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Ageing is the primary risk factor for Parkinson's disease. Progressive motor and coordination 

decline that occurs with ageing has been linked to nigrostriatal dysfunction. Few studies have 

investigated the efficacy of mesenchymal stem cells in ameliorating the structural and 

functional alterations in the ageing nigrostriatal system. This study is the first to evaluate the 

effects of intravenous injection of bone marrow-derived mesenchymal stem cells (BMMSCs) 

in a D-galactose-induced rat model of nigrostriatal ageing. BMMSCs were intravenously 

injected once every 2 weeks for 8 weeks. The transplanted cells survived, migrated to the 

brain, and differentiated into dopaminergic neurones and astrocytes. BMMSC transplantation 

improved locomotor activity, restored dopaminergic system function, preserved atrophic 

dopaminergic neurones in the substantia nigra, exerted antioxidative effects, and restored 

neurotrophic factors. Our findings demonstrate the efficacy of BMMSC injection in a 

nigrostriatal ageing rat model, and suggest that these cells may provide an effective 

therapeutic approach for the ageing nigrostriatal system.

Key words: bone marrow-mesenchymal stem cells, D-galactose, rat, nigrostriatal 

dysfunction

INTRODUCTION

Ageing is associated with several biochemical and molecular changes that eventually 

lead to cognitive and somatosensory impairments. This can be considered a primary risk factor

for the development of neurodegenerative diseases such as Parkinson’s disease (PD) [1-4]. 

Dopaminergic (DA) neurones are among the most vulnerable cells of the central nervous 

system to the deleterious consequences of ageing. The most obvious indication of DA neurone

susceptibility to ageing is the degradation of nigrostriatal DA neurones [5,6].

Ageing has also been associated with structural alterations of the nigrostriatal system. 

Several reports have shown that pathogenic alterations associated with PD are identical to age-

related changes in DA neurones. The loss of DA neurones in the substantia nigra (SN), which 

reduces the amount of dopamine released and the number of DA receptors in the striatum and 

causes bradykinesia, muscular stiffness, and shaking, is a notable neuropathological aspect of 

PD [5-9]. These characteristics are mostly related to ageing (also known as late-onset PD) and 



are dependent on environmental and hereditary variables [10]. A substantial body of evidence 

suggests that brain-derived neurotrophic factor (BDNF) is essential for the survival of SN DA 

neurones. BDNF helps SN neurones survive in vitro and is protective against a variety of 

neurotoxic injuries both in vitro and in vivo [11-13]. Another neurotrophic factor, glial cell 

line-derived neurotrophic factor (GDNF), supports the survival of DA cells in the midbrain, 

increases the function of the remaining DA neurones in the SN, and inhibits degeneration and 

DA neuronal death [14-16]. In addition, oxidative stress appears to be a crucial risk factor for 

ageing-mediated neuronal and neurotransmitter changes [17,18].

The morphological and functional alterations associated with ageing are exacerbated in

age-related diseases; therefore, therapies that attenuate primary and/or secondary ageing are 

the main focus of ageing research [19-21]. Both preclinical and clinical trials of stem cell 

treatment have demonstrated its effectiveness in the treatment of Alzheimer’s disease (AD) 

and PD. Mesenchymal stem cells (MSCs) are the most promising type of stem cells owing to 

their ability to differentiate into the neuronal phenotype, secrete neurotrophic cytokines, and 

promote endogenous brain repair. In addition, they have immunomodulatory, neuroprotective, 

and angiogenic capabilities [22-24]. In rodent PD models, bone marrow-derived MSC 

(BMMSC) transplantation has been demonstrated to improve behavioural performance, 

ameliorate DA system degeneration in the SN and striatum, attenuate histopathological 

alterations, reduce the inflammatory response, and induce the release of neurotrophic factors 

[25-31]. Based on a study in 2021, a single-centre, open-label phase 1 clinical study was 

conducted to assess the safety and feasibility of intravenous injection of allogeneic BMMSCs 

delivered in escalating doses to patients with idiopathic PD [32]. 

