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The study demonstrates that the performance of an elite female swimmer in the finals of 
the 200 m backstroke at the Olympic Games 2000 in Sydney can be predicted by means 
of the nonlinear mathematical method of a neural back-propagation network. The 
analysis included the performance output data of 19 competitions prior to the Olympics 
within a time period of 95 successive weeks and the training input data of the last four 
weeks prior to each competition. The training data were divided into two phases: (1) a 
two-week taper cycle, and ( 2 )  an earlier two-week high load cycle. The trained neural 
network was not only able to model the 19 competitive performances, but also to predict 
the performance in the semi final of the Olympic Games in Sydney on the basis of the 
two sets of training data during the preparation before that specific competition. 

KEYWORDS: synergetics, dynamical system, training analysis, competition, single-case 
study, time-series analysis 

INTRODUCTION: The thorough analysis of periodized training processes is one of the most 
important issues in training science. It helps the coach of elite sports in monitoring training and 
peak athletic performances in crucial competitions. Contemporary science, theory and training 
methods have commonly used linear mathematical concepts like differential equations or 
regression analysis to model the adaptive behavior as the result of different training parameters. 
Based on that cybernetic approach, several studies focussed on the adaptation of swimmers to 
certain training regimen (Calvert, et al., 1976; Banister, & Calvert, 1980; Banister, 1982; Monika, 
et al., 1986; Busso, et al., 1990; Fitz-Clarke, et al., 1991; Hohmann. 1992; Mujika, et al., 1996; 
Busso, et al., 1997; Hooper & Mackinnon, 1999; Chatard & Mujika, 1999). In this type of 
cybernetic thinking, the system athlete functions similar to a technical closed circuit, where a 
definite amount of training input leads to an equivalent raise in the performance output. As we 
know today, linear models of dynamical systems like an athlete are not adequate to model much 
beyond the simplest physical phenomena. Therefore, it should come as no surprise, that these 
models cannot deal with the considerably more complex nature of athletic behaviour, which is 
highly influenced by the training regimen and the social embedding of the coach-athlete 
partnership. 
Based on these findings, the present study concentrates on a synergetic concept of training 
adaptation and shows that the dynamic system training process can be modeled with nonlinear 
methods. 

METHODS: To understand the nature of a complex dynamic system, it is necessary to observe 
the system unfold over time. Consequently, the training input data and performance output data 
have to be interpreted as mutual interacting time series. As most of the complex systems show 
feedback mechanisms, special mathematical tools are needed to detect the presumably 
nonlinear behavior of dynarnical systems. At least three methods are frequently used for this 
purpose (Schroeck, 1994): (1) Fourier-Analysis, (2) Coherent State Analysis, and (3) Neural 
Networks. Fourier or Spectral Analysis is useful when the system is known to possess periodic 
behavior, which can be divided into different temporally periodic components. This ,,harmonicw 

analysis does not work well in situations that do not exhibit regularly occurring patterns and 
stationary signals, or when the system is embedded in a highly noisy background, or when the 
cost of acquiring many data points is prohibitive. Coherent State Analysis is able to detect 
fundamental patterns of the same family, even when they do not occur regularly or when they 
are stretched or condensed in time. Neural Networks recognize global patterns in the linear as 
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useful for the analysis of synergetic systems. A Neural Network is a signal processor that 
possesses the following attributes: a) it is nonlinear in the signal, b) it samples the signal 
nonlocally, c) it can process nonstationary signals, d) it is adaptive or capable of learning, and e) 
it is stable under small changes of input and in the presence of noise. Since training and 
adaptive behavior are nonstationary processes, and furthermore, in most cases training and 
performance data in time series are not available in great numbers, Neural Networks seems to 
be the best method to be used in training analysis. The conclusion that neural networks are 
worthwhile tools for training analysis was supported by a study of Hohmann, et al. (2000), who 
could properly model the training process of an elite swimmer with the help of a neural 
backpropagation network. 
Data Collection. The training process lasted a total of 95 weeks from week 0111998 to week 
3912000. According to the system of Fry, Morton, & Keast (1991) it was divided into different 
preparation macrocycles including the final competitions. The macrocycles consisted of 6-14 
weeks (microcycles) of training preparation and 1-3 weeks of competitions. 
The data consisted of the competitive performances and the documented training loads in three 
zones of swim training intensity and two categories of dry-land training. The three zones of 
training intensity were controlled by frequent lactate testing in the course of the training process. 
The documented categories of training were: 1) compensation and maintenance aerobic 
endurance training at and slightly above the aerobic threshold (End-I: 2-3 mmolll blood lactate); 
2) developmental and overload aerobic endurance training at and slightly above the anaerobic 
threshold (End 11: 4-6 mmolll blood lactate); 3) anaerobic power training, speed training and 
competitions  id-lll: 6-20 mmolll blood lactate); 4) dry land strength training (Strength); and 5) 
dry land general conditioning training (General Conditioning). The competitive performances in 
the 200 m backstroke events were transformed according to the pointage system of the Ligue 
Europeene de Natation into LEN-points. The LEN-point table 1997-2000 which ranges from 1 
to 1200 points was used. The actual World Record (e.g. in the female 200 m backstroke 2:06,62 
min) served as the reference value for 1000 points. 
Data Analysis. In the present study a neural backpropagation network (multilayer perceptron, 
DataEngine Inc., Aachen, Germany) with three layers was used (Hohmann, et al., 2000). Two 
analyses were conducted: 1) To determine the influence of the two week taper cycle prior to the 
19 competitions. The taper has the function to allow the athlete to recover from the high training 
loads before and to peak in hislher performance; 2) to determine the influence of the high load 
training phase which includes weeks three and four prior to the 19 competitions. This crash 
cycle normally contains very intensive and exhaustive training, and it is its purpose to create a 
state of slight overreach in the athlete (Kreider, et al., 1998). That state of transient fatigue 
allows the athlete to reach an accumulated and thus optimal supercompensation after the later 
taper. 
For both analyses a neural network consisting of 10 input neurons was created. Each neuron 
represented the weekly training volumes in one of the five training categories in one of the two 
weeks of the investigated training phase. Two hidden neurons served to represent the black box 
of the system athlete and one output neuron to represent the competitive performance. Since 19 
sets of training and performance data are not very many, an already existing pre-trained neural 
network was used. It was created earlier when analyzing a female olympic champion in the 400 
m freestyle who trained with the same coach in the same training group (Hohmann, et al., 
2000). 
In the first step, the validity of the two neural network solutions for the crash resp. of the taper 
phase was tested thoroughly, following the validation procedure 'leave-one-out'. Therefore, in 
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Figure 1 - Comparison of the 20 real competitive performances and the mean values 
for the performances modeled by two neural backpropagation networks 
on the basis of the training data from the two-weeks crash phase and the 
two-weeks taper phase prior to the competitions. 

