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INTRODUCTION

Reproductive performance is a significant produc-
tion parameter in sheep, especially when the goal is 
to produce milk and meat (Ali et al., 2019). Parameters 
for reproductive function in an animal or herd include 
lambing rate, fertility rate, and age of the first fertility 
(Assan, 2020). Nutrition has a vital impact on numerous 
reproductive functions, including the hypothalamic-
pituitary-gonadal (HPG) axis (Mugabe et al., 2017). 
Flushing or using proper diets before or during the mat-
ing season can improve ovulation rate, twinning rate, 
fertility rate, and lower the risk of miscarriage in early 
pregnancy (Burritt et al., 2012).

Vitamin E, L-carnitine, and omega-3 have been 
shown to have effects on fertility. Fish oil has received a 
lot of attention in recent years because of the abundance 
of omega-3 polyunsaturated fatty acids (PUFA-ω3) 
(DURMUŞ, 2018). A diet rich in PUFA-ω3 positively af-
fects fertility by affecting ovule quality and embryo im-
plantation (Nehra et al., 2012). Omega-3 fatty acids have 
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ABSTRACT

This study was performed to evaluate the effects of vitamin E, L-carnitine, and fish oil on the 
numbers of follicles, pregnancy, Reactive Oxygen Species (ROS) expression, and expression of 
several ovarian genes in sheep. For this purpose, 256 sheep were randomly divided into eight 
experimental groups. They were given a diet supplemented with vitamin E, L-carnitine, and 
fish oil alone and in combination. FBS, estradiol levels, size of the follicles, and pregnancy rate 
were observed. Expressions of Superoxide Dismutase 1 (SOD1), Superoxide Dismutase 2 (SOD2), 
Transforming Growth Factor –β (TGF-β), and Peroxisome Proliferator-Activated Gamma Receptor 
(PPAR-γ) genes were measured using Reverse Transcription-Polymerase Chain Reaction (RT-PCR), 
and ROS was measured using fluorescence microscope. At the time of mating and pregnancy, the 
highest number of follicles and pregnant ewes were observed in the groups supplemented with 
fish oil and antioxidants (p<0.01). The lowest numbers of follicles and pregnancy was observed in 
the group supplemented with fish oil alone (p<0.01). The highest expressions of SOD1 and TGF-β 
genes (p<0.01) as well as SOD2 and PPAR-γ (p<0.05) were observed in the group of concomitant use 
of fish oil with antioxidants. The highest amount of ROS was found in fish oil group (p<0.01), and 
the lowest was found in the groups supplemented with fish oil and antioxidant (p<0.01). The use of 
fish oil along with vitamin E and L-carnitine improved follicle function and increased pregnancy rate 
by reducing ROS in ewes’ ovaries as well as increasing the expression of SOD1, SOD2, TGF-βRI, and 
PPAR-γ genes. The use of fish oil along with antioxidants increases follicles and improves fertility in 
sheep.
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been shown to improve ovule growth (Moallem et al., 
2013). PUFAs are essential for cell proliferation during 
the formation of antral follicles (Ruiz-Sanz et al., 2019). 
Vitamin E is one of the most effective nutrients known 
for immune system function. This effect is partly due 
to its protective effect against PUFA oxidation (Lewis 
et al., 2019). α-Tocopherol is the most common form of 
vitamin E in tissues (Torquato et al., 2020). Vitamin E is 
a major fat-soluble antioxidant that scavenges peroxyl 
radicals and prevents PUFA oxidation. In the presence 
of vitamin E, peroxyl radicals react with α-tocopherol 
instead of lipid hydroperoxide, preventing further oxi-
dation (Lee & Han, 2018; Alemi et al., 2014). L-Carnitine 
(4-N-trimethylammonium-3-hydroxybutyric acid) is a 
natural compound that facilitates the transfer of fatty 
acids to the mitochondria for β-oxidation (Ishikawa et 
al., 2014). L-carnitine can improve mitochondrial func-
tion by maintaining the mitochondrial wall under stress 
(Li & Yu, 2012). L-Carnitine is an effective inhibitor of 
free radicals (Surai, 2015). In addition, L-carnitine can 
reduce liver fat peroxidation since it has a protective 
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role against reactive oxygen species (ROS) by applying 
antioxidant properties (Jin et al., 2019).

