have $\alpha_2 = 0$. Moreover, using (i) and $\alpha_2 = 0$, we also have

$$\Leftrightarrow \alpha_1 \sigma_1(x) + \alpha_3 \sigma_3(x) \dots + \alpha_{k+1} \sigma_{k+1}(x) = 0$$

$$\Leftrightarrow (\alpha_1 \sigma_1 + \alpha_3 \sigma_3 + \dots + \alpha_{k+1} \sigma_{k+1})(x) = 0.$$

Therefore, $\alpha_1 \sigma_1 + \alpha_3 \sigma_3 + \dots + \alpha_{k+1} \sigma_{k+1} = 0$. Again, using the assumption for n = k, it implies that that $\alpha_1 = \alpha_3 = \dots = \alpha_{k+1} = 0$. Hence, $\{\sigma_1, \sigma_2, \dots, \sigma_n\}$ is linearly independent over F.

Moreover, we will give the relation between |Aut(K/F)| and [K:F] in the proposition below.

Proposition 8 [5]

If *K*/*F* is an extension field then $|Aut(K/F)| \leq [K:F]$.

Proof

Write G = Aut(K/F). Suppose $G = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$ so that |G| = n. Let [K:F] = n and the basis of K/F is B = n $\{v_1, v_2, \dots, v_d\}$ for some $d \in N$. We will prove that $n \leq d$ using a method of contradiction. Suppose n > d. We form a linear equation system i.e.

 $\sigma_1(v_d)x_1 + \sigma_2(v_d)x_2 + \dots + \sigma_n(v_d)x_n = 0.$ Note that there are more variables than the number of equations. It implies there is a nonzero solution, $(x_1 x_2 : x_n) = (c_1 c_2 : c_n)$ where $c_i \neq 0$ for some $i \in \{1, 2, ..., n\}$. Let $w \in K/F$. It means w can be expressed as

$$w = a_1v_1 + a_2v_2 + \dots + a_dv_d$$

where $a_1, a_2, \dots, a_d \in F$. Then, we multiply a_i to the system of equations. Thus,
 $a_1\sigma_1(v_1)x_1 + a_1\sigma_2(v_1)x_2 + \dots + a_1\sigma_n(v_1)x_n = 0$
 $a_2\sigma_1(v_2)x_1 + a_2\sigma_2(v_2)x_2 + \dots + a_2\sigma_n(v_2)x_n = 0$
 \vdots
 $a_d\sigma_1(v_d)x_1 + a_d\sigma_2(v_d)x_2 + \dots + a_d\sigma_n(v_d)x_n = 0.$
Therefore,
 $(a_1\sigma_1(v_1) + a_2\sigma_1(v_2) + \dots + a_d\sigma_1(v_d))c_1 + (a_1\sigma_2(v_1) + a_2\sigma_2(v_2) + \dots + a_d\sigma_2(v_d))c_1$

$$(a_1\sigma_1(v_1) + a_2\sigma_1(v_2) + \dots + a_d\sigma_1(v_d))c_1 + (a_1\sigma_2(v_1) + a_2\sigma_2(v_2) + \dots + a_d\sigma_2(v_d))c_2 + \dots + (a_1\sigma_n(v_1) + a_2\sigma_n(v_2) + \dots + a_d\sigma_n(v_d))c_n = 0$$

and

$$\sigma_1(a_1v_1 + a_2v_2 + \dots + a_dv_d).c_1 + \sigma_2(a_1v_1 + a_2v_2 + \dots + a_dv_d).c_2 + \dots + \sigma_n(a_1v_1 + a_2v_2 + \dots + a_dv_d).c_n = 0.$$

So, $c_1 \cdot \sigma_1(w) + c_2 \cdot \sigma_2(w) + \dots + c_n \sigma_n(w) = 0$ and $(c_1 \sigma_1 + c_1 \sigma_2 + \dots + c_n \sigma_n)(w) = 0$. It holds for every $w \in C_1$ *K*/*F*. It implies that $\alpha_1 \sigma_1 + \alpha_2 \sigma_2 + \cdots + \alpha_n \sigma_d = 0$. Note that there is $c_i \neq 0$ for some i = 1, 2, ..., n. Hence, $\{\sigma_1, \sigma_2, ..., \sigma_n\}$ is linearly dependent. It implies contradiction with **Proposition 7**. Hence, $n \leq d$ that is $|G| \leq d$ [K:F].

Based on **Proposition 8**, we have $|Aut(K/F)| \leq [K:F]$. However, equality does not always hold for all extension fields. We will give an example to describe it.

Example 9

Given an extension field $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$. From Example 4, we know that $\mathbb{Q}(\sqrt[3]{2}) = \{a, 1 + b, \sqrt[3]{2} + c, \sqrt[3]{4}\}$ So, $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is a basis of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} . We also have $Aut(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{id\}$. Thus, $[\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}] = 3$ and $|Aut(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})| = 1.$

Based on the example above, it then motivates the definition of Galois extension. We will give the definition of Galois extension on the following definition.

