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The purpose of this study was to investigate the effects of the magnitude of the twisting 
torque for one revolution of a Fouetté turn. Simulations were performed using a simple 
model comprising the supporting leg and the remainder of the body. It is shown that when 
the dancer turns more than one revolution with a small twisting torque, the turn will be 
decelerated and will finally stop. A large twisting torque is required at the start of each 
turn in order to increase the angular momentum which will subsequently decrease during 
the turn due to friction.  
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INTRODUCTION: Skilled ballet dancers can continuously perform repeated Fouetté turns 
(Figure 1) for more than 30 revolutions, starting from one or two revolutions of the pirouetté 
which is started with both feet in contact with the floor. Friction during slipping reduces the 
initial angular momentum at the beginning of each turn. The dancers have to regain the 
angular momentum for the next revolution from the swing of the free leg and the arms 
enabled by a large frictional torque (TF) exerted on the supporting foot (Laws, 1984, Imura et 
al., 2008). This is achieved using a torque T to produce the twisting motion of the free leg, 
upper body and arms relative to the supporting leg. The net external rotational impulse of TF 
should be zero or positive after one revolution in order to maintain or increase the angular 
momentum. The behaviour of TF depends on the magnitude of T relative to the limiting 
frictional torque which is the product of the friction coefficient, the normal ground reaction 
force and the radius of the foot contact. Thus, the magnitude of T regulates the continuity 
and speed of the turn under a certain friction coefficient between shoes and floor.  

The purpose of this study was to investigate the effects of the magnitude of T on one 
revolution of Fouetté turn using a simple model comprising the supporting leg and the 
remainder of the body.  
  
 
 
 
 
 
 
Figure 1: Sequential view of one revolution of Fouetté turn. Each picture is shown every 10% 
time of one revolution. The left most picture shows the configuration of the body at the middle 
of full foot contact (pictures from Imura et. al, 2008).  

METHODS: Model: One typical dancer's body (mass 50 kg) was used for a model 
comprising two cylinders (Figure 2): the supporting leg (L) and the remainder of the body 
(B). The twisting torque T which rotates B relative to L, the radius (r) of the foot contact area, 
the moments of inertia (IB and IL) of the bodies B and L and the normal ground reaction force 
(N) were specified using monotonic quintic functions based on experimental data (Imura et 
al., 2008) as shown in Figure 3. The averaged N through the rotation was one body weight. 
The coefficient of friction (μ) was estimated to be 0.2 from experimental data (Imura et al., 
2008).  
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Figure 2: The model comprised the supporting leg L and the remainder of the body B. Initial 
torque directions are shown. 
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Figure 3: Time histories of: (i) Radius of the foot contact area (ii) moment inertia of body B (iii) 
normal ground reaction force. 

 

Simulations:  when TTTF= rN⋅⋅≤μ  andT rNF μ=  once L slipped. The angular accelerations of 

the body B and leg L ( &  and , respectively) were determined from the equations:  
and , from which the angles and angular velocities of the bodies (

Bφ& Lφ&& BI/  T=Bφ&&

BLI/  F T)T( −=Lφ&& φ ,  and Bφ&

Lφ , ) were calculated using stepwise integration. One revolution was simulated from 
midstance when the supporting foot fully contacted the floor. The initial value of T was varied 
from 6 to 30 Nm which was the limiting frictional torque and the initial angular velocity of B 
was varied from 6.0 to 8.0 radians/s. A search was made for turns which satisfied the 
following conditions: (1) The leg L turns approximately 6.28 radians. (2) The peak angle 
between B and L is less than 1.57 radians. (3) The relative angle between B and L at the end 
of the turn is within 0.1 rad of the value at the beginning of the turn. An empirical process 
was used in which simulations were run individually by hand and input was varied. 

Lφ&

 

RESULTS: Two simulations were found satisfying the required conditions:(a) one with large 
initial torque and (b) one with small initial torque. Figures 4 and 5 show representative data 
for (a) and (b). In (a) the initial angular velocity of B and the magnitude of T were 6.2 
radians/s and 28 Nm. In (b) corresponding values were 6.7 radians/s and 15 Nm. In both 
cases, T had to become negative before limiting friction became zero in order to accelerate 
the leg L in the direction of the turn. Twisting torque T during slipping was not different 
between (a) and (b) in order to rotate one revolution. In (b) the rotational impulse of TF was 
negative at the end of the turn while in (a) the impulse was positive and close to zero(Figure 
6). The whole body rotated one revolution in each turn but the angular velocity of body B 
decreased in (b) while it remained the same in (a). 
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Figure 4: Kinematics and kinetics of the larger torque turn (a): (i) T, TF and limiting TF (ii) Bφ  and 

Lφ  (iii)  and . is the same at the start and end of the simulation. Bφ& Lφ& Bφ&
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Figure 5: Kinematics and kinetics of the small torque turn (b): (i) T, TF and limiting TF (ii) Bφ  and 

Lφ  (iii)  and . is smaller at t=1 compared to t=0. Bφ& Lφ& Bφ&
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Figure 6: The rotational impulse of the frictional torque: (i) larger torque turn (a), (ii) smaller 
torque turn (b). 