Some important genes in ova maturation and ova 
fertility are peroxisome proliferator-activated gamma 
receptor (PPAR-γ), superoxide dismutase 1 (SOD1), su-
peroxide dismutase 2 (SOD2), and transforming growth 
factor beta (TGF-β). The expression of these genes had 
previously been established in sheep ovaries (Minge et 
al., 2008; Kala, 2017; Yang et al., 2019).  The activity of 
PPAR nuclear receptors controls steroidogenesis, tissue 
regeneration, angiogenesis, lipid metabolism, activation 
of immune cells, and production of proinflammatory 
mediators. All three PPAR isotypes are active in sheep 
ovaries (Blitek & Szymanska, 2019; Vitti et al., 2016). 
PPAR-γ is expressed in granulosa cells to produce estra-
diol and regulate follicular fluid content and luteal cells 
to produce progesterone. PPAR-γ expression increases 
during follicle growth (Vitti et al., 2016). In a study 
with PPAR-γ deletion (in animals), regular ovulation 
was observed. Still, the level of progesterone secretion 
and consequently the embryo implantation rate was 
significantly reduced (Cui et al., 2002). Furthermore, the 
close relationship between PPAR and polycystic ovary 
syndrome has been reported (Rostamtabar et al., 2021). 
TGF-β plays a vital role in normal follicular growth and 
fertility. Ewes with mutations in the TGF-β family be-
came infertile due to the abnormal development of fol-
licles after the initial stage (Galloway et al., 2000). TGF-β 
has been shown to play an essential role in the process 
of follicular growth within the ovary (Monsivais et al., 
2017).

The superoxide dismutase is active in eliminating 
superoxide dismutase anion radicals from extracellular 
stimuli (McCord & Fridovich, 1969). In addition to the 
human gene, the complete genomic sequences of the 
SOD1 and SOD2 genes have been isolated and identi-
fied for the other species of animals as well as for sheep 
(Mishra et al., 2017). Oxidative stress indicates an imbal-
ance between the production and emergence of oxygen 
free radicals and the ability of the biological system to 
detoxify or repair their destructive effects (Reuter et al., 
2010; Ďuračková, 2010). ROS include several oxygen-
induced chemical reactive molecules used in balanced 
concentrations for better cell function. ROS causes DNA 
damage to the ovarian epithelium or cell apoptosis. 
However, it modulates cell oxidative status, follicular 
growth, corpus luteum formation, endometrial differ-
entiation, and embryonic growth (Ghasemzadeh et al., 
2013).

At high concentrations, ROS can be an essential me-
diator of damage to the structure of lipids, proteins, and 
nucleic acids that eventually cause a condition called 
oxidative stress (Huang et al., 2016). Free radicals have 
high energy due to free electrons and can damage tis-
sues and cells (Kehrer & Klotz, 2015). To stop a reaction, 
the newly formed radical must react with another free 
radical to remove the unpaired electron or react with the 
free radical scavenger (Gülcin et al., 2002). 

However, no study has examined the relationship 
between fish oil as a source of omega-3 and antioxidants 
on genes involved in improving fertility in the ovary 
and ROS. This study was performed to evaluate the ef-

fect of vitamin E, L-carnitine, and omega-3 on fertility, 
ROS expression, and some ovarian genes in sheep. We 
assume that fish oil and antioxidants increase follicles 
and improve fertility in sheep.

MATERIALS AND METHODS

This experiment was approved by the Ethics 
Committee of Animal Care and Use of Islamic Azad 
University, Arak Branch, according to the guidelines 
of the National Research Council for the care and use 
of laboratory animals (P.O. BOX: 9655645613-ARAK-
IRAN). This study was performed in winter. In total, 256 
3-4 years old sheep were used in this study. We used a 
completely randomized design for our experiment. The 
experimental sheep were randomly divided into eight 
experimental groups, and four replicates in each experi-
mental group, and eight ewes in each replication. The 
groups were divided according to parity, age, weight, 
and body condition score so that the mean of the groups 
was the same.