Most of the research on the effectiveness of stem cells has been conducted on 

preclinical animal models or on patients with AD and PD, whose structural and functional 

brain capabilities have significantly deteriorated. It is possible that early intervention to 

address neuropathological changes during primary ageing will stop or at least delay the 

pathological processes leading to secondary ageing, thus lowering the prevalence of age-

related disorders [19-21,33-35]. Few studies have evaluated the efficacy of MSC 

transplantation in animal models of ageing [36-42]. Therefore, we aimed to evaluate, for the 

first time, the potential beneficial effects of systemic transplantation of BMMSCs on the 



nigrostriatal system in a D-galactose (D-gal)-induced rat model of brain ageing to evaluate 

their potential as a protective approach for age-related neurodegeneration.

MATERIALS AND METHODS 

Animal 

Thirty male Sprague Dawley rats (8 weeks old, 180–200 g) were obtained from the 

Theodor Bilharz Research Institute, Imbaba, Egypt, and housed in the animal facility of the 

Faculty of Medicine, Menoufia University, Egypt. The rats were housed in standard 

polycarbonate cages with two rats in each cage under standard laboratory settings (22  5 °C, 

60  5% humidity, and a 12-h/12-h light/dark cycle). Standard laboratory chow and tap water 

were provided ad libitum. All experimental procedures involving animals were approved by 

the Institutional Review Board of Ajman University, UAE (IRB# M-F-A-14-Mar), and the 

Institutional Review Board of Menoufia University, Faculty of Medicine, Egypt (IRB# 

191219ANAT), and were conducted in accordance with the guidelines on the ethical use of 

animals in the European Community Council Directive 2010/63/EU.

BMMSC isolation and culture

BMMSCs were obtained from 6–8-week-old male Sprague Dawley rats, as previously 

reported [43]. Briefly, bone marrow plugs were harvested from the femurs and tibias of rats 

using a 23-gauge needle and centrifuged for 5 min at room temperature at 1800 rpm. The cell 

pellets were then resuspended in Dulbecco’s modified Eagle’s medium (Gibco, Carlsbad, CA, 

USA) containing 10% foetal bovine serum (FBS) (Gibco) and 1% penicillin-streptomycin 

(Gibco) and seeded at a density of 1 × 106 cells/cm in 25 cm2 cell culture flasks. Cells were 

incubated at 37 °C in a humidified atmosphere containing 5% CO2. The culture medium was 

changed every 3–4 d to eliminate non-adherent haematopoietic cells. When the cells reached 

70% confluence, they were harvested for 2–5 min using 0.25% Trypsin–EDTA (Sigma-

Aldrich, St. Louis, MO, USA), neutralised with a complete medium, and centrifuged at 500 × 

g for 5 min. Cell pellets were resuspended in a complete medium. Cell viability was examined

by adding equal volumes of the cell suspension and 0.4% trypan blue (Gibco) and loading 10 

μL of the stained suspension into each chamber of a haemocytometer. Viable and dead cells 



were counted within 5 min of the sample preparation. Cells with greater than 90% viability 

were subcultured at a 1:3 ratio (passage 1). The cells were used at passage 4. 

Flow cytometry

Cells were resuspended in staining buffer (2% FBS/phosphate buffer solution [PBS]) 

and surface-stained with fluorescein isothiocyanate-conjugated mouse anti-rat CD44 

(BioLegend, UK), FITCH-conjugated mouse anti-rat CD90 (BD Pharmingen, USA), or PE-

conjugated rabbit anti-rat CD34 (Abcam, UK) at 4 °C for 30 min. Isotype-matched antibodies 

served as controls. Cells were analysed using an EPICS XL flow cytometer (Beckman 

Coulter).

Experimental design

The rats were randomly divided into three groups: control, D-gal-treated, and D-gal + 

BMMSC-treated (N = 10 in each group). The sample size was calculated using G Power 

software. D-gal (300 mg/kg; Sigma-Aldrich, St. Louis, MO, USA) was administered 

subcutaneously to rats in the D-gal and D-gal + BMMSCs treatment groups daily for 8 weeks.

Once every two weeks, 1 × 106 BMMSCs labelled with the membrane-bound fluorescent 

marker PKH26 (Sigma-Aldrich) were intravenously delivered to rats in the D-gal + BMMSCs

group.

Behavioural tests

All animals were acclimatised for one week after arrival to behavioural testing. Tests 

were conducted one week after the last transplantation. The test sessions were conducted 

between 2 PM and 5 PM. Two observers were present throughout each session and blinded to 

the experimental conditions.

