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INTRODUcrION 
High jumps are composed of a complex sequence of movements whose single 

contribution to the whole body motion cannot be intuitively predicted. While most of 
the movements are well learned by the elite athletes in order to reach the result, few are 
not effective or negative from the mechanical point of view and are probably performed 
for an erroneous feeling of their effects. The direct dynamic simulation of jumping can 
be useful in order to more fully understand the mechanics of high jump techniques; to 

explain to the athletes the consequences of some errors; and to test possible evolution of 
the exercise. When the external forces and the relative movements of the limbs are 
known, the calculation of the whole body trajectory and orientation is a direct dynamic 
problem. 

METHODOLOGY 
A mathematical method, recently developed by our group in cooperation with 

the University of Brescia (Casolo and Legnani, 1991), has been used to build the 
software package for the direct dynamic simulation. It is based on the use of six 4 x 4 
generalized matrices containing both linear and angular components of position, 
velocity, acceleration, external actions, momentum and inertia, respectively (M, W, H, 
f, G, J). 

Input data for the simulation of the aerial phase of the high jump are: initial 
position and velocity matrices of the whole body and the law of motion (8 = f(r)) of all 
the joints involved in the exercise. The body model consists of 14 rigid bodies mutually 
connected by means of a sequence of revolute pairs (37 d.oJ.). The anthropometry and 
the mass distribution can be calculated by means of the program ANTHROPM. This 
program, based on the regression equations from McConville et al. (l980) can estimate 
the individual inertia matrices using as input as many parameters as are available from a 
minimum of two (height and weighr) to a maximum of 52. 

The application here presented concerns the simulation of changes in the 
kinematics of actual jumps. Therefore, for the first simulation, the initial conditions of 
the aerial phase, as well as the joint's L.O.M., have been extracted from the images of 
the competition. In the second phase they have been varied in order to try to improve 
the performance. 

INITIAL CONDITION FOR THE DIREcr SIMULATION 
The evaluation of the initial velocity matrix WO] (0 = inertial frame; 1 = trunk) 

of the trunk is a critical question. We used the following two approaches: 
a) The first consists only of the numerical calculation of the derivative M' of the 
position matrix: 

M' = M - M 
<[1):> <to+~(> <[()·d[> 

dt 
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Even if the orientation of a body in space cannot generally be described by a 
vector whose derivative is equal to the rigid body angular velocity (Nappo, 1979), our 
method allows us to express the velocity matrix with the following simple relationship: 

W<rSJ> = M'<rSJ> M<rSJ;1 
This formula does not introduce numerical problems because the inversion of the matrix 
M can be done without executing any division. However, manual digitation and low 
sampling rate cause, as in our practical example, relevant errors when this approach is 
used. 
b) In order to reduce those errors we adopted a technique for the calculation of Wc.0) 

which is based on the analysis of whole airborne phase. During this phase, the athlete's 
angular momentum g calculated with respect to the CG is constant, while momentum r 
varies because of the gravity. For the airborne phase we can write in matrix form: 

rCG)<t> = rCG)<tO> + mHgDt (1 ) 
where rCG) is the momentum matrix of the whole body calculated with respect to the 
CG, m is the mass of the body and H is the gravity acceleration matrix (4 x 4 whose 

g 

only non-null terms are the components of the gravity acceleration in the chosen 
reference frame. Solving the inverse dynamic problem from the collected data, we can 
compute the rCG) matrix at each time step. Therefore, by means of (1) we can evaluate 
rCG)<tO> from each interval of the airborne phase. Consequently its average value rCG)<tO> 
can be used to determine the initial velOCity matrix of the trunk. This average matrix is 
then referred to the main reference frame (0) as follows: 

r = M r + M'CG)<rSJ> OG<tO> CG)<tO> OG<tO> 
where MOG<tO> is the position matrix of the CG reference frame at time <to>. 

Remembering that the whole body G matrix can be written by means of the 
velocity matrices W Oi and of the inertia matrices]i of all the segments i of the multi-body 
system 

r(O) = L(Wo;]i - ]ti Wto) = skew {L(Wo; J)} (2) 
and the absolute velocity matrix of a body segment can be written as: 

Wo; = W 01 +WJi 

where W Oi is the velocity matrix of the trunk and W 
li 

is the relative velocity matrix of 
the segment with respect of the trunk; and then the (2) can be easily rewritten in 
function of the trunk velocity: 

skew {L(W01 ]) + L(W ])}rCO)<tO> li 

skew (WO] ]*) + r*CO)<tO> (3) 
or 

skew (W01 ]*) =rCO)<tO> - r*CO)<tO> (4) 
where r* and]* are known: 

r* = skew {L(WJjJi)} J*i = L Ji 
It follows that the corrected initial velocity of the trunk W 01 (that is the only unknown), 
can now be obtained by solving the 6 x 6 linear system which derives from the manipu
lation of the above matrix equation (4). Moreover, from G, the initial velocity of the 
CG can be calculated. 

