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Human movement engages many body segments which are highly coupled. These 
couplings, known as synergies, have been widely investigated using principal 
components analysis (PCA). A primary limitation of the correlation matrices underlying 
PCA is that they do not account for phase differences or frequency-dependent variations 
in amplitude ratio between signals, yet such properties are widespread in relations 
between signals in the sensorimotor system. Coherence derived from dynamic linear 
systems analyses was introduced here to PCA applied to lower limb movements during 
normal walking. The results showed that one component could account for over 90% of 
the total variance in 26 joint angles. The findings confirm that the coordinative structure of 
walking is very low dimensional, comprising only a single degree of freedom. 
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INTRODUCTION: The control of human movement is simplified by organising actions such 
as walking or reaching into linkages or couplings between limb segments known as 
‘synergies’ or ‘coordinative structure’ (Bernstein, 1967). The musculoskeletal and neural 
elements become linked and operate as one functional unit to reduce the dimensionality of 
executive control. Many biomechanical studies support the existence of such functional units 
and demonstrate that multi-segmental movements are highly coupled and correlated (Kelso, 
Putnam, & Goodman, 1983; Lacquaniti, Soechting, & Terzuolo, 1986; Winter, 1990). 
Principal components analysis (PCA) is widely used for the investigation of data 
dimensionality and is increasingly employed to detect the pattern and identify the potential 
principal components in human walking (Yamamoto, Suto, Kawamura, Hashizume, Kakurai, 
& Sugahara, 1983; Wootten, Kadaba, & Cochran, 1990; Daffertshofer, Lamoth, Meijer, & 
Beek, 2004).  
Mathematically, PCA can provide a smaller number of independent or orthogonal variables 
named as principal components (PC) that maximally preserve the variance in the original 
data. Three to five PCs, which were the linear combination of EMG signals and temporal 
kinematic parameters, have been shown to reveal details of walking strategies (Yamamoto, 
et al., 1983; Wootten, et al., 1990; Deluzio, Wyss, Zee, Costigan, & Sorbie, 1997; Olney, 
Griffin, & McBride, 1998; Cappellini, Ivanenko, Poppele, & Lacquaniti, 2006). The 
coordinative structure of human walking has also been investigated by applying PCA on the 
time series of movement patterns of body segments in terms of coordinates and joint angles. 
It was suggested that four PCs could account for over 90% of data variance and represent 
the information collected from segment coordination during normal human walking 
(Daffertshofer, et al., 2004). 
Previous studies used either Pearson’s product moment correlation coefficient (PCC) or 
covariance to describe the relationships between the movements of each pair of segments 
for the PCA. The PCC requires that signals be in phase and have a fixed amplitude ratio 
throughout the cycle in order to generate a high correlation. Yet phase shifts and frequency-
dependent amplitude ratios between segments are frequently manifest in dynamic human 
movements. This limitation of the PCC can be overcome by conducting a cross-correlational 
and spectral analysis (Bendat & Piersol, 1971) which takes into account both phase 
differences and frequency-dependent amplitude ratios. The coherence square function 
(COH) derived from this analysis quantifies the variance accounted for by the dynamic linear 
relation between the signals. The current study therefore investigated the dimensional 
properties of lower limb segments coordination during walking at a self-selected pace by 
introducing the use of coherence in PCA analysis. The aim was to provide a better insight 
into the kinematic coordinative structure during walking. 
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METHODS: Six male adult subjects aged between 24 and 30 years (mean 27.7; SD 2.4) with 
no walking abnormalities, musculoskeletal or neurological disorders were involved in the 
study. A total of 29 reflective markers were attached on each subject’s lower limbs in order to 
define 11 body segments and 26 joint angles. The subjects walked barefoot along a 10 m 
walkway at a self-selected speed in the laboratory environment. The walking speed ranged 
from 1.14 to 1.51 m/s (mean: 1.30; SD: 0.12). The 3D trajectories of the markers were 
captured at 60 Hz by a motion analysis system (Motion Analysis Corporation, Santa Rosa 
CA, USA with Cortex 1.1.4 software) and converted to angular data (KinTrak Version 7.1.4). 
The joint angles were low-pass filtered using an 8th order dual pass Butterworth filter with a 
cut-off frequency of 5 Hz.  
Given the phase difference between joint angles and the limitations of PCC, the relationship 
between each pair of joint angles was analysed using two methods: conventional PCC and 
COH derived from cross-correlational and spectrographic analysis. A 26×26 matrix was 
obtained from each PCC and COH analysis of the 26 joint angles for each subject and PCA 
was performed on each matrix. Each PCA generated a series of components in the 
sequence of decreasing eigenvalues; large eigenvalues contribute more to the total variance 
of the original data. The dimensionality of the original data could therefore be reduced and 
the PCs could be identified to account for a particular proportional variance. Statistical 
analyses were conducted to compare the performance of the PCC and COH approaches in 
detecting the coordinative structure of human walking.  
 