The experimental ewes were divided into eight 
groups, which include: 1) control (Con) (Base diet), 
2) Base diet enriched with 800 international units/
day of vitamin E (E) (Hill et al., 2009), 3) Base diet 
enriched with L-carnitine (L) (500 mg/kg dry matter) 
(Foroozandeh et al., 2014), 4) Base diet enriched with 
vitamin E + L-carnitine (EL), 5) Base diet enriched with 
Fish oil (F) (35 g/kg dry matter) (Ferreira et al., 2014), 
6) Base diet enriched with fish oil + Vitamin E (FE), 7) 
Base diet enriched with fish oil + L-carnitine (FL), and 8) 
Base diet enriched with fish oil + vitamin E + L-carnitine 
(FEL). According to NRC (2007), treatment diets were 
adjusted and the structures of diets are shown in Table 
1. 

In the current study, the experimental sheep were 
adapted for ten days. The sheep were fed with the 
treatment diet for 20 days. The diets were given to the 
experimental ewes in four meals with 6 hours intervals. 
Estrus synchronization was then performed. CIDRs 
(Source of progesterone) were used to synchronize the 
estrus cycles of experimental ewes. The CIDRs were 
placed in the vaginal area for 14 days, and after remov-
ing the CIDRs, PG-600 (400 IU PMSG + 200 IU hCG) 
were injected for all groups of experimental ewes and 
mating was done. After mating, the diet was continued 
for another 25 days. In this study, blood sampling and 
ultrasound were performed before the adjustment pe-
riod for the health of sheep. Sonography was performed 
before mating, where the number of follicles above 3 
mm was counted. Thirty-five days after the mating, an 
ultrasound was performed with a 7.5 MHz abdominal 
probe to diagnose pregnancy. Blood samples were taken 
from the jugular vein of the ewes before the acclimati-
zation period and at the time of mating. Blood samples 
were collected in tubes containing anticoagulant EDTA. 
Plasma samples were stored in the freezer after cen-
trifugation to measure the amount of FBS and estradiol 
using the ELISA kit. Data were analyzed using SAS soft-
ware (version 9.4). Kolmogorov-Smirnoff normality test 
and the comparison of mean treatments were performed 
by Duncan test.
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Procedure for Expression of Ovarian Genes and 
Intracellular ROS Levels 

At the time of added rams, four sheep were selected 
from each treatment for slaughtering. One sheep was 
selected from each replication and a total of 32 sheep 
were sacrifized. After slaughtering, ovarian biopsy was 
performed to evaluate SOD1, SOD2, PPAR-γ, TGF-βRI 
genes and intracellular ROS levels. Samples were im-
mediately stored in liquid nitrogen at -196 °C.

The frequency of transcription of SOD1, SOD2, 
PPAR-γ, TGF-βRI genes were measured using Reverse 
Transcriptase PCR (RT-PCR) followed by a real-time 
quantitative PCR (qPCR) for relative expression level. 
Gene-specific Forward and Reverse primers used in 
this study were designed from sequences in NCBI using 
Primer 3 plus software (Table 2).

RNA Extraction

Before the RNA isolation, samples were washed 
with 0.25% Trypsin-EDTA solution. The total RNA of 
the samples was isolated by Trizol method according 
to the manufacturer’s instructions (Invitrogen, Life 
Technologies, Carlsbad, CA, USA). Briefly, the samples 
were mixed with 200 μL of Trizol and incubated for 
10 minutes. They were then incubated for 10 minutes 
by adding 50 μL of chloroform again. The sample 
mixture was centrifuged at 4 °C for 15 minutes. The 
upper aqueous phase was collected and transferred to 
a new RNAse-free tube, then the sample was dried by 
incubation. 

