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Abstract: Let K/F be an extension field where [K: F] is the dimension of K as a vector space over F. Let
Aut(K/F) be the automorphism group of K/F where its order is denoted by |Aut(K/F) |. In this research,
we will show that [Aut(K/F) | < [K: F]. Moreover, K /F is called a Galois extension if the equality holds that
is |Aut(K/F) | = [K:F]. We will also discuss about the fixed field of K/F. Furthermore, we will give a
necessary and sufficient condition for an extension field K/F to be a Galois extension using the property of
its fixed field.
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1. Introduction

Let F and K be fields where F € K. The field K is called an extension field of F and is denoted by K /F.
Moreover, we know that K can be viewed as a vector space over F. Thus, K have a basis where the dimension
of K is written by [K: F]. Furthermore, we form a set of all automorphisms of K and we denote it by Aut(K/F)
which is a group under the operation of composition in Aut(K/F). The group Aut(K/F) is called
automorphism group of K/F. The number of elements in Aut(K /F) is called order of Aut(K/F) and is written
as |Aut(K/F) |.

The relation between the dimension of K/F and the order of Aut(K/F) ([K: F] and |Aut(K/F) |) was
discussed in several researches. In [5], the author shows that |Aut(K/F) | < [K: F]. However, the equality
between Aut(K/F) and [K:F] does not always hold. For example, the extension field Q(W)/Q has
Aut(Q(¥2)/Q) = {id} and the basis of (¥2)/Q is {1, /2, ¥4} so that |Aut(K/F) | # [K: F]. Then, it motivates
the definition of a Galois extension which is an extension field K /F where |Aut(K/F) | = [K: F].

Furthermore, let K /F be an extension field with its automorphism group G = Aut(K/F). Then, we form
a setin K defined by

K¢ ={x€K|o(x) =x foreveryo € G }.
In other words, K¢ is the set of all elements in K which are mapped into itself by every ¢ € G. The set K is a
subfield in K where F € K¢ and is called fixed field of K.
Throughout this research, we will give some properties of an extension field and its automorphisms
group. Next, we will also give a necessary and sufficient condition for K/F to be a Galois extension using the
properties of its fixed field.
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We refer to [1, 2, 5, 6] for some basic theories including groups in particular automorphism group and
vector spaces. For extension fields and its properties also Galois extension fields, this research is based on
[3,5].

2. SOME RESULTS

2.1. Extension Field and Its Automorphism Group

In this part, we will discuss about an extension field K/F with its properties related to its role as a vector
space over F. Next, we will also explain the automorphism group of an extension field K /F and give some
examples on finding all automorphisms of K/F. Furthermore, we will also discuss some properties of the
automorphism group of K /F.

Definition 1. [3] Let F and K be fields where F € K. The field K is called an extension field of F (denoted by
K/F).

Example 2
i. Risan extension field of Q.

ii. Q(\/f) = {a + bv2|a, b € Q.} is an extension field of Q.
iii. Q(\/f, \/§) = (Q(\/f)(\/g) = {a+ bV2 + /3 + d/6|a, b, c,d € Q} is an extension field of Q.

Let K/F is an extension field. We know that K can be viewed as a vector space over F. Thus, K has a
basis B over F where the number of elements in B is called dimension of K denoted by [K: F]. Particularly, if
[K: F] < oo then K is called a finite extension of F [3]. Next, we will give an example of the dimension of a
finite extension field.

Example 3
Given Q with its extension Q(\/f) Every x € Q(\/E) can be expressed by
x=a+bV2.
Therefore, x can be written as a linear combination of {1,\/5}. It is clear that {1, \/f} is linearly independent

over Q. So, {1,\/?} is a basis for Q(\/f) over Q. Hence, [Q(\/f) Q] = 2.

Suppose K /F is an extension field and E is a subfield in K containing F i.e. F € E € K. Thus, we obtain
extension fields K /F and E /F. We will give a property of [K: F] and [E: F] in the following Lemma.

