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This study examines the effect of impact surface on head kinematic response and 
maximum principal strain (MPS) for equestrian falls. A helmeted Hybrid Ill headform was 
dropped unrestrained onto three impact surfaces (steel, turf and sand) and three 
locations. Peak resultant linear acceleration, rotational acceleration and duration of the 
impact events were measured. A finite element brain model was used to calculate MPS. 
The results revealed that drops onto steel produced higher peak linear acceleration, 
rotational acceleration and MPS but lower impact durations than drops to turf and sand. 
However, despite lower MPS values, turf and sand impacts compared to steel impacts 
still represented a risk of concussion. This suggests that equestrian helmets standards 
do not properly account for the loading conditions experienced in equestrian accidents. 
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INTRODUCTION: Equestrian helmets are designed to pass standards which involve a drop 
test to a rigid steel anvil (EN 1384:1997). The introduction of these standards and use of 
these helmets has considerably reduced the incidence of traumatic brain injuries (TBI) 
(Harrison, Mills & Turner, 1996; Northey, 2003). However, concussive injuries continue to 
occur even when equestrian helmets are worn by jockeys. One possible explanation for the 
continued high incidence of concussion could be that the rigid steel anvil used in equestrian 
helmet standards may not reflect the type of impact surfaces that are commonly associated 
with concussion. Concussions in equestrian accidents are typically a result of falls to soft 
surfaces such as grass, turf and sand (Mills 8 Whitlock, 1989). These soft surfaces absorb 
more impact energy than harder surfaces (Hunt & Mills, 1989) and can affect the loading 
conditions of the impact. Different impact events are characterized by different loading 
conditions that can affect the performance of a helmet (Hoshizaki, Post, Oeur & Brien, 
2014). The manner in which the head and brain are loaded during an impact is an important 
consideration for helmet designs. Currently, the loading conditions simulated in equestrian 
standards may not reflect those of real world accidents. A better understanding of how 
different impact surfaces influence the response of the head and brain may provide a more 
effective strategy for developing a safer riding environment through improved helmet design. 
The purpose of this study is to examine the effect of impact surface on head kinematic 
response and maximum principal strain for equestrian falls. 

METHODS: A 50th percentile Hybrid Ill headform was used for all impact conditions. The 
headform used Endevco7264C-2KTZ-2-300 accelerometers (Endevco, San Juan 
Capistrano, CA) in a 3-2-2-2 accelerometer array (Padgaonkar, Krieger 8 King, 1975). 
Accelerometer signals were collected at 20 kHz by a TDAS Pro Lab system (DTS, Seal 
Beach CA) and filtered with a CFC 1000 filter. The headfom was dropped unrestrained with 
the use of a halo which was attached to the drop carriage of a monorail drop rig (Figure 1). 
The drop carriage ran along a 4.7 m long rail on ball bushings to reduce the effects of friction 
on the inbound velocity of the headform. The monorail drop rig was connected to a computer 
equipped with Cadex Software (Cadex Inc., St-Jean-sur-Richelieu, QC), which was used to 
control the velocity and release mechanism for the impact. The headform was released by a 
pneumatic piston and the inbound velocity was measured using a photoelectric time gate. 
The headform was dropped at 5.4 mls in accordance with equestrian helmet standards (EN 
1384:1997) onto steel, turf and sand anvils. The impact locations were the front, side and 
rear of the head. Three trials were conducted for each condition and peak resultant linear 
and rotational accelerations and impact duration of the headforrn were obtained. The 



resulting linear and rotational accelerations served as input to a finite element model which 
calculated the magnitude of peak maximum principal strain (MPS) in the cerebrum. 

The model used in this study was the University College Dublin Brain Trauma Model 
(UCDBTM) and consisted of 26,000 hexahedral elements representing the scalp, skull, pia, 
falx, tentorium, cerebral spinal fluid (CSF), grey and white matter, cerebellum and brain stem 
(Horgan & Gilchrist, 2003; 2004). The head geometry of the UCDBTM was extract from 
computed tomography (CT) and magnetic resonance imaging scans (MRI) of a male human 
cadaver (Horgan & Gilchrist, 2004). The material properties of the model were based on 
cadaveric anatomical research (Horgan & Gilchrist 2003). The brain tissue was modelled as 
viscoelastic in shear with a deviatoric stress rate dependent on the shear relaxation modulus 
(Horgan & Gilchrist, 2003). The compressive behaviour of the brain was considered elastic. 
The viscoelastic behaviour representing the shear characteristics was defined using the 
following equation: 