Open-field test. The open-field test allows the simultaneous evaluation of exploration 

and locomotion. A box 1 m × 1 m × 50 cm in height was made of wood. The floor of the box 

was divided into equal areas. Each rat was positioned in the centre of the open-field arena, and

the rearing frequency and number of crossings (with both forepaws) were recorded using a 



video camera installed 2.5 m above the box for 5 min. The box was then placed in a noiseless 

room under controlled illumination. 

Beam walking test. Beam walking is a test of motor coordination [44]. The rats had to

traverse a beam (100 cm long wooden beam, 4 cm wide, and 3 cm tall), which was hung 

between a start stage at one end and their home cage at the other end at a height of 80 cm, was

suspended by two pillars. Foam padding was placed underneath the beam to protect the 

animals from injury during a fall. A line (20 cm) was drawn at the start of the beam. During 

the test, the rat was placed within this starting area facing its home cage, and a stopwatch was 

started upon release of the animal. The timer was halted when all four paws were fully placed 

on the finishing platform at the other end of the beam. The numbers of footsteps and faults 

were also recorded. 

Measurement of body weight and the brain index

The general appearance of the rats, including behavioural activity, shininess, and hair 

coat colour, was observed daily. Body weights were assessed weekly. At the end of the 

experiment, the rats were anaesthetised by intraperitoneal injection of ketamine (90 mg/kg) 

and xylazine (15 mg/kg), and decapitated. Brains were immediately collected from all rats and

weighed. Brain indices were calculated using the following formula: brain tissue weight 

(mg)/final body weight (g).

Assessment of oxidative stress and antioxidants indices

A spectrophotometre was used to assess the levels of malondialdehyde (MDA) and 

glutathione (GSH) in brain tissues. To assess the extent of lipid peroxidation, rat striata (100 

mg) were homogenised in 1 mL of PBS (pH 7.0), and the MDA concentration was measured 

[45]. The homogenates were centrifuged after mixing with trichloroacetic acid (20%) at 5000 

rpm for 15 min. The supernatants were treated with a 5% thiobarbituric acid solution before 

boiling in a water bath for 10 min. The absorbance at 532 nm was measured, and the MDA 

concentration was estimated using a standard curve. The results are expressed in nmol per mg 

of protein. Ellman's method [46] was used to assess the GSH levels. A solution of dithiobis 

nitrobenzoate was added to the striatal tissue homogenate and incubated for 1 h. The 



absorbance was measured at 412 nm. A standard curve was used to measure the GSH 

concentration. The findings are expressed in mmol per mg of protein.

Quantitative reverse-transcription polymerase chain reaction 

Total RNA was extracted from homogenised striata of rats in each group using RNeasy

Purification Reagent (Qiagen, Valencia, CA, USA), according to the manufacturer’s protocol. 

RNA purity was assessed with a spectrophotometre; the wavelength absorption ratio (260/280 

nm) was between 1.8 and 2.0 for all preparations. RNA was reverse-transcribed into cDNA 

using Superscript II (Gibco Life Technologies, Grand Island, NY, USA). Quantitative 

polymerase chain reactions were run and analysed using a StepOneTM instrument with 

software version 3.1 (Applied Biosystems, Foster City, CA, USA). The reaction mixtures 

contained SYBR Green Master Mix (Applied Biosystems), gene-specific primer pair (Table I),

cDNA, and nuclease-free water. The cycling conditions were as follows:10 min at 95 °C, 

followed by 40 cycles of 15 s at 95 °C, and 60 s at 60 °C.

The ABI Prism sequence detection system software was used to analyse the data, and 

quantification was performed using Sequence Detection Software v1.7 (PE Biosystems, Foster

City, CA). Relative target gene expression was calculated using the comparative cycle 

threshold method [47]. All values were normalised to β-actin mRNA levels.

Immunofluorescence analysis

For immunofluorescence staining, brains were dissected and fixed at 4 °C for 24 h, 

then cryoprotected in 30% sucrose at 4 °C. Serial sections (40 μm) were cut by a cryostat and 

stored at –20 °C until use. The sections were incubated in 10 % blocking solution (10% 

normal goat serum in 0.3% Triton X-100 in PBS) at RT for 1h, then incubated at 4 °C 

overnight in the primary antibodies rabbit anti-GFAP (1:1000, Abcam, Cat. #ab7260), or 

rabbit anti-tyrosine hydroxylase (TH) (1:500, Abcam, Cat. #ab112). The sections were then 

rinsed in PBS and a secondary antibody was applied (1:500, Alexa-488, Cat. #A-11034, 

Molecular Probes) at RT for 1h. Finally, the sections were rinsed in PBS and mounted in 

Fluoroshield mounting medium with DAPI (Abcam, Cat. #ab104139).