Lemma 4. [3] IfK,E, F are fields where F € E € K then [K: F] = [K: E].[E: F].
Proof. Let [K: E] = m and [E: F] = n. We will show that [K: F] = [K: E].[E: F] = mn.
Suppose that {v,, vy, ..., vy, } and {w;, w,, ..., w,, } be basis for K /E and E /F, respectively. Take any x € K. Since
K is a vector space over E, x can be expressed as
X = a1 + av; + o+ A Uy,
for aq, a5, ..., a,, € E. Note that E is a vector space over F, we obtain
a; = Puwy + Piowy + -+ LWy

fori =1,2,...,m. Then,

x = (Brawr + Brawz + o+ Brawn) vy + o+ (Brawy + BmaWz + -+ BrnnWn) Vi

= P11v1Wy + B1avaWy + o+ BrpViWn + -+ Bra U We + BraVimWa + -+ + B U W
Thus, K is generated by B = {v;w;|i =12,..,m, j =1,2,..,n}. Now, we will show that B is linearly
independent. Suppose that
C11V1W1 + €1V Wy + =+ + C1pUaWy + -+ + Cp UmW1 + CroUmWa + = + Cun Wy, = 0

So,

(c11Wq + €1aWy + -+ C1aWp) V1 + - + (CpaWq + CpaWa + -+ + CrnWin )V = 0.
Since {v,, v, ..., Uy, } is linearly independent, we obtain c;;w; + ¢cjpwy + -+ + ¢cijpwy, = Ofori = 1,2, ..., m. Also,
since {wy,w, ..., wp} is linearly independent, it means ¢;; = ¢;; =+ = ¢; = 0. Thus,¢;; = 0fori =1,2,..,m
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andj = 1,2, ...,n. We have B is a basis of K over F. Hence, B = {viwj|i =12,..,m, j=1.2,..,n}and [K: F] =
mn. [ |

Furthermore, for every extension field K/F, we form the set of all automorphism of K which is defined by
Aut(K/F) = {0:K = K automorphism |o(x) = x,forallx € F }.

Aut(K /F) is a group under the operation of composition. We will give some examples of Aut(K/F) from an

extension field K /F.

Example 5

Suppose an extension field Q(\/E) /Q with its basis B = {1,+/2}. It is known that each automorphism can be
defined by a function

p:B - Q(V2).
The function will then be extended to p": Q(v2) —» Q(v2). Because ¢ is an element in Aut(Q(v2)/Q), we
have o(1) = 1andg(a) = g(1.a) = a.c(1) = a.1 = a for every a € Q. Note that,

0=01) =0((v2) -2) =0(v2)* - 2.

So, 7(v/2)? = 2 and 0(V2) = V2 or —v/2. So, we get two automorphisms of Q(v2) which is defined by

0,:B - Q(\/E)

11
V2 > 2

UZ:B—H@(\/E)
1-1

V2 e =2
Then, those two functions are extended to
01 Q(V2) - Q(v2)
a.1+b.N2w a.0;(1) + b.oy(V2)

0:Q(v2) - Q(v2)
a.1+b.vV2 - a.0,(1) + b. oy (—V2)
Therefore, Aut(Q(v2)/Q) = {0,',0,'} = {id, 5, }.

and

and

Example 6
Given an extension field Q(W)/Q where
Q(W) = {a. 1+b.32 +c. W}
So, {1, V2, i/Z} is a basis of Q(W) over Q. We will use the same way from Example 5 to find all
automorphisms of Q(W) We construct all automorphisms in Q(W) from bijective function which is

defined by
p:B— Q(i/i)
Weobtaing(1) =1ando(a) = d(l.a) = a.0(1) = a.1 = aforeverya € Q. So,
0=0(0) = o((¥2)* - 2) = o((¥2))* - 0(2) = s(¥2)" - 2.
So,
o(32)’ = 2.
We know that the roots of x3 — 2 = 0 are /2 eé'zm'i/f, 2 eé'zm,andiff. Note that /2 eé'zm V2,32 eézm’ ¢

Q(W) SO a(i/f) = /2. Using the same way, we will also only have G(W) = /4. Hence, we can only form
one automorphism defined by

al:BﬁQ(W)
1-1
V2o 2
Va4

Then, we extend oy to g;’ defined by
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01" Q(V2) - @(V2)
al+b.Y2+c V4 ao,(1)+b.0y(V2) + c.oy(V4)
al+b2+cVd-al1+bV2c+ V4
Thus, ;' is the identity function of Q(W) In conclusion, we obtain Aut(Q(i/i)/Q) ={ag,'} = {id}.

Next, we will give a property of Aut(K/F) in the following lemma.

Proposition 7. [5] If {gy,0,, ...,0,} is the set of automorphisms of K then {oy,0,,...,0,} is linearly
independent (i.e.if ay01 + ay0, + -+ a0, = 0thena; = a, = - = a, = 0).