m= L + (60 - c)eSr 
where &, represents the long tern shear modulus, Go is the short term shear modulus and 
is the decay factor (Horgan & Gilchrist, 2003). To simulate a sliding boundary condition CSF 
was modelled as solid elements with a low shear modulus and a high bulk modulus. There 
was no separation for the contact interaction and a friction ccefficient of 0.2 was used (Miller 
et al., 1998). The UCDBTM was validated through comparisons of cadaveric pressure 
responses conducted by Nahum, Smith, & Ward (1977) and brain motion research 
conducted by Hardy et al. (2001). Further validations were done by comparing 
reconstnrctions of real world traumatic brain injury (Post et al., 201 5). 
To assess the influence of impact surfaces two-way ANOVAs were conducted for peak 
linear and rotational acceleration, MPS and impact duration. When significant main effects 
were found post hoc Tukey tests were performed. For all comparisons a=0.05. Data analysis 
was performed using SPSS 20.0 for Windows. 

RESULTS: The effect of different impact surfaces on linear and rotational acceleration, MPS 
and impact duration in equestrian falls are shown in Tables 1 and 2. Significant main effects 
of impact surfaces were found across all dependant variables (p c 0.01). Tukey post hoc 
tests found impacts to a steel anvil produced significantly higher linear and rotational 
accelerations and MPS compared to turf and sand surfaces (p < 0.05). Impact duration for 
steel impacts was found to be significantly lower than all other impact surfaces (p < 0.05). 
Impacts to the turf and sand surfaces were not significantly different from one another across 
all dependant variables measured (p > 0.05). 



Table 1 
Mean kinematic response and maximum principal straln I f  1 standard deviation] as 

DISCUSSION: This study examined the effect of impact surface on head kinematic 
response and MPS for equestrian falls. The results revealed that impacts to a steel anvil 
were significantly different from all other impact surfaces for all measured variables and that 
this was due to differences in surface compliance. Sofl surfaces absorb more impact energy 
than harder sulfaces (Hunt & Mills, 1989). This results in a change in the head's response to 
an impact. Falls to rigid impact surfaces such as steel result in a large amount of energy 
being transferred to the head due to the rigid surface offering little compliance, resulting in 
high magnitude and short duration linear and rotational accelerations (Post et al., 2015). 
More compliant impact surfaces result in lower magnitude and longer duration linear and 
rotational accelerations (Rousseau, 2014). These differences are reflected in impacts to the 
steel anvil compared to the impacts to the more compliant anvils made of turf and sand. 
These differences in compliance can further be seen in brain strain levels as impacts to a 
steel anvil resulted in higher MPS values than impacts to turf and sand anvils. Clearly. the 
conditions simulated in current equestrian standards (EN 1384:1997) do not reflect those of 
surfaces which are commonly impacted in equestrian accidents. 
Although the more compliant turf and sand surfaces absorb more impact energy, the load 
which is transferred to the brain can still result in injury. Despite the associated MPS values 
being lower for impacts to turf and sand compared to impacts to steel, all impact surfaces 
produced MPS values within the range of concussion (Galbraith, Thibault & Matteson, 1993; 
Zhang, Yang & King, 2004; Rousseau, 2014). Long duration impacts have been suggested 
to cause high brain stress and strain (Willinger, Taleb & Kopp, 1992; Gilchrist, 2003). 
Impacts of this nature have been found to cause diffuse axonal injury and concussions 
(Rousseau, 2014). Research in ice hockey has found that helmets designed to pass 
standards involving a drop to a rigid surface are not effective at decreasing MPS values 
below the level for concussion because the impact surface will absorb most of the energy 
and the helmet will absorb very little energy (Clark, Post, Hoshizaki & Gilchrist, 2015). As 
different loading conditions can affect the protective capabilities of a helmet, it is important 
that the method used to test helmets should be representative of the environment in which 
they are used (Hoshizaki, et al., 201 4). Impact test protocols which better reflect the impact 
conditions experienced in real world accidents should be developed. 

measured from a hybrid Ill headform and finlte element analysis. 

CONCLUSION: This study examined the effect of impact surface on kinematic head 
response and maximum principal strain for equestrian falls. When comparing impact 
surfaces, it was found that impacts to a steel anvil produced higher peak linear acceleration, 
rotational acceleration and MPS values but lower impact durations than the turf and sand 
surfaces. This suggests that current equestrian helmet standards may not properly account 
for the loading conditions experienced in equestrian accidents. As MPS values for turf and 
sand impacts are still within the concussive range, test protocols which better reflect the 
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impact conditions experienced in real world equestrian accidents should be developed. 
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