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The mechanisms of propulsion can be deduced from 3D video analysis of swimming. The 
basic hydrodynamic equation can be used to compute the total force for those particles. 
The shoulder torque was calculated by summation over hand, lower arm and upper arm 
of infinitesimal torques of displaced water particles. These muscle force moments were 
related to the velocity of the mass centre as a measure of the propulsion. However, a 
direct interrelation between velocity and torques cannot be established since the total 
resistance of the body in motion is unknown. Therefore, the aim was to determine 
individual differences in swimming technique, controlled by shoulder, hip torques and 
swimming velocity, at any state of one movement cycle. Recommendations for best 
propulsion techniques are derived. 
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INTRODUCTION: For more than 40 years researchers have invested much work into a 
better understanding of propulsion in swimming. Propulsion is reflected by the velocity of the 
mass centre, which can be calculated by 3D video analysis. For training methodology it is 
interesting to know in which way propulsion is related to swimming technique. To understand 
this relation the drag forces acting on the limbs as well as the total drag acting on the body 
have to be known. This is a difficult problem. The paper presents the results of a six year 
study which consisted of the following elements: Design of a feasible measuring system, 
determination of the limb velocity by 3D video analysis, explanation of propulsion from a 
phenomenological point of view based on measuring data, quantification of the net muscle 
force moments by using the basic hydrodynamic equation (1) and, finally, deducing 
recommendations for the improvement of the individually best propulsion techniques. Our 
main aim was to indicate individual differences in swimming technique depending on hip and 
shoulder torques and on swimming velocity.  
The calculation of forces is based on 22 body point coordinates and their derivatives. There 
are three different forces in fluids: inertial force, convective force and – in contrast to solid 
bodies – also pressure force. In international scientific literature there are no publications 
paying attention to this distinction of three forces; application of the basic hydrodynamic 
equation for the calculation of propulsion forces has yet to be used. Sanders (1997), for 
example, applied the following formula to compute the force on the hand F = ρ A (CX, CY, 
CZ)∙v2 + ρ A (DX, DY, DZ)∙a, where C is a constant referring to drag and lift and D is a vector 
including the effective mass accelerated by the hand with acceleration a. The acceleration 
term is quite similar to the first term in the basic hydrodynamic equation, the velocity term 
however is different. Explanations for movement in the water run from the mechanics of the 
paddle steamer (Schleihauf, 1979), or that of the ship’s propeller up to undulations, like 
vibrations of the fins of fishes. Currently the vortex theory by Matsuuchi et al. (2009) is most 
popular. To move quickly in water we use our relatively large hands and feet to find water 
resistance and we repel ourselves like from a soft solid. In crawl stroke this happens directly 
with the hands when they are moved against the swimming direction. When swimming crawl 
stroke or butterfly with high speed, no part of the legs can push the water against the 
swimming direction. The feet are moved forward all of the time (Hildebrand, 2001). In the 
downstroke of the legs the streaming water (viewed from the swimmer) generates an 
acceleration force. Since the legs are bent in the knee and the hip joints, the muscle force 
moments cause a stretching of the body, pushing the mass centre while the joints are 
opening. The upstroke is even more complicated. The feet are coming up close to the 
surface. One can see the formation of a water peak at the highest point of the feet. Muscle 
forces cause a lift of the legs which in turn induces a negative drag. In other words, if the 
upstroke is strong enough the inflowing water sliding upwards along the legs will be 



accelerated. By Bernoulli’s equation, a slipstream arises at the lower legs, which can be 
transformed into propulsion at the beginning of the downward movement. This tricky 
technique must be learned.  

METHOD: The experiment was carried out at the swimming flume at the Olympic Training 
Centre in Hamburg. Technology and software were elaborated by Drenk, Hildebrand, Kindler 
and Kliche (1999) at the Institute for Applied Training Science Leipzig. Two 50 Hz cameras 
were used. We recorded the performances of four elite swimmers of height 182.0 ± 3.5 cm 
and of age 23.8 ± 4.3 years; one male breaststroke swimmer and three female swimmers. 
We calculated the forces at the limbs and moreover the joint torques at elbow, shoulder, 
knee and hip joint. The flow speed ranged from 1.15 m/s to 1.65 m/s. From 3D analyses we 
obtain velocities and accelerations of all model points. Using velocities, accelerations and 
coordinates of the joints by linear interpolation we calculate the velocity distribution of arms 
and legs (Drenk et al., 1999).  

