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The imaged-based modeling and simulation such as the virtual, interactive, musculoskeletal 

system (VIMS) software provides accurate muscle orientations and their relative moment 

arms. An imaged-based biomechanical model of upper extremity can be used for 

understanding of neuromuscular control and simulation of sports activities and surgery 

reconstruction after injuries.  The relative movement of the skeletal segments cause a 

change of muscle orientation and its moment arm, and then affect the role of the muscle 

loading during the motion. This paper reviews studies in applying three-dimensional 

shoulder model for investigation of the multi-joint muscle function. An image based and 

graphic-enhanced, quantitative model of the musculoskeletal system would be utilized for 

dynamic shoulder analysis with accurate muscle line of action incorporating bone movement 

and muscle wrapping around the joint. 
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During dynamic activities such as baseball pitching, stabilization of the humeral head on the 

glenoid fossa depends on an intact capsule and glenohumeral ligaments as well as on 

coordinated and synchronous activity in the deltoid and rotator cuff muscles. Injuries or 

disease of any of these structures can lead to instability and impingement of subacromial 

structures, resulting in pain and dysfunction in the shoulder region. For the past century, 

clinical and biomechanical researchers were interested in dynamic shoulder analysis. 

However, most of them were restricted to a static analysis in one position or limited to a 

specific plane and no prevision was given to accommodate muscle orientation changes 

during motion. Furthermore, it was difficult to visualize the 3D musculoskeletal model for 

validation purpose. 

A computer graphics-based dynamic shoulder musculoskeletal analysis system with display 

of the geometry relationship during the motion could help us in validation of the muscle 

orientation. The accurate muscle orientations can improve the accuracy of the muscle force 

calculation. Applications of the dynamic shoulder musculoskeletal model in baseball pitching 

could help us to know more about the function of muscle for preventing injuries, and 

optimizing performance in pitching and wheelchair propulsion activities. 

  

RESEARCH ON IMAGE-BASED MODELING AND SIMULATION OF UPPER EXTREMITY:  

With the rapid progress in computer science and medical imaging technology, more and more 

researchers have used computer program in simulation. The advantage of computational 

simulation is that we can yield the answer quickly and observe photographs or movies in the 

monitor clearly. On the contrary, the defect we should take notice of is the accuracy and 

rationality of the outcome. In 1995, a graphics-based software created by Delp and Loan that 

enabled users to develop, modify, and estimate models of various musculoskeletal structures 

(Delp and Loan 1995). This software allows users to build musculoskeletal models by reading 

a set of bone files, joint files, and muscle files. One of the most basic functions of the software 

is to display musculoskeletal geometry and evaluate muscle moment arms. This software 

package called SIMM (Software for Interactive Musculoskeletal Modeling) is used in a wide 

variety of applications. In 1996, Maurel et al. developed a biomechanical model of the human 

upper limb including biomechanical properties for bones, joints, and muscle lines of action, as 

require for an applicable dynamic analysis (Maurel et al. 1996). They have used their 

topological modeling tool to apply the theoretical model to the three-dimension left human arm 

reconstructed from the Visible Human Dataset. In addition, Chao has developed the virtual, 



 

 

interactive, musculoskeletal system (VIMS) software containing VIMS model, VIMS tools, and 

VIMS lab for biomechanical musculoskeletal analysis (Chao 2003). This simulation 

technology of VIMS combines the expertise in biomechanical analysis and computer graphic 

modeling to analyze mechanics of joints and connective tissue and to visualize the outcome in 

both static and dynamic forms together with the system involved. In 2006, a simulate software 

called AnyBody Modeling System was established to analyze the musculoskeletal system for 

human or animal body. The main idea of AnyBody included assuming the musculoskeletal 

system as a rigid-body system, using inverse dynamic concept to compute the muscle 

activation, and solving problems by formulating the muscle force as an optimization equation 

(Damsgaard et al. 2006). 

However, the commercial software like SIMM and AnyBody analyze the muscle force and 

joint reaction force, but ignore the effects of ligaments, and some details in the software 

package could not be modified. As shown in the literatures, musculoskeletal models, which 

were developed with different theorems, have been popular for biomechanical analysis, 

however, accuracy and individualization is the major difficulty in interpreting the 

biomechanical systems. 

 

VIMS SKELTON MODEL: The human skeleton model was adopted from commercial source 

and modified by EAI (Engineering Animation Inc., Ames, Iowa) as a general purpose surface 

model. The surface shape represented by small polygons, and its local coordinate system 

fixed on it to facilitate rigid body motion analysis and animation. A six-segment linkage 

including dominate side of hand, forearm, upper arm, scapula, trunk and pelvic were adopted 

in VIMS. Each segment in the skeleton model could be rotated with respect to the proximal 

segment composed the major anatomic joints (wrist, elbow, glenohumeral, scapulothoracic 

and trunk rotation) with assumed three degrees of freedom. This skeletal model serves the 

purpose to animate human movement in normal activities and sports actions using measured 

or calculated kinematic data for visualization purpose. The graphical visualization package 

VisLab (Engineering Animation, Inc, Ames, IA) was used for displaying the dynamic 

musculoskletal model. 

  

MUSCULAR MODEL: Ten major muscles around the glenohumeral (GH) joint including 

deltoid, biceps long head, triceps long head, pectoralis major, subscapularis, supraspinatus, 

infraspinatus, teres major, teres minor, and latissimus dorsi were included in shoulder model. 

For muscles with broad attachments areas, they were divided into different branches. The 

deltoid muscles were divided into anterior, middle, and posterior branches and the latissimus 

dorsi separated into thorax, lumbar, and iliac crest branches. While the pectoralis major 

divided into sternal and clavicular branches. Fifteen muscle lines were studied in this model. 

The data of the muscle attachment (origin/insertion) points was adopted from Maurel’s model 

(Fig. 2.6) that was averaged from digitizing the “Visible Human dataset” the computed 

tomography and magnetic resonance cadaver imgae provided by the U.S. National Library of 

Medicine (Maurel et al., 1996). 

 

APPLICATION AND SUMMARY:  

A virtual interactive musculoskeletal system of upper extremity can be applied in the baseball 

pitching and other activities such as wheelchair propulsion analysis. Although there were 

some limitations in the imaged-based model. The prediction of muscle forces still provides 

valuable results in studying the possible sports injury mechanism. The visualized 

biomechanical analysis is a new concept in studying musculoskeletal related problems. This 

methodology could be applied in other related shoulder injuries in various sports. 
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