REVERSE HECHT (TKACHEV) ON THE HORIZONTAL BAR : A CASE STUDY

pRASSAS, S.G.

Department of Exercise and Sport Science Colorado State University

Fort Colilns
Colorado
U.S.A.

Success in high level gymastics competition to date depends beavily on the ability of gymasts to demonstrate the elements of risk, originality and virtuosity in their routines. Gymasts, in order to vin, are expected to perfora the most difficult of the existing skills, to invent ney ones and execute then vith the greatest amplitude and forn. As a result, a pletbora of nev skills has been invented for all apparatuses. on the borizontal bar and uneven bars a variety of nev airborne movesents bas been developed, a fact that increased the danger of failure and/or injury manyfold.

Traditionally gymasts invent ney techniques wich in turn ay be the focus of research. The Reverse fecht (Pig.1) on the horizontal bar is an exception. It ras proposed first by the biomechanist smolevskij (1969) before it vas perforned by Tkachey in 1975. Longer after its first execution, the sxill is still spectacular, hard to master and considered of high difficulty.

Figure 1: Reverse Hecht as proposed by Smolevskij
To this day, experimental data on the sovement is non-existent. It was, thus, the purpose of this project to investigate the mechanics of the skill and to explain, on a case basis, the reasons of its success or failure.

YETHCDS
The borizontal bar optional routines perforsed by junior elite athletes during a 1990 USA-hexico (junior) gymastics weet were videotaped utilizing a MAC 00 video recording systea (set at 200 fps) and a Panasonic PV-330 60R2 video camera. A cube of known dimensions, placed underneath the borizontal bar, four points of which were aiso wrked, was videotaped at the conclusion of the neet for calibration purposes. One successful Reverse Hecht, perforsed by two different gymasts, was digitized utilizing an Ariel Performance Analysis Systea. Three-dimensional coordinates of 12 body points modeling the human body as a 12 rigid link systea vere calculated by combining the video images of the tro cameras, utiliting the direct linear transformation (cL:wethod (Abdel-Aziz: Karara, 1971).
the rav data was digitally swoothed vith a cut-off frequency of 5 in before being subsitted to further analysis. Dempster's (1955) data as presented by Plagenhoef (1971) was utilized to predict the segrental and total body anthropometric parameters necessary to solve the eechanical equations.

RESUTS
Por this study, the coordinates of the 12 body points vere calculated by considering the X axis in the anterioposterior direction, the \bar{y} in the vertical and the z in the mediolateral. Pigure 2 presents stick figure sequences of the two analyzed parforgances as well as the trajectory path of each subject's center of aass (CW) as vieved from the 2 (transverse) oxis.

Pigure 2: Stick figure sequences and center of mass trajectories of the two analyzed trials.

Pigure 3: Center of mass dieplacesent from the tip of the horizontal bar.

Figure 4: 日ip (top) and shoulder (botton) joint intersegrental angles.
Although the figure indicates $\mathbb{C l}$ rotation for both trials, it sbould be mentioned that the stick figures of the successful trial have been rotated 180 degrees about the vertical (I) axis to facilitate visual comparions; the reader should keep this in zind when the remining results are examined. Hotice in the figure the different "shapes" of the cr trajectories with the trajectory of the successful trial being wore circular and the trajectory of the unsuccessful being flatter at the top portion.

Pigure 3 presents CM displacement from the (end of the) horizontal bar. Since the net notion of both gyanasts in the 2 direction is negligible, only XY parameters are reported in subsequent results. Figure 1 shous no substantial differences in the patterns of bip and shoulder joints intersegsental angles. Sinilar patterns betveen all velocity components of the CM are revealed in Pigure 5. Table 1 presents selective kinesatic parameters at the soment of release.

figure 5: Linear velocity of the center of mass.

The data reveals substantially higher © velocities for the sucessful RH as vell as substantially earlier release of the bar.

TABLB 1
Selective rinematic Paraterars of the Reverse Hecht at the Point of Release

	Successful	Onsuccesstul
Stoulder Joint Angle (deg)	201.9	189.0
日ip Joint Angle (deg)	214.5	216.2
Cr Vertical Displacement (${ }_{\text {(}}$ (. 656	. 598
CN Borizontal Displacement (a)	1.207	-. 358
Cn Vertical Velocity ($\mathrm{a} / \mathrm{sec}$)	2.557	2.330
On Borizontal Velocity ($\mathrm{a} / \mathrm{sec}$)	2.061	1.506
Ch Velocity (agnitude) ($/$ /sec)	3.385	2.832
Oi Velocity (maximan) ($/ \mathrm{sec}$)	5.930	5.326
ON Angle to Rorizontal (deg)	29	59

Mewtonian mechanics show that the trajectory path of a projectile's CK is pre-determined at the mosent of release, vith angle, relative beight and release velocity being the physical quantities governing its motion. Re-grasping of the bar, of course, could be achieved by numerous combinations of the three parameters invelved. And although the airbome gymast cannot alter the sotion of his CH be can create a different "reach" and possibly re-grasp the bar by re-configuring the various body segments. Pigure 4 shows insufficient compensation in body configuration of the unsuccesful trial which, when is coupled with the differences in the initial release conditions, night explain the different outcose.

REFERENCES

ABCEL-A2I2, Y.I., I XARRRA, 日.K. (1971). In Proceedings of the Syuposiua on Close-Range Phatogrambetry (pp.1-18). Palls church, VA: American Society of Photogrametry
DEVPSTER, W.T. (1955). Space requirements of the seated operator (WNDC Technical Report 55-159). Dayton, CH: Wright-Patterson Air Porce Base.
PLACENHOEP, S.(1971). Patterns of human motion: A cinenatographic analysis. Englewood Cliffs, NJ: Prentice-hall. SHCLEVSXI, V. (1969), Masterstvo gianastov. Moscov.