Quantitative histological assessments

Four non-overlapping images per section were randomly captured from the striatum 

and SN and analysed for each brain section for each marker. Immunofluorescence images 

were captured using a Leica DM5500 B/11888817/12 microscope equipped with a Leica 

DFC450C camera, using a Leica HI PLAN 10/0.25 objective. For each image, the region of 

interest was the field of view at a magnification of 10x. From at least three sections/rat, 

immunopositive cells were counted using ImageJ software (National Institutes of Health, 

Bethesda, Maryland, US) by a manual approach using the plugin/cell counter tool [48] and 

then averaged per field for each rat. The calculated numbers for the 10 animals/experimental 

group were used for comparison and statistical analyses. Concerning TH immunoreactive 

striatal fibres, the immunoreactivity of TH fibres in the striatum was measured by 

densitometry as described by Febbraro et al. [49]. Photos were converted to grayscale using 

Image J program (1.51 version; National Institute of Health, Bethesda, MD, USA) and 

analysed for gray intensity after calibrating the Image J program by assessing the optical 

density (OD). OD values for the treatment groups are presented as a percentage of the control 

groups. 

Statistical analysis

Data are expressed as the mean ± standard error of the mean. Normal distributions 

were evaluated using the D’Argostino and Pearson normality tests, and data were analysed 

using one-way or two-way analysis of variance followed by a post hoc Bonferroni test. 

Statistical significance was set at p<0.05. Statistical analyses were performed using the 

GraphPad software.

RESULTS 

Characterization of BMMSCs

MSCs derived from the bone marrow of Sprague-Dawley rats were spindle-shaped, 

fibroblast-like cells after 10 days of culture. At passage 4, cells were evaluated by flow 

cytometry for the expression of CD90, CD44 (mesenchymal cell marker), and CD34 

(haematopoietic lineage marker). More than 90% of the cells were CD90+ and CD44+, and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072263/#B24-cells-09-00315


less than 10% were CD34+ (Fig. 1). These results indicated that the cells were mostly non-

haematopoietic MSCs.

BMMSC transplantation improved the physical characteristics and brain indices

Rats in the D-gal group showed physical signs of general ageing, such as reduced 

activity and rough, dull, yellow hair coat with hair loss, whereas rats in the transplanted group 

exhibited signs of normal activity and smooth, glossy, brightly coloured hair coat, indicating 

that BMMSC treatment had beneficial effects on D-gal-induced ageing. In the current study, 

the body weights of rats in the control, D-gal, and transplanted groups were not significantly 

different (Fig. 2a). However, the brain index was significantly reduced in D-gal-treated rats 

compared with that in the control rats, whereas the brain index of the BMMSC-treated group 

was significantly improved compared with that in the aged rats (Fig. 2b), demonstrating that 

transplanted cells reversed D-gal-induced brain atrophy.

BMMSCs recovered locomotion and motor coordination in D-gal ageing rats

Aged rats showed significantly decreased locomotor activity, as indicated by a 

significant decline in the number of line crossings compared with those in the control group. 

This was significantly improved by BMMSC injection, as indicated by the significant increase

in the number of line crossings compared to the values in the ageing group (Fig. 3a). In 

addition, aged rats showed increased rearing, which was significantly reversed in the 

BMMSC-injected group (Fig. 3b). In aged rats, beam walking tests exhibited a significant 

increase in crossing time (Fig. 4a), foot fault number (Fig. 4b), and footstep number (Fig. 4c), 

with a marked reduction in velocity (Fig. 4d), when compared to control rats. These 

observations demonstrate marked changes in motor coordination during ageing. Interestingly, 

D-gal + BMMSC-treated rats showed significant improvement in these parameters.

BMMSCs restored DA system function

The impact of age on several DA targets, including receptors, transporters, and 

relevant enzymes in the striatum, has been reported [50-54]. Gene expression of the main 

functional components of DA neurones was assessed in the different groups. Gene expression 



of TH for dopamine synthesis, vesicular monoamine transporter-2 (VMAT2) for dopamine 

transport into the vesicle, presynaptic dopamine transporter (DAT), and main postsynaptic 

receptors, D1 and D2, were downregulated in the striatum of aged rats compared to control 

rats (Fig. 5). These declines in DA markers’ expression were significantly prevented in the 

striatum of the D-gal + BMMSCs group.