Evaluation of cDNA

The integrity of total RNA was checked on 1% 
agarose gel electrophoresis using 1x TAE buffer. Total 
RNA purity was assessed using a nanodrop with OD 
260: OD 280 values, which was more than 1.8. Reverse 
Transcription (RT) using SuperScript III FirstStrand 
Synthesis Kit (Invitrogen, Life Technologies, Carlsbad, 
CA, USA) was performed according to the manufac-
turer’s instructions. The synthesized cDNA was stored 
at -20 °C until being used for RT-PCR and qPCR.

Procedure for Reverse Transcription PCR (RT-PCR) 

RT-PCR for all genes were carried out with 1.25 U 
Taq DNA polymerase, 2.5 mM MgCl2, 0.4 mM dNTP 
mix, and 5 pM both forward and reverse primers. 

The PCR reaction performed is as follows: A cycle 
of 95 °C for 15 minutes with 30-45 cycles of denaturation 
at 95 °C for 15 seconds, annealing at 59-64 °C for 30 sec-
onds, extension at 72 °C for 15 seconds, and final exten-
sion of 72 °C for 5 minutes. Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) was used as the reference 
gene in this study (Figure 1).

Procedure for Quantitative PCR (qPCR)

The relative expression level of genes in oocytes 
were quantified by qPCR using step one plus qPCR 
system (Applied Biosystem, Foster City, CA, USA). 
Relative quantification method was used to analyze the 
expression level of genes. The Maxima SYBR Green/
Rox qPCR (2X) combination was used for qPCR reac-

Table 1. Feed ingredients and chemical composition of treatment diets (% of diet dry matter)

Feedstuff
Treatments1

Con E L EL F FE FL FEL
Alfalfa (%) 40.00 40.00 40.00 40.00 35.00 35.00 35.00 35.00
Wheat straw (%) 45.00 45.00 45.00 45.00 50.00 49.92 49.95 49.87
Milled barley (%) 3.00 3.00 3.00 3.00 2.50 2.50 2.50 2.50
Milled corn (%) 7.50 7.42 7.45 7.37 4.50 4.50 4.50 4.50
Soybean meal (%) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Molasses beet sugar (%) 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
Beet sugar pulp (%) 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
Mineral and vitamin supplements2 (%) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Vitamin E (%) - 0.08 - 0.08 - 0.08 - 0.08
L-carnitine (%) - - 0.05 0.05 - - 0.05 0.05
Fish oil (%) - - - 3.50 3.50 3.50 3.50
Chemical composition of the feed:

Dry matter intake (g/d) 1150 1150 1150 1150 1150 1150 1150 1150
Metabolizable energy (Mcal/kg) 2.09 2.09 2.08 2.08 2.12 2.12 2.12 2.11
Crude protein (%) 11.12 11.12 11.12 11.12 10.42 10.92 10.92 10.91
Neutral detergent fiber (%) 54.72 54.72 54.72 54.75 55.26 56.23 56.25 56.19
Acid detergent fiber (%) 39.74 39.74 39.74 39.75 40.65 40.98 41.00 40.95
Calcium (%) 9.41 9.41 9.41 9.41 8.76 8.76 8.76 8.76
Phosphorus (%) 2.55 2.55 2.55 2.57 2.37 2.37 2.37 2.37

Note=	1Treatments: Con= control, E= vitamin E, L= L-carnitine, EL= Vitamin E + L-carnitine, F= Fish oil, FE= Fish oil + Vitamin E, FL= Fish oil + 
L-carnitine, FEL= Fish oil + Vitamin E + L-Carnitine. 2Vitamin-mineral supplement= 6.19% calcium, 6.9% phosphorus, 1.7% sodium, 9.1% mag-
nesium, 0.3% iron, 0.03% copper, 0.2% manganese, 100 ppm cobalt, 100 ppm iodine, 0.1 ppm selenium, 50×105 international units of vitamin A, 
10×105 international units of vitamin D, no vitamin E.  
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tions (Fermentas, Thermo Fisher Scientific, Waltham, 
MA, USA). In each reaction, 5-μL qPCR master mix, 5 
pM forward and reverse gene primers, and 2 μL cDNA 
samples were used. Temporal and temperature program 
used in PCR reaction includes: initial denaturation at 95 
°C for 10 minutes with 40 cycles of denaturation at 95 
°C for 15 seconds, and then annealing and expansion 
at 60 °C for 1 minute. The expression of each gene was 
measured relative to GAPDH.

