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A two-dimensional numerical model of the foot, incorporating, for the first time in the 
literature, realistic geometric and material properties of both skeletal and soft tissue 
components of the foot, was developed for biomechanical analysis of its structural 
behavior during gait. Using a Finite Element solver, the stress distribution within the first 
metatarsal vertical: arch of the foot (FMVA) structure was obtained and regions of 
elevated stresses for three subphases of the stance (heel-strike, push-off, and toe-off) 
were located. Validation of the pressure state was achieved by comparing model 
predictions of contact pressure distribution with Novel Pedar. The presently developed 
measurement and numerical analysis tools open new approaches for clinical applications, 
from simulation of the development mechanisms of common foot disorders to pre- and 
post-interventional evaluation of their treatment. 
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INTRODUCTION: Research has been done to study the various long term effects of wearing 
high heels, but the outcomes have not reached our society, especially the youth of today. 
The newest trends are narrow toed and high round toed heels, and many young girls today 
do not realize what they are getting themselves into by embarking on the habit of wearing 
high heels. Surveys have found that 37%-69 % of women wear high heels everyday (Esenyel, 
2003). Much of the female population seems to be more concerned with their image and 
appearance than the effects their beautification methods have on their bodies. The constant 
elevation of the heel, causes a shortening of Achilles tendon. The shape of shoe can also 
cram the foot which may result in hammer toes, pointed toes, blisters, bunions or corns. 
The 'latest quantitative models that have analyzed the human foot as a mechanical structure 
used various simplifying assumptions concerning its geometry, mechanical properties of its 
tissues, and muscle loading. Chu et al. (1995) presented an asymmetric FE foot model for 
analysis of ankle-foot orthosis effects. Linear elasticligaments and soft t,issue were included 
in this model, yet, the complex articulated structure of the foot skeleton was treated as a 
single body. The recent two-dimensional FE model by Patil K. M., Braak, L. H., and Huson, 
A., (1996) used to study regions of high stress in normal and neuropathic feet during gait, 
was constructed according to the two-dimensional cross-sectional anatomy of the foot, 
obtained from a lateral X-ray image; although their work is an important step toward the 
ability to predict structural stress concentrations in normal and disordered feet. The models 
developed by Jacob and patil(1999) have been employed to investigate the biomechanical 
effects of soft tissue stiffeningin the diabetic feet. Their models predicted that the peak 
plantar pressure was found to increase with soft tissue stiffness but with minimal effect on 
the bony structures. Gefen (2003) further speculated that the development of diabeticfoot
related infection and injury was more likely initiated by micro-damage of tissue from 
intensified stress in the deeper subcutaneous layers rather than the skin surface. 
The present study is therefore aimed to develop an integrated system of experimental and 
numerical tools, in order to analyze the FMVA structural behavior during high-heeled gait and 
to open new approaches to research biomechanics. 

METHODS: 
The model: The subject of this study was female college student. (23 years old, 160 cm, 48 
kg) Her foot was healthy and no medical record. The height of the shoe which used in th e 
experiment was 7cm. X-ray system was used to get the geometry of FMVA components in 
the high-heeled gait. 
The foot bones were initially modeled as individual parts, which are interconnected by 
cartilaginous joints. Proximal, middle, and distal phalanges were unified in each toe for 
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simplification, due to computational limitations of the FE solver. This assumption is not
 
expected to yield significant inaccuracies in the predicted stress distributions, since during
 
normal gait, at a moderate velocity, the contact stresses applied to the forefoot do not flex
 
the interphalangeal joints.
 
Material properties:The biological material properties according to the Gefen research date,
 
and the basic parameter shows in Table 1.
 

Table 1 The biologica material properties of the FMVA. 

