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This paper reports the new method based on the computer simulation for the dynamics 
analysis of the pedaling motion in a racing cycle. At first, we describe three-dimensional 
mathematical models of lower limbs and the cycle, and then explain the formulation as 
the systems of Lagrange equations. Time-series angular displacements of each joint, the 
crank arm, and each pedal were obtained by capturing actual human pedaling motions. 
The 'ideal' pedal forces were computed by using the model of the cycle. The method for 
solving the 'inverse kinematics problem' is also proposed. As the results of the dynamic 
simulation, we obtained several dynamic properties of the three-dimensional pedaling 
motion. And the differences between the three-dimensional pedaling motion and the two- 
dimensional motion were also described. 
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INTRODUC1-ION: Various approaches have been taken to analyse bicycle pedaling. Hull 
and Jorge (1985) constructed a mathematical model of a lower limb in pedaling, and 
obtained the joint torque data with the computer simulation. Gonzalez and Hull (1989) 
simulated the effect of five variables on the cost function derived from the joint moments 
developed during cycling. But these studies had two following assumptions: (1) the leg 
moved two-dimensionally during cycling, and (2) the foot segment of the leg was coincident 
with the pedal completely. In this paper, we proposed a new method based on the computer 
simulation for the dynamics analysis of the pedaling motion on lower limbs in a racing cycle. 
Compared with previous works, the features of our method can be described as follows: 1. A 
three-dimensional mathematical model of lower limbs to remove these unrealistic 
assumptions, 2. A mathematical model of a racing cycle that is constructed independently, 3. 
The 'ideal' pedal forces which are computed by using the model of the cycle, and 4. The 
method for solving the problem that the toe segment of the lower limb is apart from the pedal 
of the cycle. The purposes of this 
study were to investigate the 
differences between the three- 
dimensional pedaling motion and 
the two-dimensional motion when 
the ideal pedal forces were given, 
and to examine which motion was 
superior from the viewpoint of a 
burden on a rider. 

METHODS: Figure1 shows the 
three-dimensional mathematical 
model of the lower limbs. In our 
model, leg consists of four Figure 1- Mathematical model and location of hip joint 

segments. ~ s ~ e c i a l l ~ ,  the feet are 
composed of two segments; the 
heel segment and the toe 
segment. The global coordinate 
system is located on the centre of the front gear of the cycle. It has five degrees of freedom 



for determining the locations of hip joints, and eight degrees of freedom in each leg. 
Especially, Femur is designed a structure with neck of femur. D-H representation (Denavit 
and Hartenberg, 1955) is applied to the local coordinate system, where the x-axis of it 
coincides with the longitudinal axis of the segment. A mathematical model of a racing cycle is 
constructed separately. In the same way, the global coordinate system is located on the front 
gear of the cycle, and the local coordinate systems are arranged on the crank and the pedals 
using D-H representation. We formulated these models as the systems of Lagrange 
equations. For example, Lagrange equations at hip joints of lower limbs and at the crank of 
the racing cycle can be represented by the following equations (1) and (2), respectively. 
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In these equations, j is the index for distinguishing between the right leg 0=0) and the left leg 
(j=l). Oji and Oqi are the variables which correspond to the rotational angles at the i-th local 
coordinate system of lower limbs and of the racing cycle respectively. Tji and Tcji are the 
matrices that transform the expressions on the i-th local coordinate system to the 
expressions on the global coordinate system. mji is the mass, Jji is the matrix of inertia, rji is 
the positional vector of the centre of mass, and g is the vector of the gravitational 
acceleration. In equation (2), the last two terms of the equation express frictional force of air 
and of rolling respectively. 
At first, angular displacements of each joint, the crank arm and each pedal were obtained for 
real movements measured in this study (see below). After that, noise reduction for each 
angular displacement was carried out with DFT (discrete Fourier transform) and IDFT 
(inverse DFT). Errors in measurement and the noise reduction yield the possibility that the 
toe segment separates from the pedal. We, therefore, have formulated the problem as the 
'inverse kinematics problem', and solved it with Newton-Raphson method (Stoer J. & Bulirsch 
R. 1993). It can be represented by equation 3. 
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In equation 3, r and ri is the vector which expresses locations and postures of the pedal and 
of the toe segment at a time respectively. Oi- is the vector of the joint angles at a time in i-th 
iteration, J is the Jacobian matrix, k is the constant value, and f is the function which 
represents the relation between the joint angular vector and the locations and postures of the 
toe segment. After solving the problem at each time, angular displacements of all joints are 
modified. With the angular displacements of the cycle, the inverse dynamics calculation for 
the cycle model was executed, and we transformed the obtained torques about the crank 
spindle and the pedal spindles to the pedal forces using the algorithm which is based on 
Moore-Penrose's generalised inverse matrix (Uesaki, Mochizuki, Omura, & Inokuchi, 1998). 
The computed pedal forces are the ideal forces in the sense that the sum of squares of them 
is minimised, and the consequent forces for lifting the pedal in one leg are sometimes nearly 
equal to the consequent forces for pushing the pedal in the other leg. Next, we executed the 
inverse dynamics calculation only for the human model with joint angular displacements and 
pedal forces. 
Three subjects (subject A, B and C) with twelve markers were required to perform pedaling 
on a roller in forward velocity of 13.9 m/s with their own cycles, and were digitally filrned 