Statistical Analysis
 
To determine the relative expression level of each 

mRNA from Ct (threshold cycle for target amplification) 
using the method 2-ΔΔCt (normalized expression ratio) 
was used. The ΔCt = Ct (target gene) - Ct (housekeeping 
gene) and ΔΔCt = ΔCt (target gene sample) - ΔCt (cali-
brator). The RT-PCR and qPCR amplicons of genes were 
confirmed by ethidium bromide (0.5 µg/mL) stained 
2% agarose gel electrophoresis. Gene expression levels 
in tissues were analyzed by ANOVA statistical analysis 

Table 2. 	Sequences of primers used to amplify GAPDH genes as reference genes and SOD1, SOD2, TGF-βRI, and PPAR-γ in ewe 
ovaries

Gene Primer Product size Annealing temperature (°C)
GAPDH TGACCCCTTCATTGACCTTC 184 bp 62.6

CACGTACTCAGCACCAGCAT
SOD1 TTCGAGGCAAAGGGAGATAA 226 bp 59.7

CAATGGCAACACCATTTTTG
SOD2 GGAAGCCATCAAACGTGACT 186 bp 63.6

AGCAGGGGGATAAGACCTGT
TGF-βRI GCAAAGGTCGTTTTGGAGAA 207 bp 62.0

CTGACACCAACCAGAGCTGA
PPAR-γ GATAAAGCGTCAGGGTTCCA 187 bp 62.9

TATGAGACATCCCCACAGCA
Note: 	GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase, SOD1: Superoxide Dismutase 1, SOD2: Superoxide Dismutase 2, TGF-β: Transforming 

Growth Factor–β, PPAR-γ: Peroxisome Proliferator-Activated Gamma Receptor. 

Figure 1.	Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) expression pattern as a reference gene and 
Superoxide Dismutase 1 (SOD1), Superoxide Dismutase 2 (SOD2), Transforming Growth Factor–β (TGF-
βRI), and Peroxisome Proliferator-Activated Gamma (PPAR-γ) genes on several treatments in ewes ovaries. 
Note: control (Con), vitamin E (E), L-carnitine (L), vitamin E + L-carnitine (EL), Fish oil (F), Fish oil + Vitamin 
E (FE), Fish oil + L-carnitine (FL), Fish oil + Vitamin E + L-Carnitine (FEL).
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using Graphpad Prism 5 (San Diego, CA, USA). p<0.05 
was considered significant (Livak & Schmittgen, 2001). 
All experiments were performed in triplicates. 

Expression of Reactive Oxidative Species (ROS)

Intracellular ROS levels was measured using 
fluorescent markers 2’, 7’dichlorodihydrofluorescein di-
acetate was determined according to the manufacturer’s 
instructions (Figure 2). The samples were incubated 
for 30 minutes in phosphate-buffered saline solution 
(PBS) with ten mM DCFH-DA solution at 37 °C in the 
dark. This marker has a high sensitivity to H2O2. After 
incubating and washing twice, ROS analysis was done 
using epifluorescence microscope with UV filters of 460 
nm.  DA-DCFH actively enters the cell, and by the ac-
tion of cellular esterase, the diacetate group is cleaved, 
and the non-fluorescent compound DCFH is formed. In 
the presence of hydrogen peroxide, DCFH is oxidized to 
DCF, leading to an intense green fluorescence. This com-
pound is not able to leave the cell and can be evaluated 
by fluorescence microscope. The fluorescence intensities 
of oocytes were analyzed by ImageJ software. 

