MUSCLE ARCHITECTURE AND THE RATIO OF JOINT TORQUE TO MUSCLE VOLUME OF TRICEPS SURAE MUSCLES IN YOUNG MEN AND WOMEN

N. Mitsukawa, J. Sakuma, T. Fukunaga*, and Y. Kawakami*

Graduate School of Sport Sciences, Waseda University, Saitama, Japan * Faculty of Sport Sciences, Waseda University, Saitama, Japan

KEY WORDS: physiological cross-sectional area, fascicle length, muscle volume

INTRODUCTION: Muscle volume is a major determinant of joint torque (Fukunaga et al., 2001). However, it is not clear whether there are gender-differences in a relationship between joint torque and muscle volume. It is not clear also about muscle architecture, e.g., physiological cross-sectional area (PCSA) and fascicle length. We aim to compare 1) muscle architecture under the maximal voluntary contraction condition and muscle volume (MV $_{TS}$) of the triceps surae muscles (TS), and 2) the relationship between MVC and MV $_{TS}$, for young men and women.

METHODS: The maximal voluntary plantar flexion torque (MVC) was measured for 15 men and 14 women aged 21 to 36 years. Magnetic resonance images were taken to determine anatomical cross-sectional areas (ACSA) of the TS, and the muscle volumes of individual muscles. Each muscle volume relative to whole TS and the MVC/MV_{TS} ratio were calculated. The fascicle length and pennation angle of each TS during MVC at anatomical position, and -10 and -20 deg dorsiflexion were measured using ultrasonography for 11 men and 9 women. PCSA was calculated from muscle volume divided by fascicle length during MVC at the ankle position with the largest tendon force.

RESULTS and DISCUSSION: Gender-differences were observed for PCSA of gastrocnemius muscles, while the fascicle length during MVC was similar in men and women (Table 1). These results indicate that men have higher force-generating potential relative to a given muscle volume than women. The MV_{TS} was significantly correlated with the MVC both in men and women, while MVC/MV_{TS} in women was lower than that in men. The differences in PCSA and each muscle volume ratio between men and women tended to be larger for the gastrocnemii (28%) than for SOL (18%). This may be one of the factors affecting the gender-difference in MVC/MV_{TS} ratio.

Table 1. Muscle architectural charactaristics and volume of TS, MVC in men and women.

		Fascicle length (cm)	PCSA (cm ²)	Muscle volume (cm³)	Plantar flexion torque (Nm)	MVC/MV _{IS} (Nm/cm ³)
Medial gastrocnemius	men	3.7?0.4	47.6?7.7	229.5?43.6		
	women	3.9?1.0	34.8?6.9 **	160.5?29.2 **	men: 207.9?41.5 - women: 137.5?26.7 **	men: 0.284?0.026 women: 0.245?0.041 **
Lateral _ gastrocnemius	men	4.7?1.2	26.3?7.3	139.9?13.5		
	women	4.4?0.7	17.7?3.7 **	96.3?16.2 **		
Soleus -	men	2.8?0.5	122.7?28.6	398.7?44.2		
	women	2.7?0.6	97.2?24.8	324.1?57.5 **	-	

Values are mean ? SD. * P < 0.05, ** < 0.01 compared with men

REFERENCES:

Fukunaga et al. (2001). Acta Physiol Scand, 172, 249-255.