BMMSCs differentiated into TH-positive cells and astrocytes, and protected DA 

neurones in the D-gal ageing brain

To examine the underlying mechanisms by which BMMSCs improve motor deficits 

and restore functional DA system alterations, we first examined whether systemically 

administered BMMSCs homed to and survived in the brains of transplanted rats. PKH-

labelled BMMSCs were extensively found in all brain regions in the transplanted group. 

Studies have shown that age-related changes in DA neurones are comparable to the pathogenic

changes observed in PD. A decline in the number of TH-positive cells has been reported in the

SN of healthy aged subjects. TH staining demonstrated a significant decrease in TH-positive 

cells in the SN and TH fibre density in the striatum of aged rats compared to that in the 

controls (Fig. 6). Transplantation of BMMSCs significantly increased the number of TH 

neurones in the SN and TH fibre density in the striatum compared to that in aged rats. 

Interestingly, some of the PKH-labelled BMMSCs co-expressed TH in SN, indicating their 

differentiation into DA neurones. Furthermore, in the striatum, approximately 20% of the 

PKH-labelled BMMSCs co-expressed GFAP, indicating their differentiation into astrocytes 

(Fig. 7).

BMMSCs induced antioxidative effects and restored neurotrophic factors

The modification of neuronal and neurotransmitter functions that accompanies ageing 

seems to be linked to oxidative stress. The specific susceptibility of SN neurones to ageing 

accumulated reactive oxygen species that may be the cause of the age-associated reduction in 

DA and motor function in elderly rats [17,18]. Aged rats had higher levels of MDA, an index 

of lipid peroxidation, in the striatum than control rats. Furthermore, GSH levels were 

significantly downregulated in aged rats compared with those in control rats. In D-gal + 



BMMSC-treated rats, MDA levels significantly declined, whereas GSH levels were 

upregulated when compared with the levels in aged rats (Fig. 8a and b). Neurotrophic factors, 

such as BDNF and GDNF, are crucial for the synaptic activity, survival, and function of DA 

neurones, and their decline has been linked to motor deficits associated with aged animals [68-

75]. In the striatum of aged rats, the expression of BDNF, GDNF, and VEGF was remarkably 

reduced when compared with the expression in control rats, and these declines were reversed 

by BMMSC transplantation (Fig. 8c). 

DISCUSSION 

The most important risk factor for PD is ageing, and progressive motor and 

coordination deterioration associated with normal ageing has been linked to nigrostriatal 

degeneration. Several studies have shown that the DA system, both structurally and 

functionally, is affected during normal ageing [1-8]. The capability of stem cells to replace lost

or malfunctioning cells has been the focus of recent research [36-42]. This study is the first to 

examine the potential beneficial effects of systemic transplantation of BMMSCs on the DA 

system in a D-gal-induced rat model of brain ageing. In this study, we demonstrated that 

intravenous transplantation of BMMSCs into D-gal-aged rats ameliorated behavioural deficits,

restored DA dysfunction, differentiated into TH-positive cells in the SN, protected TH 

immunoreactivity in the aged striatum, and induced antioxidative and neurotrophic effects. 

These data demonstrate the therapeutic effectiveness of BMMSCS in the aged brain. 

Ageing is characterised by a gradual decline in locomotion and motor coordination. In 

our study, BMMSCs improved motor alterations in D-gal + BMMSCs. Our results are 

consistent with those of previous studies. Implantation of BMMCs into the striatum of 

naturally aged rats increased the functional recovery of swimming performance as measured 

by the Marshall scale for vigour and success, as well as motor coordination as measured by 

the transverse bridge test [36]. In various animal models of PD, BMMSCs implantation 

improved motor impairments [25, 29-31, 55,56]. The beam walk test, which examines limb 

movements, such as accurate stepping, coordination, and precise positioning of the paw, is 

particularly susceptible to DA depletion [57-59]. In our study, the detected decrease in striatal 

DA levels resulted in significant motor incoordination in D-gal rats, as indicated by an 



increased number of footsteps and foot slips and a significant decline in velocity. Intravenous 

injection of BMMSCs decreased the number of footsteps and foot faults with an increase in 

velocity. The observed motor improvements were associated with increased DA and TH levels

in the striatum, suggesting that BMMC transplantation improved motor dysfunction in aged 

rats, possibly through DA upregulation in the striatum. 