RESULTS

According to the results, the amount of FBS in 
the blood at the time of first blood sampling before 

adaptation (FBS1) and second blood sampling at 
the time of mating (FBS2) were not affected by the 
experimental treatments (p>0.05). In addition, the level 
of estradiol in the blood at the time of the first blood 
sampling (Est1) and the second blood sampling (Est2) 
did not show a significant change (p>0.05) (Table 3). The 
number of follicles in the first sonography (Sono1) was 
not affected by the experimental treatments. However, 
in the second sonography (Sono2), the number of 
follicles in the FEL, FE, FL groups showed a significant 
increase. In groups E and L, no change was observed 
compared to the control group, but group F had the 
lowest number of follicles. The highest pregnancy rate 
was observed in FE, FL, and FEL groups, and the lowest 
pregnancy rate was observed in group F (p<0.01) (Table 
4). The presence of fish oil alone reduced pregnancy, 
which was improved with antioxidants. The highest 
level of ROS expression was observed in group F (23.01), 
and the lowest expression was observed in E, L, EL, 
FEL groups (13.80, 13.49, 13.51, 14.12) compared to the 
control group (p<0.01) (Figure 3). The use of fish oil 
alone has increased the amount of ROS in the tissue, 
which can be observed by adding antioxidants to the 
diet. Fish oil alone decreased the expression of genes in 
the ovaries by increasing the level of ROS in the tissue 
(Figure 2). Also, the highest level of SOD1 expression 
was found in the groups fed with antioxidants and fish 
oil, and the lowest gene expression was found in the 

Table 3. 	Fasting blood sugar and blood estradiol (mg/dL) in pre-adaptation (1) and pre-mating (2) periods in ewes treated with 
vitamin E, L-Carnitine, and fish oil

Item
Treatments1

Con E L EL F FE FL FEL SEM p-Value
FBS (1)2 62.57 50.96 51.60 52.90 59.03 66.22 66.14 66.78 2.22 0.308
FBS (2) 57.28 54.74 55.26 55.08 55.16 56.61 58.08 56.87 0.59 0.852
Estradiol (l)3 94.96 92.95 93.37 93.56 90.94 87.68 87.75 83.73 2.16 0.935
Estradiol (2) 106.26 102.55 102.81 99.37 91.44 86.14 86.39 86.55 2.65 0.260

Note: 	¹Treatments: Con= control, E= Vitamin E, L= L-carnitine, EL= Vitamin E + L-carnitine, F= Fish oil, FE= Fish oil + Vitamin E, FL= Fish oil + 
L-carnitine, FEL= Fish oil + Vitamin E + L-Carnitine. ²FBS= Fasting blood sugar. ³Estradiol levels.

Table 4. 	Number of follicles above 3 mm before adaptation (Sono1) and before mating (Sono2), and the percentage of pregnancy (%) 
in ewes during the flushing period treated with vitamin E, L-Carnitine, and fish oil

Item
Treatments1

Con E L EL F FE FL FEL SEM P-Value
Sono12 1.12 1.13 1.14 1.08 1.05 1.14 1.1 1.11 0.024 0.993
Sono2 1.03b 1.14b 1.15b 1.22b 0.81c 1.50a 1.46a 1.67a 0.058 0.000**

Pregnancy 55.87b 60.04b 59.97b 62.33b 40.31c 80.23a 78.38a 85.23a 3.26 0.000**

Note: 	** and *, respectively= the probability level of 1% and 5% and the superscript of each number indicates a significant order. ¹Treatments: Con= 
control, E= Vitamin E, L= L-carnitine, EL= Vitamin E + L-carnitine, F= Fish oil, FE= Fish oil + Vitamin E, FL= Fish oil + L-carnitine, FEL= Fish oil + 
Vitamin E + L-Carnitine. ²Sonograph. 

