EFFECTS OF FATIGUE ON THE GROUND REACTION FORCES AND LEG KINEMATICS IN ALL-OUT 600 METERS RUNNING

Hirosuke Kadono ${ }^{1}$ Michiyoshi Ae^{2} Yuta Suzuki ${ }^{1}$ and Kazuhito Shibayama ${ }^{1}$
Doctoral Program in Physical Education Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan ${ }^{1}$
Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan²

Abstract

The purpose of this study was to investigate effects of fatigue on the ground reaction forces and leg kinematics during all-out 600m running, which was performed by eight male middle-distance runners. Their running motion was videotaped (300 Hz) and the ground reaction forces were measured $(500 \mathrm{~Hz})$ at the 150 m and 550 m marks of the 600 m running. From the 150 m to 550 m mark, running speed significantly decreased ($p<0.001$) while the $2^{\text {nd }}$ half of the support time significantly increased ($p<0.01$). During the $2^{\text {nd }}$ half of the support phase, the horizontal impulse ($p<0.05$) and the average force ($p<0.001$) of the ground reaction force significantly decreased. Furthermore the average angular velocity of the support shank significantly correlated with the horizontal average force ($r=-0.811, p<0.001$), the ratio between the vertical and horizontal average force ($r=0.803, p<0.001$). Therefore it is likely to be one of the important techniques to maintain large forward lean and angular velocity of the support shank during the support phase in the final stage of the middle-distance running races.

KEY WORDS: support time, horizontal force, shank
INTRODUCTION: In the 400 m sprint and 800 m middle-distance running, which the running times are lesser than two minutes, the peak running velocity is achieved in the initial stage of the race, and the running velocity progressively decreases toward the end of the race (Gajer et al., 2007; Abbiss \& Laursen, 2008). To achieve a high performance in these events, runners have to reach a large running velocity as quickly as possible and to maintain it as long as possible There are some studies on effects of fatigue on kinematics and kinetics for the sprint running (Chapman, 1982; Sprague \& Mann, 1983; Nummela et al., 1996). But there is less information of the changes in kinematics and kinetics, especially the ground reaction forces (GRF) due to fatigue during the middle-distance running. In official 800 m races, the final 200 m is likely to be spent to decide a winner of the race with different running kinematics of stride frequency in defiance of fatigue witch accumulates in the preceding 600 m . Therefore, we assumed that the 600 m running with a full effort would be suitable to asses the effects of fatigue on the GRF during a large portion of the 800 m race without unnecessary suffering runners. The purpose of this study was to investigate effects of fatigue on GRF and leg kinematics during an all-out 600m running, which was simulated the middledistance race.

METHODS: Data Collection: Eight male middle-distance runners (height $1.76 \pm 0.06 \mathrm{~m}$, body mass $64.3 \pm 5.5 \mathrm{~kg}$ and 800 m personal best record $1 \mathrm{~min} 49 \mathrm{~s} 77 \pm 1 \mathrm{~s} 49$) participated in this study. Subjects were asked to perform an all-out 600 m running with a positive pacing strategy (Abbiss \& Laursen, 2008) that the running speed at the initial stage of the race was larger. A pace maker's bicycling ahead of the subject was provided to keep a previously determined velocity. The subjects were videotaped (60 Hz) to determine the average running speeds at every 50 m intervals. The subject's running motion was videotaped (300 Hz) over one full running cycle and GRF were measured (500 Hz) at the marks of 150 m and 550 m of the 600m running.
Data Analysis: Twenty-three body landmarks were digitized at 150 Hz and reconstructed in real coordinate data. The real coordinates were smoothed by a Butterworth digital filter at cut off frequencies ranging from 6.0 to 7.5 Hz , which were decided by a residual method. The angle and angular velocity of the support leg segments, foot, shank and thigh were calculated from the smoothed coordinate's data. The running motion was divided into support
and non support phases. The support phase was defined as the phase from the foot contact to the toe-off, and the non support phase was at the toe-off to next the foot contact. The support phase was further divided into $1^{\text {st }}$ and $2^{\text {nd }}$ half based on the instant of zero crossing of the anterior-posterior GRF. The impulses of the $1^{\text {st }}$ and $2^{\text {nd }}$ halves of the support phase were calculated by integration of GRF, the average forces were calculated by dividing the impulses by the support times, and a ratio of average vertical force to horizontal force calculated by dividing the average vertical force by the average horizontal one. The paired t test was used to assess the significant differences between variables for the 150 m and 550 m mark. Pearson's correlation coefficient was calculated to examine the relationships between variables. The level of significance was set at $p<0.05$.