Several studies have demonstrated the significance of DA signalling in the 

maintenance of motor function, and that declines in dopamine functional component 

availability might be responsible for age-related behavioural deficits [50-54]. In the treated 

group, the gene expression of DA markers demonstrated an overall increase compared to that 

in aged rats. A study evaluating the striatal implantation of rat adult bone marrow MSCs in a 

6-hydroxydopamine rat model of PD reported a partial albeit significant recovery of DA 

presynaptic markers such as D1, D2, DAT, and VMAT2 in treated animals compared to non-

treated ones [60]. Therefore, it can be concluded that the detected improvements in motor and 

coordination activities might be due to the recovery of the DA system.

The survival, migration, and differentiation capacity of the injected BMMSCs in D-

gal-aged rats were investigated to explain the mechanism behind the behavioural and DA 

functional improvements observed following BMMSC transplantation. Repeated intravenous 

BMMSC injection resulted in significant cell migration across all brain areas studied. These 

findings corroborate prior findings. Ageing has been associated with increased blood-brain 

barrier permeability in both animals and humans, which might be caused by numerous ageing-

related processes, including increased oxidative stress and greater microglial activation 

[61,62]. In our study, a few transplanted cells differentiated into TH+ cells in SN. Substantial 

evidence suggests that BMMSCs can differentiate into neurones, particularly DA neurones, 

both in vitro and in vivo [63-67]. Moreover, the nigrostriatal pathway is known to be involved 

in ageing and PD progression, and the striatum is well established to be the target brain 

structure for DA projections from the SN. We further assessed whether the DA fibres of the 

striatum were re-innervated in the transplanted group. Our results revealed that transplantation

of BMMSCs significantly increased the number of endogenous TH neurones in the SN and 

TH fibre density in the striatum compared to that in aged rats. These results suggest 

endogenous restoration of the host DA system in the SN of transplanted rats. Therefore, we 



next sought to investigate the potential paracrine mechanisms mediated by transplanted 

BMMSCs that could contribute to the endogenous revival of the host DA system.

MSCS can be considered as mini-bioreactors capable of secreting a wide range of 

cytokines and neurotrophic factors that are crucial in the treatment of neurodegenerative 

disorders. There is a substantial body of evidence that MSCs express a variety of neurotrophic

factors, including nerve growth factor, GDNF, BDNF, insulin-like growth factor-1, and basic 

fibroblast growth factor at both the mRNA and protein levels [68-70]. Synaptic plasticity, as 

well as the survival and function of midbrain dopamine neurones, are dependent on BDNF. By

comparing BDNF (+/-) with wild-type mice at various ages, the effects of a partial genetic 

deletion of BDNF on motor activities and DA level measurements were studied. With age, a 

decrease in BDNF expression becomes more important for DA circuits and associated 

behavioural performance [71]. Depletion of BDNF leads to declined TH expression in the SN 

[72]. GDNF is a secretory protein that protects DA neurones both in vitro and in vivo. GDNF 

treatment increases striatal dopamine levels and potentiates striatal DA fibre regeneration in 

preclinical animals [73]. As a result, intracranial ectopic administration of GDNF has been 

attempted in multiple PD clinical studies with promising but equivocal outcomes [74]. We 

observed decreased BDNF and GDNF expression in D-gal aged rats, and these decreases were

remarkably restored in BMMSC-transplanted rats. GDNF is primarily produced by astrocytes 

in the brain. GDNF expression is increased in astrocytes in the striatal region of PD animal 

models with DA innervation, reflecting a process of endogenous regeneration [75]. 

Interestingly, in the present study, 20% of transplanted cells differentiated into astrocytes in 

the striatum. The biological features of BMMSC production of neurotrophic factors such as 

GDNF, as well as the ability of these cells to differentiate into astrocytes, indicate their 

potential for treating age-related neurodegenerative diseases. 