Young's modulus Poisson ratio 
foot bones 7300.0MPa 0.3 
Metatarsus Joint cartilage 20.0MPa 0.4 
Other joint cartilage 5.0MPa 0.4 
Plantar muscle 125.0MPa 0.4 

The ligaments, plantar fascia, and soft tissue fat pad were considered nonlinear. The typical 
experimental load-deflection relationshi'p used to model the ligaments was obtained by Race 
and Amis throughlnstron uniaxial tensile tests on healthy, normal lower-limb ligaments. The 
following expression was fitted to the experimental data for the computational procedure: 

F1 = a,<53 + b,<52 + c,<5 +d, (1) 

with a correlation coefficient of R2 = 0.995, whereas PI is the ligament load in kN, <5 =!1/ / / is 
the elongation in percent and the constants are al = -4.09, bl = 5.388, Cl = 0.287, dl = 0.0017. 
The stiffness curve of the plantar fascia was taken as 70 percent of the ligament stiffness. 
Contact Pressure Method: We used the Pedar system, manufactured by Novel (Munich, 
Germany), measure the plantar pressure. This is an in-shoe measuring system consisting of 
two shoe insoles, wired to a computer recording and evaluating static and dynamic pressure 
distribution under the plantar surface. Each insert consists of 99 pressure sensors. Each 
sensor has a measuring range from 1 to 120 N/cm2

. Each pressure sensor only registers 
force vectors perpendicular to its surface. The resulting force exerted through the brace-pad 
was calculated from the force values of the separate pressure sensors. Before each 
measurement, the ,inserts were calibrated. 
The reaction forces generated during the foot-ground interaction and their evolution during 
gait are some of the most important biomechanical gait parameters. Vertical reaction forces 
on the plantar area of the foot model for the heel-strike, midstance, push -off and toe-off four 
characteristic positions are shown in Figure 1. 

(Heel-strike) (Midstance) (Push-off) (Toe-off) 

Figure 1 The plantar pressure distribution of high-heeled gait in one period. 

RESULTS: The FE method was selected for numerical analysis of the model due to its 
unique capability to analyze structures of complex shape, loading, and material behavior. 
The model was elaborated using the ANSYS 7.0 software package. This powerful version 
enables generation of up to 4,083 nodes. Automatic d.ivision was used to generate an 
optimal mesh of 1381 solid structural elements that described the curved geometry of bones, 
cartilage, and soft tissue, as well as 98 rod elements building the ligaments. This mesh was 
determined by a converging process in which the mesh density was gradually increased, 
until the deviation in the produced stress values did not exceed 5 percent. Considering to the 
result application and stress distribution in character postions (Figure 2), Results of the FE 
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analysis are presented in terms of von Mises equivalent stresses (ov.M.)which weight the 
effect of all principal stresses (0" 02, 03) according to the relation: 

(Push off)	 (Toe off) 

Figure 2	 The von Mises stress distributions in the FMVA 
at the four characteristic subphases of stance. 

At heel strike position,the max stress concentrate in the rearward of the talus. The talus
navicular joint- cuneiform, and metatarsus come forth biggish stress in the midstance,and 
the talus-navicular joint's maxov.M is 5.53 MPa,the plantar aponeurosis oV.M is 2.13MPa.At 
push-off position, the max stress concentrate in the first metatarsus,in which the max oV.M is 
20.12 MPa, and the plantar aponeurosis oV.M is 11.58 MPa.The max oV.M concentrates in 
the end of the phalange. We have analyzed the stress variety in the first metatarsus (Figure 
3) and plantar aponeurosis (Figure 4) which is the largest stress appeared in the 
parenchyma. 
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Figure 3	 The ov.M stress variety in the Figure 4 The av.M stress vari'ety in the 
first metatarsus in one cycle of plantar aponeurosis in one 
the high-heeled gait. cycle of the high-heeled gait. 

For understanding these stress value better, we analysis the flat-shoe gait as well. It can help 
us to discover the high stress value in the specific part of the high-heeled gait through 
comparing. Figure 5 show us the FMVA von Mises distribution in the flat-shoe gait. 
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(Heel-strike) (Push-off) (Toe-off) 
Figure 5 The von Mises stress distributions in the FMVA at flat-shoe gait. 

Peak value of the first metatarsus and plantar aponeurosis appear in the push-off subphases 
of stance. But the first metatarsus' maxav.M is 9.06 MPa and the plantar aponeurosis' max 
av.M is 7.26 MPa. We've compared these parts peak value (Figure 6) for knowing the high 
stress value more vividly. 
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