RESULTS: The average time of 600 m running was $1 \mathrm{~min} 21 \mathrm{~s} 13 \pm 1 \mathrm{~s} 61$. Figure 1 shows that the averaged and individual patterns of the running speed change. The running speed increased after the start, rose to the peak at $50-100 \mathrm{~m}$ interval, and gradually decreased toward the finish. Table 1 shows the running velocity, stride length and step time at the 150 m and 550 m marks. Running velocity at the 150 m mark was significantly higher than the 550 m mark ($p<0.001$). Stride length ($p<0.001$), support distance ($p<0.05$) and non support distance ($\mathrm{p}<0.01$) at the 150 m mark were significantly larger than the 550 m mark. Step time, $1^{\text {st }}$ half and $2^{\text {nd }}$ half of support time at the 150 m mark was significantly shorter than the 550 m mark ($p<0.01$). Figure 2 shows the impulses and average forces of GRF. The vertical impulse in the $2^{\text {nd }}$ half of the support phase at the 550 m mark was significantly larger than the 150 m mark ($p<0.05$), but the average force of the $2^{\text {nd }}$ half of the support phase at the 150 m mark was significantly larger than the 550 m mark ($p<0.05$). In the horizontal component, the average force of the $1^{\text {st }}$ half of the support phase at the 150 m mark was significantly larger than the 550 m mark. In the $2^{\text {nd }}$ half of the support phase, the impulse and the average force in the 150 m mark were significantly larger than the 550 m mark. Figure 3 shows changes in the thigh and shank angles of the support leg, which were normalized by the support time and averaged. The shank angle was significantly smaller in 150m than 550m marks from

Figure 1 The averaged and individual patterns of running speed in the all-out 600 m running.

Table 1 The running speed, stride length and stride frequency at the 150 m and 550 m mark of all-out 600 m running.

		150 m		550 m		Difference	
Running velocity	$(\mathrm{m} / \mathrm{s})$	8.22	(0.43)	6.77	(0.33)	$\mathrm{p}<0.001$	
Stride length	(m)	2.17	(0.08)	1.97	(0.09)	$\mathrm{p}<0.001$	
Support distance		(m)	1.01	(0.06)	0.96	(0.04)	$\mathrm{p}<0.05$
Non support distance		(m)	1.16	(0.08)	1.01	(0.09)	$\mathrm{p}<0.01$
Step time	(s)	0.265	(0.014)	0.292	(0.017)	$\mathrm{p}<0.01$	
Support time	1st half	(s)	0.062	(0.003)	0.071	(0.006)	$\mathrm{p}<0.01$
Non support time	2nd half	(s)	0.064	(0.006)	0.074	(0.005)	$\mathrm{p}<0.01$
		$(\mathrm{~s})$	0.139	(0.011)	0.147	(0.012)	ns

Figures in parentheses are standard deviations.

Figure 2 The Impulse and average force of GRF. *, ** and ${ }^{* * *}$ represents a significant difference between 150 m and 550m mark, $p<0.05, p<0.01$ and $p<0.001$.

Figure 3 The thigh and shank angles of the support leg.

