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This study investigates the effect of glenohumeral joint centre (GHJ) mislocation on 
elbow flexion-extension kinematics and outlines the development and validation of 
functionally based 2DoF upper-limb model that is proposed to more accurately measure 
elbow flexion-extension angles. The findings suggest that a new regression equation be 
adopted to calculate the GHJ centre used in the definition of the upper arm anatomical 
coordinate system. The research also proposes that a 2DoF mean finite helical axis 
model (HAM) be used to describe upper limb motion as it more accurately measures 
flexion-extension angles when compared with traditional anatomically based models as 
validated against a mechanical arm moving through known ranges and angles. The HAM 
model also eliminated cross-talk on elbow flexion-extension kinematics.  
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INTRODUCTION: 
The calculation of an elbow joint angle requires anatomical coordinate systems (ACS) to be 
established at the forearm and humerus. This commonly involves a tester accurately 
identifying relevant anatomical landmarks (AL’s) assumed to represent joint centres and 
axes of rotation. However, it is well documented that the imprecise location of ALs can lead 
to mislocation of the ACS, propagating to downstream errors in joint kinematics (Della Croce 
et al., 1999). In addition, recent authors (King & Yeadon, 2006; Gurney & Kersting, 2006) 
have questioned current methods of calculating elbow angles in cricket bowlers suggesting 
that alternative modelling methods should be investigated if false positives or negatives are 
to be avoided.  
The purpose of this study was twofold. First, to determine the three dimensional (3D) 
accuracy of four methods in calculating the centre of the glenohumeral joint (GHJ) compared 
to the known location determined via magnetic resonance imaging (MRI). As this landmark is 
crucial in the definition of the humeral ACS, the effect of any 3D error in determining its 
location on the elbow flexion-extension angle during bowling was examined. The second 
purpose of this paper was to develop and validate a functionally based 2 DoF upper-limb 
model (HAM) to measure rotations of the forearm and to compare this model to one that is 
anatomically based (ANAT)following Cardan ZXY angle decomposition methods. It was 
hypothesised that the upper limb model that employed a mean finite helical axis method to 
define the flexion extension axis of the forearm, combined with a 2 degree of freedom  
(2DoF) upper limb segment that shared a common flexion axis between the humerus and 
forearm would eliminate kinematic cross-talk commonly observed in traditional elbow joint 
modelling methods. In vivo comparisons of the modelling methods were also obtained from 
cricket bowling actions.  
 
METHODS: 
Two individual data sets were collected and processed to answer the research questions 
outlined above. 
 
Study A - Locating the GHJ:  Twenty healthy males were recruited and underwent a MRI 
scan directly followed by 3D motion analysis on the same day. A custom marker set; with the 
markers covered in retro reflective tape and filled with oil to permit visibility in both imaging 
systems was affixed to the participant’s dominant shoulder. All subjects lay supine with their 
upper arm secured to their torso, level with their midline in both imaging systems, so that the 
GHJ centre relative to skin based markers could be reconstructed in the MRI and the motion 
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capture trial. The location of the markers and the GHJ in each MRI were determined using 
medical imaging software, Mimics (Materialise Software Inc.). The digitising process 
included manual segmentation of the humeral head and all the markers in each transverse 
plane slice in which these appeared (Figure 1a). The border of each object was then defined 
using B-spline polynomial contour lines, which were subsequently used to create 3D spheres 
representing the humeral head and each marker (Figure 1b). Using a custom Matlab 
program (Mathsworks Inc.), the 3D locations of the GHJ and markers enabled the 
transformation of the MRI GHJ into a coordinate system created using a rigid triad of 
markers affixed to the acromion. A twelve camera Vicon MX motion analysis system 
operating at 250Hz was used to collect the 3D motion analysis data.  
 

 
Figure 1: (a) Transverse plane slice of a subject MRI, including a portion of the segmented 
humeral head, and the anterior shoulder & clavicle markers; (b) Processed MRI demonstrating 
3D reconstruction of the humeral head and marker representative spheres. 
 
The accuracy of four methods used to calculate the GHJ location from external markers 
were examined. Two calculations methods were adopted from the literature (Schmidt et al., 
1999; Lloyd et al., 2000); the third method was Vicon’s generic calculation method (Plug-In-
Gait) and lastly a customised regression equation for calculating the GHJ centre location 
from the MRI data was developed and assessed.  For the regression method, the GHJ 
location was determined from the MRI images of 15 participants and used in a stepwise 
linear regression analysis (SPSS) to create three regression models to estimate the x, y and 
z coordinates of the GHJ. Five possible independent variables were employed: 1) subject 
height, 2) subject mass, 3) the 3D distance between the sternal notch and the 7th cervical 
vertebrae (SN-C7) 4) the 3D distance between the midpoint of the lateral ridge of the 
acromial plateau and the centre point between the SN and C7 markers and (ACRLR-CN) 
and 5) the 3D distance between a marker placed on the anterior aspect of the shoulder and 
one placed on the posterior aspect of the shoulder. 
First, the difference in the MRI digitised GHJ locations and those predicted by the new 
predictive regression model and the three established methods was calculated using the 
data from the 20 participants. In this, the root mean square errors (RMSE), average x, y, and 
z coordinate errors, and the euclidean distances from each method were calculated. The 
data from a subset of 15 subjects was then used to create a new predictive regression 
equation to determine  the centre of the GHJ. The data from all 20 subjects was then used to 
test the predictions from the new regression model and previously published predictive 
methods. The applied relevance of GHJ centre mislocation was further examined by moving 
the reconstructed GHJ position by the error offsets recorded for each method  and then 
determining its effect on the modelled and output elbow flexion-extension angle. 
 