using four infrared cameras (MacReflex NP, 120H2, Qualisys, Sweden). During pedaling, the 
mechanical load (RDA lnterrim Trainer, Minoura, Japan) which corresponded to the frictional 
force of air was given on the racing cycle. The dynamics analysis simulation for lower limbs 
was executed with angular displacements of all joints and of the cycle. All physical 
parameters of lower limbs for the dynamic simulation were calculated using their 
anthropometric data measured prior to the pedaling experiments. 

RESULTS AND DISCUSSION: Modified joint angular displacements of the right leg in 
subject A are shown in Graph 1. 0° indicates that the crank arm is vertical. Sinusoidal 
changes were seen in eO7 and eo8. These results showed that the flexion/extension angles at 
the hip joint and the knee joint changed smoothly to a crank arm revolution. From the result 
of eO5, the hip joint rotated to the direction of the abduction in the range of 0"-120" and 180" 
to 290°, and to the direction of the adduction in the range of 120"-180" and 290"-360". The 
profile of 806 indicated that the hip joint rotated to the direction of the external rotation in the 
range of 0"-180°, and to the direction of the internal rotation in the range of 180"-360". The 
angular changes of 0.25 radian were seen in both angles. It suggests that the three- 
dimensional mathematical model of lower limbs should be used. Concerning eo9 and eoll, 
unexpected large changes at the ankle joint were observed because the constructed model 
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Graph 1- Joint Angular Displacements in 
Subject A 
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Graph 3. Knee Joint Torque in Subject A 
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Graph 2- Hip Joint Torques in Subject A 
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Graph 4- Ankle Joint Torques in Subject A 



had only one degree of freedom at the toe joint. Since the foot segment of the leg, however, 
has the small inertia tensor and mass, it can be considered that there is little effect in the 
dynamic simulation. 
The joint torques at the hip joint, the knee joint, and the ankle joint of the right leg in subject A 
are shown in Graph 2 to 4. From the results of 705 and 206, we could recognise that the 
unexpected large torques were generated in spite of the small angular changes in eO5 and 
eO6. Calculating the total amount of the hip joint torques at each time, the large torque was 
observed in the range of 180"-300". The rider, therefore, generated the large power at the 
hip joint when he pulled up his leg and the pedal against the gravitational force. The knee 
joint torque qualitatively coincided with Hull's results (1985). Because the knee joint torque 
changed from the extension torque to the flexion torque at about 45", and inversely at about 
270°, it was considered that the knee joint torque mainly contributed not to the vertical 
movements of the leg and the crank arm, but to the horizontal movements. In our previous 
study, we constructed the two-dimensional mathematical model of lower limbs that had the 
same physical parameters, and carried out the inverse dynamics calculation for the two- 
dimensional model (Uesaki, Mochizuki, Omura, & Inokuchi, 1999). From the results under 
the same velocity condition (13.9 mls), the knee joint torque in the two-dimensional model 
had the positive peak value of 26.0 Nm at about 150°, and was always larger than the knee 
joint torque obtained by the three-dimensional model in the range of 100" to 360". These 
results indicated that the knee joint torque might be influenced by the small movements at 
the hip joint. From Graph 4, 709 and .roll were very small. It was found the shape of .rot0 was 
similar to the shape of t08, but the most important difference between the shapes of zolo and 
208 was that tolo shifted to the negative torque suddenly after it reached the positive peak at 
145". 

CONCLUSION: As the results of the dynamic simulation for bicycle pedaling, we have 
obtained several dynamic properties that have been unknown. At first, it was demonstrated 
that the small movements at the hip joint affected the hip joint torques remarkably. Secondly, 
the knee joint torque in the three-dimensional model was smaller than that in the two- 
dimensional model. We recommend that the riders should not perform pedaling two- 
dimensionally, because the abductionladduction and the externallinternal rotation at the hip 
joint may reduce a burden imposed on the knee joint. Additionally, they need to train their 
muscles for the abductionladduction and the externallinternal rotation at the hip joint, since 
the unexpected large hip joint torques are produced. 
In the future works, pedaling motions in many riders and some other conditions need to be 
analysed by the same method, and we want to investigate what the 'ideal' pedaling motion is. 
The obtained information may be useful for improvement in skill of riders and in their training 
plan. 
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