Proof.
Suppose that {oy, g5, ..., 0, } is the set of automorphisms of K. We will prove that {gy, 75, ..., 6, } is linearly
independent using induction method on k elements of the given set.

i.  Fork = 1.Wetakeanyo; fori = 1,2,...,nwhere a;0; = 0.t means (a,0,)(x) = a,(g,(x)) = 0. Note
that K is a field and o¢; is an automorphism, then we have ¢;(x) # 0 for every nonzero x € K.
Therefore, a; = 0.

ii. Itholds for k where {0y, 03, ..., 6} } is linearly independent.

iii. We will prove that also holds for k + 1. Suppose that

101 + a0, + -+ Apy10k41 =0
where a4, a5, ..., @41 € F. So, forevery x € K
(@101 + az05 + -+ + Ay 10341) (x) = 0.
Thus,
@101 (x) + az05(x) + -+ + Apy10p41(x) = 0. )

Because {0y, 0y, ..., 0, } are distinct, there is a nonzero y € K such that o; (y) # 0,(¥). Using equation
(i), we obtain
© ay01(xy) + az0(xy) + - + apy 1011 (xy) = 0
& a101(x)01(¥) + az02(x)02(¥) + -+ + Apy 1041 (X) 0311 (¥) = 0 (i)
From (i), we obtain
@101 (x) = —a;05(x) — -+ — Ap110k41(X) (iii)

Then, we substitute (iii) to (ii)

S (—ap0,(x)—a303(x) =+ — Ap10k41 (%) )01 () + a205,(X)02(Y) + -+ + Q10,41 (1) 0p1(¥) = 0
S —a,0,(x)01 () —a303(x) 01 (V) .. — Qg1 0411 (1) 01 (Y) + @20, ()03 (¥) + -+ + Apey1 041 (X041 (¥) = 0
S —a,0,(x)01 (¥)—a303(x) 01 (Y) =+ =411 ()01 (¥) + @20, (x) 0, (¥) + az03(x)0o3(y) + -

+ Ay 10k41 ()01 () = 0
= az“z(x)(az(Y) - (71(}’)) + “303(35)(0'3(}’) - 0'1(}’)) .t ak+10k+1(x)(0k+1(3’) - 01(3’)) =0
= “2(02(3’) - 01(3’))02(95) + a3(a3(y) - 01(3’))03(35) + et “k+1(0k+1(J’) - U1(Y))Uk+1(x) =0
= (“2(02(3’) - 01(3’))02 + 0‘3(03(3’) - 01(}’))0'3 ot “k+1(0'k+1(3’) - U1(Y))C7k+1) x)=0

Using the assumption for k, we obtain
az(az()’) - 01(3’)) = az(gz(}’) - 01()’)) == ak+1(5k+1(}’) - 01(}’)) =0.

Note that a, (02 ) —0o (y)) = 0 and (y) # 0,(y), so we have a, = 0. Moreover, using (i) and a, =
0, we also have

& ay01(x) + az03(x) ...+ Apy10k1(x) = 0

& (a101 + azo3 + -+ + Apy10341) (x) = 0.

Therefore, @01 + @305 + -+ a4 10,41 = 0. Again, using the assumption for n = k, it implies that
that a; = a3 = -+ = a1 = 0. Hence, {0y, 75, ..., 0,, } is linearly independent over F. B

Moreover, we will give the relation between |Aut(K/F)| and [K: F] in the proposition below.
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Proposition 8 [5]
If K /F is an extension field then |Aut(K/F)| < [K: F].

Proof
Write G = Aut(K/F). Suppose G = {0y, 03, ..., 0, } so that |G| = n. Let [K: F] = n and the basis of K/F is B =
{vq,v,,...,v4} for some d € N. We will prove that n < d using a method of contradiction.
Suppose n > d. We form a linear equation system i.e.
01 (v)x1 + 0, (V)xz + -+ + 0 (V1) x, = 0
01(v2)x1 + 02 (Vo) %z + -+ + 0, (V2)x, = 0