Definition 10. [5] Let K/F be a finite extension field. K is called **Galois extension over** F if |Aut(K/F)| =[K:F].

It's common to write the automorphism Aut(K/F) as Gal(K/F) when K is a Galois extension. Next, we will give an example of a Galois extension and a non-Galois extension in the following example.

Example 11

i. Using Example 5, we have $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is a Galois extension. Because the basis of $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is $\{1,\sqrt{2}\}$. We obtain $Aut(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = \{id, \sigma_2\}$. Thus, $|Aut(\mathbb{Q}(\sqrt{2})/\mathbb{Q})| = [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2$. Hence, $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is a Galois extension field over \mathbb{Q} .

ii. Based on Example 6, we know that $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not a Galois extension because $Aut(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{id\}$ and the basis of $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is $\{1, \sqrt[3]{2}\}$. So, $|Aut(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})| \neq [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 2$.

2.2. Fixed Field of An Extension Field

In this part, we will discuss about fixed field of an extension field K/F. Then, we give a necessary and sufficient condition for an extension field to be a Galois extension using the property of fixed of K/F.

Let *K*/*F* be an extension field and G = Aut(K/F). We form a subset of *K* defined by $K^G = \{x \in K | \sigma(x) = x, \forall \sigma \in G\}.$

Note that $\forall a, b \in K^G$ dan $\sigma \in G$, we obtain

$$\sigma(a-b) = \sigma(a) - \sigma(b) = a - b$$

and

 $\sigma(ab^{-1}) = \sigma(a)\sigma(b^{-1}) = \sigma(a)(\sigma(b))^{-1} = ab^{-1}.$

Therefore, K^G is a subfield in K and is called **fixed field of** K/F [5].

Example 12

i. Using Example 5, we have $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$. We obtain $G = Aut(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = \{id, \sigma_2'\}$ where

$$id: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$
$$a. 1 + b.\sqrt{2} \mapsto a. \sigma_1(1) + b. \sigma_1(\sqrt{2})$$

and

$$\sigma_2': \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$$

a. 1 + b. $\sqrt{2} \mapsto a. \sigma_1(1) + b. \sigma_1(-\sqrt{2}).$

Thus, id(a, 1) = a and $\sigma'_2(a, 1) = a$ where $a \in \mathbb{Q}$. Hence, $Q(\sqrt{2})^G = \mathbb{Q}$.

ii. Based on Example 6, $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is an extension field with its automorphism group $G = Aut(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{id\}$. Note that for every $x \in \mathbb{Q}(\sqrt[3]{2})$, we obtain id(x) = x. Therefore, $\mathbb{Q}(\sqrt[3]{2})^G = \mathbb{Q}(\sqrt[3]{2})$.

Theorem 13. [5] Let K/F be an extension field where $[K:F] < \infty$. If $K^G = F$ then [K:F] = |Aut(K/F)|. **Proof.** Let [K:F] = d and |Aut(K/F)| = n. Based on **Proposition 8**, we have $d \ge n$. Next, we will prove that $d \le n$ using a method of contradiction.

Suppose d > n. Thus, there exist n + 1 elements $v_1, v_2, ..., v_{n+1}$ which are linearly independent over F. Then, we construct the following system of the equations

$$\sigma_1(v_1)x_1 + \sigma_1(v_2)x_2 + \dots + \sigma_1(v_{n+1})x_{n+1} = 0$$

$$\sigma_2(v_1)x_1 + \sigma_2(v_2)x_2 + \dots + \sigma_2(v_{n+1})x_{n+1} = 0$$

$$\vdots$$

 $\sigma_n(v_1)x_1 + \sigma_2(v_2)x_2 + \dots + \sigma_n(v_{n+1})x_{n+1} = 0.$ Note that there are more variables than the number of equations. It implies there is a non-trivial solution, $(x_1 x_2 \vdots x_{n+1}) = (\alpha_1 \alpha_2 \vdots \alpha_{n+1})$ where $\alpha_i \neq 0$ for some $i \in \{1, 2, \dots, n+1\}$. Among all non-trivial solutions, we choose r as the least number of non-zero elements. Moreover, $r \neq 1$ because $\sigma_1(v_1)\alpha_1 = 0$ implies $\sigma_1(v_1) = 0$ and $v_1 = 0$.

i. We will prove that there exists a non-trivial solutions where α_i are in *F* for any $i \in \{1, 2, ..., n + 1\}$.

