SOFTWARE FOR MATHEWATICAL MODELLING AND COIPUTER SIMULATION OP SPORTS MOVEMENTS AND TRAINING APPARATUS

ZINKOVSKY, A.V; MARAROV, N.V.; SHOLUKHEA, V.A. Politechnical institut
Leningrad
USSR

To make the analysis of interaction of a sportsman vith an apparatus we must develop the athenatical model and then we sust shor the realization of this method using a computer. Then the most importanta spect of this problen is the degree of detailization of the model and, as a result, it's adequacy to the types of movement under study. the development of softrare for the model includes several questions, wich are closely connected with each other, i. e. : selection of the mathemtical sodel, registration of the experimental data and its loading into the computer, analysis of the paraseters of the model vith regard to the experimental data, variation of the parameters and functions vith the air of obtaining movements vith the given properties (characteristics), presenting of the results of calculation in a form of diagrams, tables and kinematic schemes. These very ains deteraine the structure of softuare, destined for selection and analysis of the adequate models, deteraining the interaction of the sportsman and apparatus. At present it seeas that the siaple approach is the approach based on the use of dymaics for the systen of solids (Wittenburg J., 1977). Let us suppose that the segments of the sportsman's body and the levers of the simlators (apparatus) are all solids interacting via generalised forces, which represent the forces and moments, depending on paraneters and time. Bence, our problem is liaited to the analysis of the closed kinematic cbain vith the non-stationary inner connections and extemal (probably non-stationary) interactions. Let us use the traditional approact based on the introduction of the reaction ties, and let us rite dow the equations of movesent for the raaified chain with n-segments (in the Neator-Euler fora).

The radius-vector r of the fulcrin is directed from the inertional basis to the conditional fulcrian of the systen (it may be a real fulcrum, e.g. ankle joint in the phase vith one fulcrum). Geosetrical and
 position of the centre of masses and the central tensor of inertia, respectively) are given or are calculated for the segments either using appropriate formulas or directly (for the apparatus or sizulator). Note that the problea of recalculation of GMC is quite useful in softrare in the case of changing ties (on/of:), and at the sase tixe one aust store information about the systea with the maximur number of links as the basic inforation. The value of paraseter n is essentially non-linear and deteraines the difficulty of the algorithes of calculation (integration of the equation of meverents). This is vay, in the phase of processing of the experisental data, as a rule, ve try to elininate "unnecessary" degrees of freedon. As a value for the recifrocal mobility of the links we recomend the use of the linear regressional estimation:

where $q_{i}^{*}, Q_{\text {; }}$ represents the mean value during the period of observation T of the value of the relative shift and speed (velocity). After calculation:

$$
\begin{equation*}
S_{i}^{2}=\frac{1}{k-2} \sum_{j=1}^{k}\left(\hat{q}_{i}\left(t_{j}\right)-q_{i}(t,)\right)^{2}+\left(\prod_{i} T_{i}^{2}\right)^{2} \quad i=T_{1}, T_{1}=t_{1} \tag{2}
\end{equation*}
$$

ve get the measure of the relative mobility of the links.
The sequence of the connection of segments in the model ve stall deteraine in the structural matrix μ vith the dimensions ($\mathrm{n} \times \mathrm{n}$) consisting of zeros and ones and baving a triangular form, if the numeration of the segents is arranged in the direction of increasing from the conditional fulcrua. The interlinks pivot
connections represent the highest interest fron the point of viey of parametrization, however for deducting of the equations of movesent let us consider that in each pivot point there exists an inter-segment momant y_{i}, then i-s body of the absolute mosent \underline{q}_{i}, is detenined from the formula:

$$
\begin{equation*}
\mu^{\top} \bar{U}=\bar{M} \tag{3}
\end{equation*}
$$

were $\bar{U}-\{\underline{U}:\}^{\top}, \bar{M}=\{\underline{M}:\}^{\top}$, and T is for transposition.
Let $\underline{r}_{\mathrm{i}}$ vectors connecting the pivot points (or directed to the centre of ass for end segrent), $\overline{\boldsymbol{w}}=|\underline{\sin }|^{\text {? }}$ is the colum or absolutely angular velocities, then the dynarics equation for the systen of apparatus-sportspan is

$$
\begin{align*}
& \sum_{j=1}^{n} A_{i j} \underline{\omega}_{j}+\underline{C}_{i} \times \underline{r}=\sum_{j=1}^{n}\left(\underline{\omega}_{j} \underline{B}_{i j}-\underline{\omega}_{j} \times \underline{A}_{i j}\right) \cdot \underline{i}_{j}+\underline{C}_{j} \times \underline{g}+\underline{U}_{i}, \tag{4}
\end{align*}
$$