 

DISCUSSION: To start to slip in the direction of the turn, T has to be negative and have 
magnitude greater than the limiting friction (μ ). This explains the mechanism to generate 
the angular momentum for the next revolution: TF is exerted on the supporting foot and gives 
the rotational impulse in the direction of the turn when the dancer swings the free leg before 
the limiting friction becomes small. If T is still positive when it exceeds limiting friction the 
supporting leg of the dancer will slip in the opposite direction to the turn.  

The difference between the large initial T and small initial T caused the difference in the 
angular momentum of the remainder of the body at the end of the simulation. T was changed 
at the same timings in (a) and (b), the rotational impulse of TF was positive in (a) and 
negative in (b) though B and L rotated one revolution in each case while the angular velocity 
of B decreased in (b). Before slipping T should be less than limiting friction, and TF is equal to 
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T. Thus, the rotational impulse in (b) did not increase as much as that in (a) before slipping. 
Because the decrease in rotational impulse of TF during slipping was the same in (a) and (b), 
the rotational impulse over one turn depends on the value of T at the start and end of the 
simulation. Thus, the Fouetté turn will continue but will be reduced in speed because the 
rotational impulse cannot be recovered with little torque as in (b). In such a case, the dancer 
has to swing the leg quicker and with more force from the muscles in the next turn to regain 
the angular momentum, recognizing that there is insufficient angular momentum to complete 
the turn.  
To start the Fouetté turn, the dancer begins to turn around the supporting leg by exerting 
force on the floor with the free leg. This will produce more angular momentum than in the 
following turn because the moment arm between both feet is larger than the radius of the 
supporting foot (Laws, 1978). Thus the initial angular velocity of B reflects the angular 
momentum the dancer already has before the following Fouetté turn. For one revolution, the 
initial velocity was larger in (b) than in (a). This means the dancer adjusts the magnitude of T 
for one revolution according to the initial angular momentum. However, the magnitude of T 
for the swing is practically limited because the dancer has to face the front after one 
revolution. The dancer has to sense the angular momentum gained by the initial movement 
of the turn and exert the appropriate T for the following turns.  
The time course of the angular velocities will be changed according to the input pattern of T. 
The restriction of the angle difference between B and L restricts the magnitude of T both 
initially and during slipping. More intricate input of T would provide another way of producing 
one revolution of the Fouetté turn, reflecting more complicated movement of the free leg. 
However, the magnitude of T for the swing regulates the speed and the continuity of the 
Fouetté turn. 
More T will be required when the friction coefficient is larger for continuing the turn because 
the decrease in the angular momentum during slipping will be greater. However, the dancer 
will slip in the opposite direction if T exdeeds limiting friction. There is a limit as to how much 
friction can be accommodated since there is a limit to the amount of relative rotation that can 
occur between B and L. 
 

CONCLUSION: To perform a number of consecutive Fouetté turns, it is important to 
maintain the angular momentum and swing the free leg with appropriate torque just sufficient 
to recover the angular momentum lost by friction. Hence the Fouetté turn starting with some 
pirouetté turns is difficult because the dancer has to regulate the magnitude of T for the 
swing just after the pirouetté and generate additional angular momentum. In a practical 
situation, the dancer pays attention to the friction of the floor, sensing the appropriate 
magnitude of the required twisting torque when performing turns. The dancer might be able 
to estimate the magnitude from the amount of rotation of the upper body, regulating the 
swing of the free leg and arms. 

REFERENCES: 
Imura A., Iino Y. and Kojima T. (2008). Biomechanics of the continuity and speed change during one 
revolution of the Fouetté turn. Human Movement Science. 27, 903-913. 
Laws K (1978-79). An Analysis of Turns in Dance. Dance Research Journal.11,12-19. 
Laws K (1984). The physics of dance (pp78-81.). New York: Schermer Books.  
 
 