The basic hydrodynamic equation involving force F on a volume element and its velocity v is  
(1) F= ρ ∂v/∂t + ρ

where p denotes the pressure, ρ the fluid density ρ ∂
 (v grad) v+ grad p,  

v/∂
ρ

t the inertial force and  
 (v grad)v

F
 the convective force. Explicitly, this reads as follows 

1

  F
 = ρ (∂u/∂t + u∙∂u/∂x + v∙∂u/∂y + w∙∂u/∂z) + ∂p/∂x  

2

F
 = ρ (∂v/∂t + u∙∂v/∂x + v∙∂v/∂y + w∙∂v/∂z) + ∂p/∂y 

3
Since velocity distribution and pressure close to a moving body and other boundary 
conditions are not known, the boundary value problem cannot be solved. 

 = ρ (∂w/∂t + u∙∂w/∂x + v∙∂w/∂y + w∙∂w/∂z) + ∂p/∂z. 

We use these equations as a definition of the force. We do not consider the whole swimmer, 
but only limbs which produce propulsion. Thus we can assume that water particle 
displacement occurs only close to the propulsive areas, and there are no shearing forces. 
The hands move on an S-shaped curve in a way that the hands catch into stationary water 
all the time. The resulting velocity, acceleration and velocity gradient are put into the right 
hand side of the basic hydrodynamic equation. On the left hand side we then obtain the force 
acting on a single mass element. Finally we can compute the torques via cross product of 
force and distance vector to the joints. We apply the following three simplifying assumptions: 

1. To calculate the force at the edge of limbs we take the effect of the vortices into 
account by designing an experimental form factor equal to two (Sommerfeld, 1954). 

2. Instead of the hydrodynamic pressure we use the hydrostatic pressure p = po + ρ g z, z 
being the depth of the water, po

3. The unknown velocity at some inner point of the limb is the linear interpolation of the 
velocities at the end points. The velocity in a small area close to the limb is constant in 
any plane orthogonal to the vector from one endpoint to the other. The same applies to 
accelerations. 

 the atmospheric pressure and g the gravitational 
acceleration. 

These simplifications refer to the unknown local environment, the area close to the hand, 
shank and so on. The force F related to the mass unit has three terms: the partial time 
derivative ρ ∂v/∂t, the inner product ρ (v grad) v and the gradient of the pressure grad p. The 
partial time derivative is the acceleration of the replaced particle. To compute the second 
term (v grad) v, including u∙∂u/∂x, v∙∂u/∂y, w∙∂w/∂z, we apply assumption 3: the gradient of 
velocity is constant and multiple of the endpoint vector. Here we also take the above 
mentioned form factor two from assumption 1 into account. In the first approximation the 
convective force is proportional to the square of the velocity of the moved body segments. 
Net muscle force moments for shoulder and hip joints can be calculated from the resulting 



force on mass particles. This is done by taking cross products of forces and distance vectors 
to the joints and summation over all mass particles. 

RESULTS: The principle which is used to produce propulsion with arms is a little bit different 
from the principle for legs. In breaststroke initially, after diving into the water, the arms move 
in swimming direction and against the water. The water is flowing upward towards the 
shoulder. When the arms are taken to the body there is one moment when the inner palm, 
the forearms and parts of the upper arms are pushing against swimming direction on the 
unmoved water resulting in a reverse of the streaming direction of the water. Obviously, just 
in these phases the drag force can be completely transformed into propulsion. It does not 
matter if the hands are led exclusively against the swimming direction, since the resulting 
force is always created against the local streaming direction. In the crawl stroke the hands 
are mainly led backward towards the hip. Especially in breaststroke swimming they are also 
led laterally. The drag that the hands are faced with is used with the help of the muscle force 
moment in shoulders and arms in such a way that the trunk pulls forward (Hildebrand, Drenk, 
& Kliche, 1999). Referring to crawl stroke one could imagine a hold at an anchor in the water 
from which one is pushing off. In breaststroke swimming one is pushing the hands together 
against the imaginary anchor to pull the body forward over the shoulders. But in these two 
cases different muscle groups are working (Fig. 2). The principles are implemented 
individually: In case the stretched arm catches deeply into the water a big torque is resulting 
from the long hand-lever (Fig. 1, left). In case the forearm is quickly moved into a 
perpendicular position towards the swimming direction drag is created at the whole forearm. 
This force lasts longer (Fig. 1, right). 