Where $M^{e}=\sum_{i=1}^{n} m_{\text {: }}$ - the total bass of the system, \& is the main vector of the external forces influencing upon the syister, the gravity force χ^{c} is distinguished into the separate component in the Nevton equations and in the form of $c_{i} \underline{y}$ enters the equatlons of Builer. Vectors q_{1} represent the main moments acting upon the i-s body of the system, i.e. the mosents of the concentrated extermal forces wust be included into \rrbracket_{i}. In equation (3) we use comson designations for scalar, vector and double products and the tensors are marked vith two dots undemeath, wile the points above are for differentiation by time (t). Let us vaite down the designations used in (1):

E - is the single tensor, * - means conjugation,

$$
\begin{equation*}
u_{j} m_{i}\left(Q_{-} \times \underline{y}_{j}\right)+\left(\underline{r}_{i} \times \underline{y}_{j}\right) \sum_{k-i}^{n} u_{\alpha_{i}} u_{k_{j}} m_{k}, j<i \tag{6}
\end{equation*}
$$

to evaluate the integral properties of the system let us write down the expressions for the total mechanical energy and for the kinematic moment relatively to the inertial basis:

$$
\begin{align*}
& E=T+\bar{T}=\overline{\omega^{T}} \cdot \overline{\bar{G}} \cdot \bar{\omega}+M^{c} \dot{R}_{c}^{2} / 2-M^{c} \underline{R}_{c} \cdot g \\
& \underline{\mathcal{K}}=\boldsymbol{I} \bar{G} \cdot \bar{\omega}+M^{c} \underline{R}_{c} \times \dot{R}_{c} \tag{7}
\end{align*}
$$

here w use the determinations $I=(1, \ldots, 1)$-is the matrix - line with the length of n, consisting of ones; G - is the matrix of dimension ($\mathrm{n} \times \mathrm{a}$), consisting of tensors

$$
\begin{equation*}
G_{i j}=\mathcal{F}_{i j}-\left(\underline{E}\left(\underline{C}_{i} \cdot \underline{C}_{j}\right)-\underline{C}_{j} \underline{S}_{i}\right) / M^{c}, \quad i, j=\overline{1}, \bar{n} \tag{B}
\end{equation*}
$$

and the expressions for movement of the velocity and acceleration of the centre of masses of the system are given below:

$$
\begin{align*}
& \underline{R}_{e}=\underline{R}_{c}^{(c)}=\underline{\tau}+\sum_{i=1}^{n} \underline{S}_{i} / M^{c}, \quad \dot{R}_{c}=\underline{R}_{c}^{(r)}=\dot{\tau}+\sum_{i=1}^{n} \underline{u}_{i} \times \underline{c}_{i} / M_{1}, \\
& \ddot{R}_{c}=\underline{R}^{(2)}=\ddot{\underline{I}}+\sum_{i=1}^{n}\left(\dot{u}_{i} \times \underline{E}^{2}+\underline{\omega}_{i}\left(\underline{i}_{i} \cdot \underline{G}_{i}\right)-\underline{c}_{i} \underline{\omega}_{i}^{2}\right) / M \tag{9}
\end{align*}
$$

Let us rite down two more correlations which my be used both for direct calculation of its components and for control of result of numerical calculations. These correlations represent the changes in the moment of the impulse and of the total energy of the whole system

where $\bar{\Omega}=\left\{\underline{Q}_{i}\right\}^{\text {r }}$ is matrix-column, containing relative angular velocities. Finishing with the analysis of general equations and correlations let us note, that some segments in the system may be considered as fictitious, and this fact ensures the possibility to model the arbitrary intersegrental connections.