CONCLUSIONS 

This study demonstrated that intravenous transplantation of BMMSCs prevented 

locomotion and coordination deficits in a D-gal ageing rat model by restoring DA system 

function, protecting atrophic DA neurones in the SN, inducing antioxidative effects, and 

secreting neurotrophic factors. Our study provides proof of principle that the systemic 



transplantation of BMMSCs is a potential therapeutic approach for the protection of 

nigrostriatal changes associated with ageing. 
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Table 1. List of primers used in RT-qPCR 

Figure 1. Characterization of the BMMSC population. The cell-surface phenotype of the 

BMMSCs was assessed by flow cytometry using antibodies against CD90, CD44, and CD34. 

In total, 92.3%, and 92.1% of the cells expressed CD90 and CD44, respectively,

whereas only 9.5% expressed CD34. 

Figure 2. Body weight (a) and brain index (b) were evaluated in the control, aged (D-gal), and

transplanted (D-gal + BMMSCs) rats. **p<0.01 vs. control rats; #p<0.01 vs. aged

rats. Data are expressed as mean  SEM. N = 10/group. 

Gene name Gene
accession

Primer sequence forward/Reverse 5'→3'

TH NM_012740.3 TCGGAAGCTGATTGCAGAGA 
TTCCGCTGTGTATTCCACATG 

DAT NM_012694.2 CCAGCAATTCAGTGATGACATCA 
CAGCATAGCCGCCAGTACAG 

VMAT2 NM_013031 CGC AAA CTG ATC CTG TTC AT
5-AGA AGA TGC TTT CGC AGG TG

D1R NM_012546.2 GGAGGACACCGAGGATGA 
ATGAGGGACGATGAAATGG 

D2R NM_012547.1 TGGGTCAGAAGGGAAGG 
GATGATAAAGATGAGGAGGGT 

BDNF NM_012842 TGTCCGAGGTGGTAGTACTTCATC
CATGCAACCGAAGTATGAAATAACC

VEGF AF062644 GAGGAAAGGGAAAGGGTCAAAA
CACAGTGAACGCTCCAGGATT

GDNF NM_019139.1 CCAGAGAATTCCAGAGGGAA
CTTCACAGGAACCGCTACAA

BETA ACTIN NM_031144 ATTTGGCACCACACTTTCTACA
TCACGCACGATTTCCCTCTCAG



Figure 3. Locomotion was evaluated in control, aged (D-gal), and transplanted (D-gal + 

BMMSCs) rats. Locomotion (horizontal locomotion and vertical rearing) were assessed for 5 

min in an open-field test ***p<0.001 vs. control rats; ###p<0.001 vs. aged rats. Data are 

expressed as means  SEMs. N = 10/group. 

Figure 4. Motor coordination was evaluated using a beam walking test in control, aged (D-

gal), and transplanted (D-gal + BMMSCs) rats. ***p<0.001 vs. control rats; #p<0.05 and 

##p<0.01 vs. aged rats. Data are expressed as means  SEMs. N = 10/group. 

Figure 5. Gene expression of dopaminergic system markers in the striatum in control, aged 

(D-gal), and transplanted (D-gal + BMMSCs) rats as measured by RT-qPCR. ***p<0.001 vs. 

control rats; #p<0.05, ##p<0.01, and ###p<0.001 vs. aged rats. Data are expressed as means  

SEMs. N = 10/group. 

Figure 6. Number of TH positive neurones in the substania nigra and the density of the TH 

fibres in the striatum in control, aged (D-gal), and transplanted (D-gal + BMMSCs) rats. Scale

bar = 500 μm. ***p< 0.001 vs. control rats; ##p<0.01 vs. aged rats. Data are expressed as means 

 SEMs. N = 10/group

Figure 7. Survival and differentiation of transplanted BMMSCs into TH positive neurones in 

the substania nigra (a-d) and astrocytes in the striatum (e-h) in the transplanted (D-gal + 

BMMSCs) group. A number of PKH-labelled BMMSCs (red) (b, f) co-expressed TH (green) 

(c) and GFAP (green) (g). The insets display the boxed area at a higher magnification. PKH-

labelled cells (red) (b, f), TH-positive cells (green) (c), GFAP-positive cells (green) (g), DAPI-

stained nuclei (blue), (a, e) and merged images (d, h). Scale bar = 500 μm.

Figure 8. Status of MDA and GSH and gene expression of BDNF, NGF, and VEGF in the 

striatum of control, aged (D-gal), and transplanted (D-gal + BMMSCs) rats. ***p<0.001 vs. 



control rats; ##p<0.01 and ###p<0.001 vs. aged rats. Data are expressed as means  SEMs. N = 

10/group. 


