Figure 2.	 Detection of Reactive Oxygen Species (ROS) activity level on treatments control (Con), Vitamin E (E), L-carnitine (L), vita-
min E + L-carnitine (EL), Fish oil (F), Fish oil + Vitamin E (FE), Fish oil + L-carnitine (FL), Fish oil + Vitamin E + L-Carnitine 
(FEL) in ewes ovaries.
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groups fed with fish oil diet (p<0.01). The expression 
levels of the SOD2 gene in FL, FE, and FEL groups 
(0.979, 0.991, and 0.993, respectively) showed the highest 
expression rate compared to control and F groups (0.676 
and 0.662) (p<0.01). The expression level of the TGF-β 
gene in FL, FE, and FEL groups showed a significant 
increase compared to the other treatments. In addition, 
the highest amount of PPAR-γ was observed in FE and 
FEL groups (1.991 and 1.995), and the lowest amount 
of PPAR-γ expression was observed in F group (1.356) 
(p<0.05). In this study, the use of antioxidants did not 
affect the expression of genes; the reason can be related 
to the dose of antioxidants used. Still, the addition of 

fish oil as a source of omega-3s and antioxidants was 
able to increase the expression of genes and improve 
fertility and follicle count.

DISCUSSION

The use of fish oil in the basal diet showed a sig-
nificant decrease in the percentage of pregnancy and 
the number of follicles. Fish oil is rich in omega-3 fatty 
acids (Olsen et al., 1992). High levels of unsaturated fatty 
acids in fish oil expose it to peroxidation (Sherratt et al., 
2020), which results in oxidative stress. Oxidative stress 
leads to the development and spread of cellular dam-

Figure 3. 	Reactive Oxygen Species (ROS) and expression of Superoxide Dismutase 1 (SOD1), Superoxide Dismutase 2 (SOD2), 
Transforming Growth Factor–β (TGF-βRI), and Peroxisome Proliferator-Activated Gamma (PPAR-γ) genes after RT-PCR in 
ewes ovaries treated with vitamin E, L-Carnitine, and fish oil. Note: control (Con), vitamin E (E), L-carnitine (L), vitamin E 
+ L-carnitine (EL), Fish oil (F), Fish oil + Vitamin E (FE), Fish oil + L-carnitine (FL), Fish oil + Vitamin E + L-Carnitine (FEL). 
(** and * respectively the probability level of 1 and 5% and the superscript of each diagram specifies a significant order).
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ages, including plasma membrane peroxidation (Hao et 
al., 2006), amino acid oxidation (Heinecke, 2002), nucleic 
acid oxidation (Sung et al., 2013), apoptosis (Lee et al., 
2014), and necrosis (Manickam et al., 2017).

We also saw the highest expression level of ROS 
gene was found in the group of sheep fed with fish 
oil diet. ROS is involved in various physiological 
reproductive functions such as ovule maturation, ovar-
ian steroidogenesis, ovulation, implantation, blastocyst 
formation, and corpus luteum function (Zhang et al., 
2005). ROS can regulate cell function by activating and 
controlling biological activity production and activating 
key cell-signaling pathways (Li et al., 2017). Excessive 
ROS production has detrimental effects on cell function 
and may endanger reproduction and fertility (Adeoye 
et al., 2018). It has been shown that ROS is produced in 
the follicle during the ovulation process. ROS can risk 
the ovulation process by rupturing the follicle (Lu et al., 
2018).

In the present study, the reduction of ROS produc-
tion was observed by adding antioxidants to fish oil as 
a source of omega-3. Vitamin E consumption signifi-
cantly increases the activity of antioxidant enzymes and 
reduces the level of fat peroxide (Jia et al., 2017). The 
antioxidant effect of L-carnitine is related to the direct 
accumulation of free radicals. L-Carnitine can effectively 
reduce lipid peroxidation and free radicals (Shokrzadeh 
et al., 2013). L-carnitine prevents lipid peroxidation by 
helping to maintain mitochondrial integrity and reduce 
the chance of ROS production (Kumaran et al., 2005). 
The presence of SOD enzyme in the cells and tissues 
keeps the superoxide anion concentration at a very low 
level. The activity of SOD in the cells and extracellular 
environments is vital for the prevention of oxidative 
stress-related diseases and the prevention of various 
disorders (Matsuzawa & Ichijo, 2008; Wiemer, 2011). 
One study showed that ROS levels decreased with the 
activation of SODs (Sun et al., 2012). SODs act as the first 
line of antioxidant defense to prevent oxidative stress 
(Ighodaro & Akinloye, 2018). SODs are also the first 
line of defense and among the most important defenses 
against ROS (Gill et al., 2015). 