The numerical realization of the equations of movements (3) and their accompanying correlations makes it possible to consider a number of problems concerning processing of the result of registration of movements, modeling nev movements and the given properties of the apparatus (simulator). On the basis of this problem is the assumption about the adequacy of the resulting model sportswan-apparatus and of the real properties of the systems. For creation of the adequate model we suggest to consider the adequacy of the model to the apparatus and the sportsman separately. In both cases the degree of proximity of the mathematical model and the real object: way be considered based on the results of the most simple experiments which are registered, for instance with a belt of shooting a film at high speed and of tensor and accelerometric measurements. The principle difference of the system lies in the fact that the interval generalized forces, realizing the movements of the apparatus (simulator), as a rule are of the stationary mature and they may be described with the system of parameters (characteristics of damping, and springs, coefficients of friction, etc.), unlike the non-stationary moments, created by muscular efforts of a sportsman. Prom the point of vier of calculations the problems are limited to the calculating of the parameters of the internal links of the simulator (apparatus) and to finding out the characteristics of the generalized forces for a sportsman versus time. Let us suppose that in the results of the experiment we obtained the time dependencies of the generalized movements. It is obvious that the most economical (in the general case) seems to be a variant of estimation of these dependencies with the help of the single parametrical cubical smoothing splines (Reinsch C.B. 1967). It wakes it possible to consider the generalised values, changing in a comparatively vide range, determined by the registered information about the present. Variations of the parsetess froe soothing rakes is passible to attain finite sets of curves of the
generalized sthifts from the interpolation to straight lines, dram according to the method of least squares. Por the optimua estimation of the smoothed parameters valves we suggest a uininizing the function of nonconfornity of the calculated and additionally measured kinematic and force values. In the case of movesent vith single support and in the presence of a forceplate for the support reaction, forces this function right be of the following fon:
where $t_{0}, t_{\text {- }}$ - the starting and finishing moments of time, $t_{\text {- }}$ - Eragment intervals of consideration do not take into account the errors of agproxiation on the ends of the Interval, the tensor, wose matrix is diagonal and contains the wight coelficients, deteraining the degree of irput of different criteria. Besides the parameters o: smoothing, all other system parameters enter into the function of (II)-type, namely GIIC (for a sportsuan), paraseters of the intersegmental connections for an apparatus - simulator. As a rule, the resourse of the computer is limited due to this fact. He suggest to range all the parameters in accordance vith the possible input into the J values during their variation, for axanple in the range of the errors of measuresents. We think a great belp in such a case vill be the procedure allowing one to receive the interaction betveen the problen of experimental data (cboosing of the adequate model) and the problen of modelling of given systeas rith their following integration with bigh accuracy of the movenents equations and "input of noise" of the results o. integration (distortion of the phase picture, e.g. vith the belp of an eveniy distributed error of the given anplitude). Along vith this ve can vary the distribution of GUCC, distort frequency of skills and other parameters in the systea. In the result of such studies the procedure of ainimization (II) way be carried out in several consecutive stages. Por given calculations, described below, we used the procedure of the cowined search for the minimua, and this procedure consists of the nethod of pseudoaccidental search vith the use of the evenly distributed sequence (LP search) and of the Melder-Mead's method (J.A. Nelder, R.Mead, 1965) - the method of the deformed polyhedron.

The example of calculation described further is persored with the electronic computer of IBM PC/AT using a progran package in portran. The package pernits one to realize research of analogs containing up to 15 units and is organized as several interacting probleas which reflect the structure described at the beginnirg of the article. Pigures $1-3$ represent results of the calculation of test moverents of six-elenents (jump down to the strain gauge plation which further repulses upvards).

Track swoothing parameters and inertial mass characteristics vere selected under condition of ainima: function of tipe (9) taking into account complimenting strain measurements. The graphs of behaviour o: borizontal and vertical (R_{γ}, R_{y}) components of support reactions by the results of optimisation as represented in the figure 2. It the same figure the behaviour of the couplete energy (B) curve is represented. Pigure 3 represents the curves of alteraction of interunit soments in the ankle, knee-joint and bip joint $\left(\mathrm{H}_{1}, \mathrm{~K}_{2}, \mathrm{H}_{3}\right)$.

The character of curve behaviour and their values correspond to the executed movement and perait to appneciate pover consungtion and amplitude values of interunit moments.

rigure 1 :

Pigure 2:

Pigure 3 :

REPEREMCES

GEAR C.W. The automatic integration of ordinary differential equations. - Comen.ACM, 1971, 14. NELEER J.A., MRAD R. A siaplex method for function mininization. - The Comp. Journal, 7, 1965, 308-313. REINISCH C.R. Smoothing by spline functions. - Mumber. Math., 10, 1967, 177-183. WITENBIRG J. Dynanic of systens of rigid bodies. - B.G.Teukner, Stuttgart, 1977.