RESULTS AND DISCUSSION 
The direct dynamic simulation of the winning high jump of theI992 Olympic 

Games shows the adequacy of the model and of the method used. Initial conditions and 
joints' L.O.M. have been extracted from the data collected during the competition while 
the whole body trajectory and orientation during the flight phase have been computed 
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by the program. 
Figures 1 and 2 shows the good agreement between the original jump and the 

output of the direct simulation with the L.O.M. and the initial condition extracted by 
the same jump. 

At this stage it is now possible to change the performance acting on the L.O.M. 
of some joints. As a preliminary example, it was suggested by a coach that we postpone 
the flexion of the takeoff leg, acting on the original law of motion of knee flex ion as 
shown in Figure J. While obviously the trajectory of the CG does not vary, in the new 
simulation (Figure 4), the trunk orientation remains rather venical for a longer time and 
starts to rotate around the bar when the CG is higher. This change alone is not optimal 
because it also affects the body twist. Over the bar the left hip is lower than the right one 
(Figure 5) and consequently the recovery of the lower leg is more difficult. This effect 
can be compensated for by also changing the arm movement. 

Figure 1. Original jump. Figure 2. Simulated jump without changes. 
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Figure J. Original and new L.O.M. for knee flexion. 
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...... 

Figure 4. Simulated jump with new L.O.M. Figure 5. Simulated jump over the bar. 

The preliminary tests demonstrated the adequacy of the software developed to 
simulate the high jump. The initial condition for the simulation of the airborne phase 
can be estimated with good precision by means of the average momentum matrix 
technique. 

Future versions of the programs, that are now under development, will provide 
more help to the technician in the choice of the correction of the L.O.M. and of the 
initial conditions. They also will check if the new movements are compatible with the 
athlete's physiology. 
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APPENDIX 
For the 3D kinematic analysis of chains of rigid bodies besides the well known 

transform matrix, we use twO other matrices (Casolo and Legnani 1991) having a very 
similar structure: 

X Y Z T 
lit lit X x 

M.:o X Y Z T 
l J Y Y Y Y 

X, Y, Z, T, 
000 1 

G 
H. 

I) 

o 0 0 0 

W.. 
l J 

o -00, 00 
x 

00, 0 
-00 00 

o 
v 

0
x 

o o o o 

where G = ooZ + 00' 

M is the position (or transform) matrix of frame j with respect to frame i. W is 
the generalized velocity matrix containing the angular components and the velocity of a 
point (pole) of the body j. Analogously the generalized acceleration matrix H contains 
both linear and angular components of the body acceleration. 

For the dynamics we introduced the action matrix cp, the momentum matrix G 
and the inertial pseudo-tensor J: 

o -c, Cv f. 0 -Y, Y Px I"" Ixy I", qxv 
4>.(.) = c, 0 -cx fv r.(.):o Y, 0 -Yx Pv J.(.) I Iyy I qy 

-cv Cx 0 f, -Yv Yx 0 P, I: IV' ( q, 
-f -f -f 0 -P -p -p 0 q q q m 

wh~re cl = ~x I ~ Jxzvdm ' I ~ Jx~ da: 
lit g ll)( ~ 

f represents the resultant of the forces F and torques (or couples) C applied to a body k 
with respect to the frame (s). In a similar way, r is the momentum tensor of the body k 
with respect to a frame (s); r represents the linear momentum of the body and g is its 
angular momentum. The fundamental dynamic relationships can be written as: 

r. :0 WO. J. - J'. W'o. = skew {Wo. JJ 
cp. :0 Ho. J. - J'. H[o. = skew {Ho. J.} 

where '0' denotes an inertial frame. The first equation shows the link between the 
momentum of a body k, with respect to a frame '0', and its velocity; the second equation 
is the dynamic equilibrium equation of the body k having absolute acceleration Hand 
subjected to the action cp. The skew operator is defined, for any square matrix X, as 
follows: 

skew{X} :0 X - X, 
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