* and ** represent a significant difference between 150m and 550m mark, $p<0.05$ and $p<0.01$.
50% to 100% normalized time. During the $2^{\text {nd }}$ half of the support phase, there were significantly relationships between the average angular velocity of the support shank and the horizontal average force (F_{h}, Figure 4, $\mathrm{r}=-0.811, \mathrm{p}<0.001$), and the ratio of the vertical average force (F_{v}) to the horizontal one $\left(F_{h}\right),\left(F_{v} / F_{h}\right.$, Figure 5, $\left.r=0.803, p<0.001\right)$.

DISCUSSION: The $2^{\text {nd }}$ half support time was significantly increased ($p<0.01$) while the running speed decreased ($p<0.001$) from the 150 m to 550 m mark. This change was similar to the results of the 400 m sprint (Chapman, 1982; Sprague \& Mann, 1983; Nummela et al., 1996). The average forces at the 550 m mark were smaller than the 150 m mark (Figure 2). This indicated that the subjects were unable to exert the large force during the support phase of the final stage of the race. Although the horizontal impulse and average force during the $1^{\text {st }}$ half of the support phase decreased from the 150 m to 550 m mark, those also decreased during the $2^{\text {nd }}$ half of the support phase. This indicates that the decrease in the running speed in the final

Figure4 Relationships between the average angular velocity of the support shank and the horizontal average force $\left(F_{h}\right)$ during the $2^{\text {nd }}$ half of the support phase.

Figure5 Relationships between the average angular velocity of the support shank and the ratio between the vertical and horizontal average force $\left(F_{v} / F_{h}\right)$ during the $2^{\text {nd }}$ half of support phase.
stage was caused by the decreased acceleration force rather than the increased deceleration force of the GRF and implies that the motion in the $2^{\text {nd }}$ half of the support phase should be investigated to see effects of fatigue. Kadono et al. (2008) indicated that in the positive 800 m races, the average shank angular velocity of the support leg during the $2^{\text {nd }}$ half of the support phase decreased with the decrease in running speed. Accordingly, in the present study, during the $2^{\text {nd }}$ half of the support phase, the shank at the 150 m mark was leaned more forward than the 550m mark (Figure 3). From these and the correlation results (Figure 4,5), it may be thought that the subjects who rotated the shank forward in a lower angular velocity could not direct the GRF more horizontally. Therefore, maintaining large forward lean and higher angular velocity of the support shank in the $2^{\text {nd }}$ half of the support phase is likely to be an important technique during the final stage of the 800 m middledistance running races.

CONCLUSION: It was concluded that the decrease in the running speed in the 800 m race was caused by the decreased acceleration component rather than the increased braking component, and that the forward lean of the support shank in the final stage of the 800 m race become smaller and slower than the initial stage of the race. Therefore it is likely to be one of the important techniques to maintain large forward lean and fast angular velocity of the support shank during the support phase in the final stage of the 800 m middle-distance running.

REFERENCES:

Abbiss, C.R. \& Laursen, P.B. (2008) Describing and understanding pacing strategies during athletic competition. Sports Medicine, 38 (3), 239-252.
Chapman, A.E. (1982) Hierarchy of changes induced by fatigue in sprinting. Canadian Journal of Applied Sport Sciences, 7 (2), 116-122.
Gajer, B., Hanon, C. \& Mathieu, C.T. (2007) Velocity and stride parameters in the 400 metres. New Studies in Athletics, 22 (3), 39-46.
Kadono, H., Ae, M., \& Enomoto, Y. (2008) Effects of pacing strategies on the running motion of male 800 meter runners. Proceedings of the XXVI International Conference on Biomechanics in Sports (pp 677-680). Seoul, Korea. ISBS.
Nummela, A., Gundersen, J.S. \& Rusko, H. (1996) Effects of fatigue on stride characteristics during a short-term maximal run. Journal of Applied Biomechanics, 12, 151-160.
Sprague, P. \& Mann, R.V. (1983) The effects on muscular fatigue on the kinetic of sprint running. Research Quarterly for Exercise and Sport, 54 (1), 60-66.