 

crawl stroke, left shoulder torque (alsh-f)                
v = 1.6 m/s   Tmax = 91 Nm       
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crawl stroke, left shoulder torque (franz-f)        
 v = 1.55 m/s  Tmax = 69 Nm

-80

-60

-40

-20

0

20

40

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4
time [s]to

rq
ue

 [N
m

]

Tx Ty Tz

 
Figure 1. Left shoulder torque of two elite crawl stroke swimmers. Left figure: deep 
arm pull, v-flow = 1.6 m/s, Right figure: perpendicular lower and upper arm and 
pressure on forearm until the arm is leaving the water, v-flow = 1.55 m/s. 
 
The thick solid line Tx represents the shoulder torque around the transverse axis, on the left 
with a maximum of 91 Nm and on the right with a maximum of 69 Nm. The dotted line Ty 
represents the torque component around the longitudinal axis and finally the thin solid line Tz

In breaststroke the movement of arms differs between women and men. Men swim about 
0.5 m/s faster than women. For men, by lack of time, a backward movement of the hands 
against the water is impossible. The very first technique of women breaststroke, in which 
hands create pressure against the swimming direction, becomes more and more ineffective 
with increasing swimming speed. Men develop the following strategy: when the outward 
movement of the hands is completed they are immediately put together below the breast. 
This move generates a drag transversal to the swimming direction. 

 
with the smallest amplitude represents the component around the vertical axis. The 
technique shown on the left picture requires both higher force values and higher joint 
performances. These two swimming techniques require different dry land training. 



Breaststroke, left shoulder torque (apo-b)      
v = 1.15 m/s   Tmax = 64 Nm
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Breaststroke, left shoulder torque (war50-6)    
 v = 1.65 m/s  Tmax = 142 Nm
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Figure 2. Breaststroke, left arm torques. Left figure: swimming technique at v-flow = 1.15 m/s. 
Right figure: swimming technique at v-flow = 1.65 m/s.  

The result is a much greater torque about the body axis, as shown in Figure 2 (dotted line, 
right figure). This technique therefore requires different control of arm and shoulder muscles, 
and a training that is different from the one for the classical technique. 

CONCLUSION: The quantification of the individual propulsion moments improved our 
understanding of the propulsion processes. We can prove that there are different ways of 
creating propulsion depending on swimming velocity. This has to be taken into account 
especially in long and short distance breaststroke swimming as well as when learning 
swimming techniques. As expected, the contribution of the moments arising from the upper 
arm and the thigh are small compared to the moments resulting from hand, foot and lower 
leg movements. In between we found individually different maximum forearm moments. At 
this point the swimming technique can be optimized. Compared to earlier estimations 
(Hildebrand, 2001) the torque in the shoulder joint is 50 percent larger. The significance of 
the three terms in the basic equation is of great interest. The greatest gain is produced by the 
convective force, while the effect of the pressure gradient is significantly smaller (that could 
affirm assumption 2). Inertial force has only the same significance for long breaststroke 
distances. In breaststroke swimming, with a velocity of 1.60 m/s, arm propulsion is 
dominating, but when swimming with about 1 m/s, leg propulsion dominates. The dolphin 
stroke in butterfly swimming and crawl stroke swimming (in case it is performed) has almost 
the double effect compared to the typical breaststroke leg stroke. Thus it has been possible 
to prove the great importance of the dolphin stroke for the performance trend in swimming. 
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