This study, using vitamin E and L-carnitine as anti-
oxidants, showed that the groups of experimental ewes 
which received antioxidants had lower ROS and higher 
SOD levels. In addition, the highest number of follicles 
and pregnancy was found in the groups of experimental 
ewes that had lower ROS levels, and the highest num-
ber of follicles and pregnancy was found in the groups 
of ewes fed with antioxidants and fish oil containing 
omega-3 diet, which is consistent with previous studies. 
Adding vitamin E to the diet was associated with reduc-
ing ROS (Cam et al., 2004). Also, by adding L-carnitine 
to the diet, the production of ROS decreased, and the 
relative expression level of SOD1 and SOD2 genes in 
sheep ovarian tissue increased (Mishra et al., 2016). 
The decreased ROS levels in female follicular fluid 
increased the number of follicles and increased fertility 
(Attaran et al., 2000; Elizur et al., 2014). The presence of 
vitamin E along with omega 3 in the diet can play a role 
in boosting follicle growth (Nateghi et al., 2019). In the 
present study, it was shown that the use of vitamin E 

and L-carnitine increased the expression of TGF-β in the 
ovary, which led to the improved follicle function and 
pregnancy; this could be due to the improved inflam-
mation in the tissue as well as the better function of the 
ovary. The ability of collagen to proliferate will promote 
the growth of follicles; TGF-β is involved in cell prolif-
eration, differentiation, metabolism, fibroblasts, collagen 
synthesis, and extracellular matrix formation; collagen 
is essential for follicular growth. Various cytokines 
regulate it, TGF-β has been shown to have a regulatory 
effect on follicular collagen, and collagen plays an im-
portant role in follicular development (Zhou et al., 2021). 
Activation of TGF-β is due to protein oxidation to ROS 
(Sun et al., 2017). TGF-β proteins play an essential role 
in gonadal growth and follicular growth (Rosairo et al., 
2008). In mammals, TGF-β is known to regulate repro-
duction, including ovarian function (Raja-Khan et al., 
2014). TGF-β and its receptors are present in the ovarian 
follicles. In addition, a positive effect on oocyte growth 
has been shown in vitro (Rodrigues et al., 2014).

One study showed that PPAR-γ may be used as 
an anti-inflammatory in various types of inflamma-
tion (Kim et al., 2012). Therefore, in the present study, 
PPAR-γ can improve reproductive function by affecting 
inflammation and follicles (Hara et al., 2013). PPAR-γ 
activation can regulate inflammatory responses (Kielian 
& Drew, 2003). Although omega-3s may be a small part 
of the fatty acids in the follicles, the relative frequency 
of omega-3s in the granulosa cells is physiologically 
higher than in the ovule. Therefore, it can be suggested 
that omega-3 fatty acids regulate ovule maturation and 
growth mainly by altering the metabolism and function 
of granulosa cells via PPAR (Zarezadeh et al., 2019). 
Vitamin E can act as ligands for PPAR-γ activating 
receptors (De Pascale et al., 2006). As a result, the pres-
ence of antioxidants (vitamin E or L-carnitine) and fish 
oil (omega-3s) improves the function of reproductive 
activity in the ovaries. We recommend the simultaneous 
use of fish oil and antioxidants to improve reproductive 
performance in sheep.

CONCLUSION

The use of fish oil along with vitamin E and 
L-carnitine improved follicle function and increased 
pregnancy rate by reducing ROS in ewes' ovaries as 
well as increasing the expression of SOD1, SOD2, TGF-
βRI, and PPAR-γ genes. The use of fish oil along with 
antioxidants increases follicles and improves fertility in 
sheep.
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