Suppose $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_r \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ is a non-trivial solution with *r* non-zero elements where $\alpha_1, \alpha_2, ..., \alpha_r \neq 0$. We obtain

a new non-trivial solution by multiplying the given solution with $\frac{1}{\alpha_r}$ which is $\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_r \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_1/\alpha_r \\ \alpha_2/\alpha_r \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$. Thus, $\beta_1\sigma_i(v_1) + \beta_2\sigma_i(v_2) + \dots + 1$. $\sigma_i(v_{n+1}) = 0$ (*)

For i = 1, 2, ..., n. Now, we will show that β_i are in F for any $i \in \{1, 2, ..., n + 1\}$ using method of contradiction. Suppose there exists $\beta_i \notin F$, say β_1 . We know that $F = K^G$ so that β_1 is not an element of the fixed field. In other words, there exists $\sigma_k \in G$ where $\sigma_k(\beta_1) \neq \beta_1$. So, $\sigma_k(\beta_1) - \beta_1 \neq 0$. Since G is a group, it implies $\sigma_k G = G$. It means for any $\sigma_i \in G$, we obtain $\sigma_i = \sigma_k \sigma_j$ for j = 1, 2, ..., n. Applying σ_k to the expressions of (*)

$$\Leftrightarrow \sigma_k(\beta_1\sigma_j(v_1) + \beta_2\sigma_j(v_2) + \dots + 1.\sigma_j(v_r)) = 0 \Leftrightarrow \sigma_k(\beta_1).\sigma_k\sigma_j(v_1) + \sigma_k(\beta_2).\sigma_k\sigma_j(v_2) + \dots + \sigma_k\sigma_j(v_r) = 0 \text{for } j = 1,2,\dots,n \text{ so that from } \sigma_i = \sigma_k\sigma_j. \text{ We obtain } \sigma_k(\beta_1).\sigma_i(v_1) + \sigma_k(\beta_2).\sigma_i(v_2) + \dots + \sigma_i(v_r) = 0.$$
 (**)

Subtracting (*) and (**), we have

 $(\beta_1 - \sigma_k(\beta_1)\sigma_i(v_1) + (\beta_2 - \sigma_k(\beta_2)\sigma_i(v_2) + \dots + (\beta_{r-1} - \sigma_k(\beta_{r-1})\sigma_i(v_{r-1}) + 0 = 0)$ which is non-trivial solution because $\sigma_k(\beta_1) \neq \beta_1$ and is having r - 1 non-zeo elements, contrary to

the choice of *r* as the minimal number. Hence, $\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_r \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ is a non-trivial where all $\beta_i \in F$ for any i = 0

 $1,2,\ldots,n.$

ii. Using (i), we obtain a nonzero solution with all elements are in *F*. So, using the first equation in the system, we obtain

$$\Leftrightarrow \sigma_1(v_1)\beta_1 + \sigma_1(v_2)\beta_2 + \dots + \sigma_1(v_r)\beta_r = 0$$

$$\Leftrightarrow \sigma_1(\beta_1v_1 + \beta_2v_2 + \dots + \beta_rv_r) = 0.$$

Because σ_1 is an automorphism, we obtain $\beta_1 v_1 + \beta_2 v_2 + \dots + \beta_r v_r = 0$ where $\beta_1, \beta_2, \dots, \beta_r$ are nonzero elements in *K*. It is contrary to v_1, v_2, \dots, v_{n+1} which are linearly independent over *F*.

Thus, we have $d \le n$. Hence, d = n i.e. [K:F] = |Aut(K/F)|.

Corollary 14. [5] Let K/F be an extension field where $[K:F] < \infty$. *K* is a Galois extension over *F* if and only if $K^G = F$.

Proof

- (⇒) We have *K* is a Galois extension over *F*. It means [K:F] = |Aut(K/F)|. We will show that $K^G = F$. We know that K^G is a subfield of *K* and $F \subseteq K^G \subseteq K$. Based on Lemma 4 and Theorem 13, we obtain $|Aut(K/F)| = [K:K^G] = [K:F]/[K^G:F]$. Because [K:F] = |Aut(K/F)|. It implies $[K^G:F] = 1$. Hence, $K^G = F$.
- (⇐) We know that $K^G = F$. Using Theorem 13, we have [K:F] = |Aut(K/F)|. Thus, K is a Galois extension over F.

3. Conclusion

Let K/F be an extension field where $[K:F] < \infty$ and G = Aut(K/F). K is a Galois extension over F if and only if its fixed is F that is $K^G = F$.

92 Novita Dahoklory & Henry W. M. Patty | Extension Fields Which ...

References

- [1] Dummit. (1999). Abstract Algebra Dummit and Foote.pdf.
- [2] Khanna. (2000). Vijay K. Khanna, S.K. Bhamri A Course in Abstract Algebra-Vikas (2013).pdf.
- [3] Lidl, R., & Niederreiter, H. (1986). Introduction to finite fields and their applications. Cambridge: Cambridge University Press.
- [4] Malik, D. S., & Mordeson, J. N. (2007). MTH 581-582 Introduction to Abstract Algebra. America, February.
- [5] Morandi, P. (1999). Fields and Galois Theory. New York: Springer.
- [6] Roman, S. (2005). Advanced Linear Algebra. New York: Springer.