01(va)x1 + 0,(va)x, + -+ 0, (Vg) X, = 0.
Note that there are more variables than the number of equations. It implies there is a nonzero solution,
(g xy %y )=C(cycy ¢ ¢, ) where ¢; # 0 for some i € {1,2,..,n}. Let w € K/F. It means w can be
expressed as
W = a1 + a,v, + -+ AgVg

where a4, a,, ..., az € F. Then, we multiply a; to the system of equations. Thus,

a101(v1)x1 + a105(v1)x + -+ + @10, (V) = 0

a,01(V2)%1 + ay0,(V2)xz + -+ + a0, (V2)x, =0

aq01(Vg)x1 + aqoy(ve)x, + -+ + a0, (ve)x, = 0.
Therefore,
(ar0,(vq) + ayo,(v5) + -+ ago; (V) ey + (a105 (V1) + ay05,(V3) + -+ ago,(Vg))c, + -+ + (a0, (V1)
+ azo'n(vz) +ot ado-n(vd))cn =0
and
0.(avy + avy + -+ agvg).cq + 0x(a v, + ayv, + -+ agvg).cp + o+ o (a v + ayv, + -+ agvy). ¢, = 0.

So, ¢;.o.(W) + ¢cy.0,(W) + -+ + cpo,(W) = 0and (¢y 07 + c10; + -+ + ¢,,0,) (W) = 0. It holds for every w €
K/F. It implies that a0y + ay0, + - + @04 = 0. Note that there is ¢; # 0 for some i = 1,2, ...,n. Hence,
{01, 0y, ..., 0, } is linearly dependent. It implies contradiction with Proposition 7. Hence, n < d that is |G| <
[K:F]. [ ]

Based on Proposition 8, we have |Aut(K/F)| < [K: F]. However, equality does not always hold for all
extension fields. We will give an example to describe it.

Example 9
Given an extension field Q(W)/Q. From Example 4, we know that Q(i/f) = {a.l +b.32+c. 3\/1} So,

{1,32,3/4} is a basis of Q(i/z) over Q. We also have Aut(Q(?{/f)/(@) = {id}. Thus, [Q(W)/Q] =3 and
|[Aut(@(V2)/@)| = 1.

Based on the example above, it then motivates the definition of Galois extension. We will give the definition
of Galois extension on the following definition.

Definition 10. [5] Let K/F be a finite extension field. K is called Galois extension over F if |Aut(K/F)| =
[K:F].

It's common to write the automorphism Aut(K/F) as Gal(K/F) when K is a Galois extension. Next, we will
give an example of a Galois extension and a non-Galois extension in the following example.

Example 11
i. Using Example 5, we have Q(v2)/Q is a Galois extension. Because the basis of Q(v/2)/Q is{1,v2}. We

obtain Aut(@(\/f)/(@) = {id, 05 }. Thus, |Aut(Q(\/§)/Q)| = [Q(\/Z): Q] = 2. Hence, Q(\/f)/(@ is a Galois

extension field over Q.
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ii. Based on Example 6, we know that Q(i/f)/@ is not a Galois extension because Aut(Q(W)/Q ) = {id}
and the basis of Q(¥/2)/Qis {1, ¥2}. So, |[Aut(Q(¥2)/Q)| # [Q(V2):Q] = 2.

2.2. Fixed Field of An Extension Field

In this part, we will discuss about fixed field of an extension field K /F. Then, we give a necessary and sufficient
condition for an extension field to be a Galois extension using the property of fixed of K /F.

Let K/F be an extension field and ¢ = Aut(K/F). We form a subset of K defined by
K¢ ={x €K|o(x) =x,Vo € G}.
Note thatVa, b € K¢ dan ¢ € G, we obtain
ola—b)=0c(a)—a(b)=a—»b
and
o(ab™) = o(a)a(b™) = a(a)(c(b))t =ab™L.

Therefore, K¢ is a subfield in K and is called fixed field of K /F [5].

Example 12
i. Using Example 5, we have Q(x/f)/@. We obtain G = Aut(Q(\/f)/Q) = {id, 0,'} where

id: Q(v2) - Q(v2)
a.1+ b2 a.0;(1) + b.oy(V2)

a;:Q(V2) - Q(v2)
a.l+b.V2+m ao(1)+ b.al(—\/f).
Thus, id(a.1) = a and g5(a. 1) = a where a € Q. Hence, Q(\/i)G =Q.

and

ii. Based on Example 6, @(W)/Q is an extension field with its automorphism group G =

Aut(@(i/i)/(@) = {id}. Note that for every x € Q(W) we obtain id(x) = x. Therefore, Q(‘?\’/E)G =
Q(¥2).