both cases the pre-trained multilayer network was trained nineteen times in a different way: 
Each of the 19 neural networks was provided with different 18 sets (network 1 with the sets 2- 
19, network 2 with the sets 1 plus 3-19, and so on) out of the 19 training input and performance 
output data, to learn the interrelation between the training input and the performance output. 
The training phase aimed at the weighting of all 13 neurons on the three layers and consisted of 
10,000 repetitive calculations of the neuron weights. 
In the second step, each of the 19 trained networks was tested with the left out competition. 
This forced the neural networks to estimate the missing competitive output data based only on 
the formerly learned weights of the connected neurons on the three layers and the given training 
data. The tests showed that all 19 networks were able to predict the performance in the left out 
competition sufficiently (Figure 1). The leave-one-out procedure made clear that the use of a 
pre-trained network was acceptable, and that none of the 19 training processes led to strange 
adaptations in the athlete. 
In the third step, one network for the crash and one for the taper phase were trained on the 
basis of all 19 training and performance data sets. To model the performance at the Olympic 
Games, these two networks were paired with the training input data before that competition. 

RESULTS AND DISCUSSION: In order to predict the competitive performance, the mean of the 
two values that were predicted by the neural networks on the basis of the crash cycle resp. of 
the taper cycle was calculated. (Table 1). The mean error of the averaged forecast of the two 
models was 12.02 LEN-points, which was equivalent to differences of plus 0.62 s or minus 0.61 
s in the mean time of all the nineteen 200 m backstroke races of 2:12,94 min. 

Table 1 Means and Standard Deviations of the Error of the Modelling (difference in LEN- 
points between the true competition values and the neural network predictions). 

---ma 

Models #I-19 Models # 1-19 Averaged forecast of the two 
taper cycle -- crash cycle models 

Mean error 14,78 20,16 12,02 
Standard 
rl~viatinn - - - . -. . - . . 
The results in Figure 1 show that the prognosis obtained with the two neural network solutions 
#20 lead to an error of only 1.24 LEN-points, which was 0.1 1 percent off of the final 
performance at the Olympic Games of 870 LEN-points. Compared to the chronometric time of 
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the athlete in the Olympic 200-m-backstroke race of 2:12,64 min, that average error is 
equivalent to a difference of plus 0,04 s or minus 0,04 s. 

CONCLUSION: The neural network method is a worthwhile tool to enhance the monitoring of a 
training process, especially then, when the data basis resulting from the training record of the 
coach is too small or not adequately scaled to allow training analysis with the linear methods 
commonly used up to now. Furthermore, the method is not only able to ,,learnu the individual 
adaptative behavior of the athlete. After the learning procedure the neural network is also able 
to calculate a simulation of the prospective performance responses of the athlete under the 
influence of a slightly changed structure of the training input. So, the trained neural network 
allows the coach to simulate the effects of certain modifications of the training program on the 
competitive performance of the athlete. This makes the planning and monitoring of a training 
process more effective. 
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