RESULTS: The contribution of each component to the total variance and the cumulative 
contribution of the PCs were averaged across all the subjects (Figure 1). From the results of 
the PCA with the PCC matrix, the first 5 components were extracted because these 
components accounted cumulatively for approximately 86% of the total variance (Peres-
Neto, Jackson, & Somers, 2005). The 1st component contributed 36% of the total variance. 
The 6th and 7th components were not considered significant because their eigenvalues were 
0.86 and 0.63 respectively and their combined contribution was only an additional 5% of the 
total variance. In contrast to the PCA with PCC matrix, the PCA with the COH matrix 
demonstrated a dramatic increase (from 36% to 94%) in the variance accounted for by the 1st 
component, while the 2nd component explained only 1.7% of the total variance.  

 

Figure 1: Percentage of variance explained by PCs from PCC or COH matrices. 
 
A series of paired t tests were performed to detect significant differences between the 
number of PCs and the variance explained by the PCs extracted using the two methods 
(Figure 2). A significantly lower number of PCs was found in the PCA with COH (p <0.001). 
One PC from the analysis of the PCA with COH explained over 90% of total variance, while 
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more than 6 PCs would be required to explain a similar proportion of variance from PCA with 
PCC. A significantly higher variance explained by the PC extracted from PCA with COH was 
noted (p <0.001). Therefore, the PCA with COH matrix resulted in a fewer PCs that 
accounted for a greater proportion of variance in comparison with the PCA with PCC matrix.  

 
Figure 2: Mean and 95% confidence interval across 6 subjects of the number of PCs extracted 

and their percentage of variance explained derived from the PCAs with PCC and COH. 
 
DISCUSSION: The present study demonstrated the advantages of using coherence in 
principal components analysis by overcoming a primary limitation of the Pearson correlation 
coefficient for assessing dynamic relations between joint angles. The cross-correlational and 
spectrographic analysis applied to lower limb segments in terms of joint angles was 
demonstrated to enhance the power of principal components analysis in identifying 
coordinative structure in human walking. Although not investigated here, this approach would 
be expected also to enhance the power of other statistical techniques of matrix factorisation 
for capturing redundancies in high-dimensional data sets. 
In the previous studies, PCA based on correlation or covariance matrices has been applied 
to gait kinematics. Mah, Hulliger, Lee & Ocallaghan (1994) studied four frontal-plane and four 
sagittal-plane lower limb angles (including hip, knee and ankle flexion-extension) and found 
that three PCs accounted for at least 91% of the variance of the data set. Daffertshofer et al. 
(2004) studied the 3-D coordinates of 23 joint markers placed throughout the body (69 
signals in total) and found that the first four PCs accounted for about 90% of the variance of 
the data set. We used 29 markers to capture lower limb movement and calculate 26 joint 
angles. Five PCs were found in the present study to be necessary to represent the main 
features within the original data, which was comparable to the previous studies.  
The first 5 components from the PCA with PCC matrix accounted for 36%, 21%, 16%, 8% 
and 5% of variance, cumulatively accounting for over 85% of the total variance. In contrast, 
the first component from the PCA with COH matrix accounted for 94% of the total variance, 
while the second component only accounted for 1.7% of variance. This pattern indicates that 
there was only a single functionally significant principal component in the data. This finding 
shows that the coordinative relations between joint angles throughout the body during 
walking are more complex than the scalar relations described by regression analysis, which 
are limited to closely in-phase or anti-phase timing and fixed amplitude ratios throughout the 
cycle. The coordination can be described by linear dynamic relations that accommodate 
intermediate phase relations and frequency-dependent amplitude ratios, and yield a 
coordinative structure in human walking of only one degree of freedom.  
 
CONCLUSION: This study demonstrated the benefits of using a dynamic linear systems 
analysis which overcomes the limitation of the Pearson correlation coefficient in that it takes 
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into account the phase shifts between signals in enhancing the performance of principal 
components analysis in finding principal components. For the particular walking analysis, the 
coherence approach could be an advantage to reveal the potential correlations between 
each pair of angles by taking phase differences into account.  
One component instead of five was identified through the enhanced principal components 
analysis. This finding may indicate that the lower limbs during walking could be surprisingly 
highly correlated when linear dynamic relationship between joint angle pairs are considered. 
The lower limbs coordinative structure during walking was suggested to be very low 
dimensional and could be only one degree of freedom. The coordinative structure revealed in 
the current study could potentially benefit practitioners in their coaching, training and 
rehabilitation of participants in sports. 
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