Theorem 13. [5] Let K /F be an extension field where [K: F] < . If K¢ = F then [K: F]| = |Aut(K/F)|.
Proof. Let [K: F] = d and |Aut(K/F)| = n. Based on Proposition 8, we have d = n. Next, we will prove
that d < n using a method of contradiction.

Suppose d > n. Thus, there exist n + 1 elements v;, vy, ..., V41 Which are linearly independent over F. Then,
we construct the following system of the equations

01(v1)x1 + 01(V2)x; + -+ 01 (V1) Xns1 = 0
02 (v1)x1 + 0, (V)% + -+ + 0, (V1) Xy = 0

on(V)x1 + 0, (Vo) x5 + -+ + 0, (Vny 1) %41 = 0.
Note that there are more variables than the number of equations. It implies there is a non-trivial solution,
(x5 ¢} xXpp1 )=(agay i apqyq ) where a; #0 for some i€ {1,2,..,n+1}. Among all non-trivial
solutions, we choose r as the least number of non-zero elements. Moreover, r # 1 because o;(v;)a; =0
implies g, (v;) = 0 and v, = 0.

i.  We will prove that there exists a non-trivial solutions where «; are in F for any i € {1,2,...,n + 1}.
ay

a;

Suppose | @ |isanon-trivial solution with r non-zero elements where a;, a5, ..., &, # 0. We obtain
0

0
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B1 ay/ay
B2 az/ay
[+ 1+ |
a new non-trivial solution by multiplying the given solution with = whichis B 1= [ 1 | Thus,
L)

ar

0 0
B10;(v1) + fr0;(vy) + -+ 1.0;(Vp41) = 0 ™)

For i = 1,2,...,n. Now, we will show that f3; are in F for any i € {1,2, ...,n + 1} using method of
contradiction. Suppose there exists 3; € F, say ;. We know that F = K¢ so that f; is not an element
of the fixed field. In other words, there exists g, € G where g, (8,) # B1- S0, 6, (81) — B1 # 0. Since G
is a group, itimplies 0, G = G. It means for any g; € G, we obtain g; = oy0j for j = 1,2, ..., n. Applying
oy, to the expressions of (*)

& 0k (B10j(v1) + Br0;(v3) + -+ 1.0;(v,)) =0

& 0k (B1). 0y 0; (V1) + 0 (B2). 0 0; (V) + -+ + 0,0 (V) = 0
forj = 1,2, ...,n so that from o; = g;,0;. We obtain

0k (B1)-0;(v1) + 0k (B2). 0;(v2) + -+ + 0;(v) = 0. )

Subtracting (*) and (**), we have
(B — ok (B oy(vy) + (B2 — or(B2)oi(v2) + -+ + (Br—1 — 0k (Br-1)0i(vr_1) + 0 =10
which is non-trivial solution because a3 (8;) # f; and is having r — 1 non-zeo elements, contrary to
B
a
the choice of r as the minimal number. Hence, | By | is a non-trivial where all B; € F for any i =
0
1,2,...,n.
ii. Using (i), we obtain a nonzero solution with all elements are in F. So, using the first equation in the
system, we obtain
& 0y(v1)f1 + 01 (V2)Be + -+ 01 (V) =0
& 01(f1vy + Povy + - + Brvy) = 0.
Because o;is an automorphism, we obtain pyv; + Bov, + -+ v, = 0 where B4,8,, ..., 5, are
nonzero elements in K. It is contrary to vy, vy, ..., V41 Which are linearly independent over F.

Thus, we have d < n. Hence,d = ni.e.[K: F] = |Aut(K/F)|. ®

Corollary 14. [5] Let K/F be an extension field where [K: F] < oo. K is a Galois extension over F if and only
ifK¢ =F.

Proof
(=) We have K is a Galois extension over F. It means [K: F] = |Aut(K/F)|. We will show that K¢ = F. We
know that K¢ is a subfield of K and F € K¢ € K. Based on Lemma 4 and Theorem 13, we obtain
|Aut(K/F)| = [K:K¢] = [K:F]/[KC¢: F].
Because [K:F] = |Aut(K/F)|.Itimplies [K¢:F] = 1. Hence, K¢ = F.

(&) We know that K¢ = F. Using Theorem 13, we have [K: F] = |Aut(K/F)|. Thus, K is a Galois extension
over F. n

3. Conclusion

Let K/F be an extension field where [K: F] < o0 and G = Aut(K/F). K is a Galois extension over F if and
only if its fixed is F thatis K¢ = F.
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