Study B – Elbow Angle Determination:  The second study validated and compared 
kinematic data obtained from two models (ANAT & HAM) that differed in both ACS definition 
and joint angle decomposition methods. A mechanical linkage was constructed that 
represented an upper arm and in addition ten male cricketers were recruited to perform 
bowling tasks. The mechanical arm comprised an elbow allowing the forearm 3 DoFs; 
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flexion-extension (F-E), pronation-supination (P-S) and adduction-abduction (AB-AD). These 
three axes had known locations and orientation, bisecting each other at a known location, 
and could be fixed in certain postures. The forearm could be flexed through a range of 135º, 
depending on amount of set abduction. Two methods of forearm abduction (imposed joint 
configurations) were employed; 1) abduct the forearm such that the F-E axis of the elbow 
remained in the same orientation, and 2) allow the F-E axis to be completely abducted by 
10º or 20º, thus giving the F-E axis an abduction (frontal plane) tilt (see Table 2). The same 
marker set was used for both the mechanical arm and human trials. Functional calibration 
trials were performed to establish the elbow F-E axis, whereby the forearm was moved 
through the full F-E range of motion five times. For the mechanical arm, motion data was 
collected to establish the effect of constant static joint configurations on recorded joint 
kinematics (i.e an imposed forearm abduction angle). In these, the mechanical elbow was 
fixed in varying amounts of abduction while a series of different F-E tasks were performed. 
For the human trials, 5 grade (community) level male cricketers aged between 8-27yrs were 
recruited. Each bowled 6 trials in an indoor laboratory that allowed a full run up and pitch 
length. All mechanical arm and human trials were recorded at 250Hz using a 12 camera 
Vicon MX motion analysis system. All marker movement data were smoothed using a quintic 
spline (Woltring, 1986), with a MSE of 15 applied to the mechanical arm data and 20 MSE 
for the human data. For both mechanical arm and human HAM models the elbow F-E axis 
was determined from the F-E functional movement calibration trials.  A custom MATLAB 
program calculated the F-E FHA’s for every change in angle of 25º based on the protocols 
established by Besier et al. (2003).  
 
RESULTS & DISCUSSION: 
Study A - Locating the GHJ:   Three final predictive regression equations were established 
from using the known MRI established GHJ location from 15 of the 20 subjects: 

x = 96.2 − 0.302 ×  (SN-C7) −  0.364 × height + 0.385× mass   
y = -66.32 + 0.309 × (SN-C7) − 0.432 × mass   
z = 66.468 − 0.531 × (AcrLR-CN) + 0.571 × mass 

These regressions were then cross validated on the remaining 5 subjects. The three 
dimensional x,y,z error of four calculation methods compared to the known centre of the 
GHJ as determined by MRI are presented in Table 1. Schmidt’s and colleagues method of 
dropping 7cm vertical offset from the acromio-clavicular (AC)  joint to estimate GHJ location 
resulted in the largest errors across the three planes of 11, 23 and 38mm respectively. This 
was closely followed by the Plug-In-Gait method of using half the 2D shoulder width 
measured at the level of the GHJ as a vertical scale from the AC joint to the GHJ position 
recorded errors of 11, 14 and 38mm. Lloyd and colleagues (2000) method of calculating the 
GHJ location as the intersection of a vector between markers positioned on the anterior and 
posterior surface of the shoulder (in line with the visually estimated level of the GHJ) and a 
perpendicular vector dropped from the centre of the acromial lateral ridge resulted in slightly 
lower errors of 14, 7 and 10mm. Compared to the vertical drop methods, the developed 
regression equation had significantly smaller errors of 4, 4 and 6mm. In addition the vertical 
drop methods consistently estimated the GHJ more medial (24mm ±8) and anterior (11mm 
±5) than the known MRI GHJ location.  
 
Table 1:  Average absolute error in GHJ location from known MRI position 
GHJ location Method Absolute Error (mm) 
n=20 X(AP) Y(SP-INF) z(ML) 
Plug-in-Gait 11 14 38 
Schmidt et al. (1999) 11 23 38 
Lloyd et al. (2000) 14 7 10 
UWA Regression (n=5) 4 4 6 
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between the humerus and forearm. The improved accuracy of these methods suggests both 
should be considered for use in the testing of illegal bowling actions in cricket where 
minimising error is paramount.  
 
Table 3:  Elbow F-E angle variables across 3 modelling methods. 

Elbow Angle (°)  Model  
Plug-In-Gait ANAT HAM 

Upper Arm Horizontal  19.3 (±3.2)* 1.1 (±8.4) -4.5 (±8.0) 
BR 18.5 (±1.8)* -1.1 (±8.9) -6.6 (±8.2) 
Max Ext to BR 18.5 (±1.8)* -1.1 (±8.9) -6.6 (±8.2) 
Ext Range 0.8 (±1.7) 2.1 (±2.7) 2.1 (±2.8) 
Adjusted Ext Range  0.8 (±1.7) 0.7 (±0.9) 0.1 (±0.1) 

* sig dif to ANAT and HAM models (p<0.01) 
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