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In the present paper we construct the mathematical model, describing the motion of the 
rider on a skateboard. The motion of the model is described in the absence of rider 
control. The equations of motion of the model are obtained in the form of Gibbs-Appell 
equations, and their stability analysis is fulfilled. The influence of different parameters of 
the model on its dynamics is investigated. 
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INTRODUCTION: At the present time skateboarding – the art of riding on the skateboard – is 
one of the most popular recreational sports. Nevertheless, serious researches concerning 
dynamics and stability of the skateboard motion are almost absent. In the late 70ies - early 
80ies of the last century Mont Hubbard (Hubbard, 1979 and 1980) proposed several 
mathematical models describing the motion of the rider on the skateboard. To derive the 
equations of motion of the models he used the principal theorems of dynamics. In this work 
we present a further development of the models offered by Hubbard, using the equations of 
motion in Gibbs-Appell form. Besides the investigations by Hubbard it is also necessary to 
mention the paper of Ispolov & Smolnikov (1996) and the recent paper of Wisse & Schwab 
(2005), devoted to study of various mathematical models of a skateboard. However the 
model proposed by Ispolov & Smolnikov (1996), is two-dimensional while in the papers of 
Hubbard (1979 and 1980) a more realistic three-dimensional model is studied. As to the 
paper of Wisse & Schwab (2005), it contains only the brief review of the main results 
obtained in Hubbard (1979).  

The usual skateboard consists of a board, 
two trucks, and four wheels (Fig. 1). The 
modern boards are usually from 78 to 83 
cm long, 17 to 21 cm wide and 1 to 2 cm 
thick. Beside the dimensions, the boards 
differ in bending stiffness, depending on the 
particular application desired. If the basic 
rider purpose is the opportunity to execute 
difficult tricks, it is better to use a more 

flexible board. More rigid board should be used at high speed riding. The most essential 
elements of a skateboard are the trucks, connecting the axles to the board. Angular motion 
of both the front and rear axles is constrained to be about their respective nonhorizontal pivot 
axes, thus causing a steering angle of the wheels whenever the axles are not parallel to the 
plane of the board. The vehicle is steered by using this kinematic relationship between 
steering angles and tilt of the board. In addition, there is a torsional spring, which exerts a 
restoring torque between the wheelset and the board proportional to the tilt of the board with 
respect to the wheelset.  

Fig.1.  

METHOD AND RESULTS: Let us assume that the rider, modelled as a rigid body, remains 
perpendicular with respect to the board. Therefore, when the board tilts through γ , the rider 
tilts through the same angle relative to vertical. Let us introduce an inertial coordinate system 

in the ground plane. Let OXYZ AB a=  is a distance between centres of two axles of a 
skateboard. The position of a line  with respect to OX system is defined by AB YZ X  and Y  
coordinates of its centre and by the angle θ  between this line and the OX -axis (Fig. 2). The 
tilt of the board causes the rotation of front wheels clockwise through fϕ  and the rotation of 
rear wheels anticlockwise through rϕ  (Fig. 3). The wheels of the skateboard are assumed to 
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roll without lateral sliding. This condition is modelled by constraints, which may be shown to 
be nonholonomic 
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Under these conditions the velocities of points  and A B  will be directed horizontally and 
perpendicularly to the axles of wheels, and there is a point  on the line  which has zero 
lateral velocity. Its forward velocity we denote by u . It may be shown, that 
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The equations of motion of the 
skateboard will be written using 
the  coordinate system 
whose origin is at . The -
axis is in the direction of motion; 
the -axis is up and Cx  is to 
the left in the horizontal plane 
(Fig. 3). Let us denote the unit 
vectors of this coordinate system 
by .  We will assume, 
basing on the features of a 
skateboard design, that the 
angles 

1 2 3Cx x x

2

1 2e e

θ , Fig. 2. 
Fig. 3. 

fϕ  and rϕ  are small 
enough and 

, cos 1fϕ ≈ cos 1r sinγ γ≈ sin f fϕ ϕ≈, , , , sin r r . ϕ ≈ ϕ ϕ≈cos 1γ ≈
Taking into account these assumptions, we can rewrite expressions (1) in the form: 
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Let us find now the relationship between the steering angles and tilt of the board. For this 
purpose we will use the theory of infinitesimal rotations (Synge & Griffith, 1959). Assume an 
infinitesimal rotation  of the forward axle about its pivot axle. Then the wheels rotate 
through 

β
γ− 1Px about  and fϕ− 3Px

1 3

 about  (Fig. 1). Taking into account that the resultant of 
two infinitesimal rotations about the same point is the vector sum of those rotations, we 
obtain ,fγ ϕ−β e e

tan
= −  and therefore 

f fϕ γ λ= . (3)  
Similarly, for the rear truck 
 tan .r rϕ γ λ=  (4) 
Using constraints (3)-(4) we can rewrite expressions (2) as follows: 
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Let us assume, that the board of the skateboard is located on the distance  above the line 
.AB  The length of the board is also equal to . The board’s center of mass  is located in 

its center. Then the absolute velocity and absolute acceleration of the board’s center of mass 
may be written as follows: 
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We will find now the absolute velocity and absolute acceleration of the rider’s center of mass. 
For more generality we suppose, that the rider’s center of mass R  is not located above the 
board center of mass, but it is located over the longitudinal axis of the board on a distance b  
from the front truck. Let  be the height of the rider’s center of mass above point .C  Then the 
absolute velocity and absolute acceleration of the rider’s center of mass may be written as 
follows: 

l
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The absolute angular velocity and angular acceleration of the board and the rider can be 
represented as: 
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Now we can obtain the equations of motion of the given model of a skateboard in the form of 
Gibbs-Appell equations (Lewis, 1996). We can choose the variables  and u γ&

bm rm bI

1Px rI

 as a 
pseudovelocities for this problem. As a first step, we should find the Appell function (energy 
of acceleration). Denote the mass of the board by , the mass of the rider by . Let  be 
the moment of inertia of the board with respect to the axis, passing through its center of 
mass, parallel to the -axis. And let  be the moment of inertia of the rider with respect to 
the axis, passing through its center of mass. For the Appell function we have the following 
expression: 
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The potential energy of the system consists of the potential due to gravity and the potential 
due to the torsional spring. Therefore, 
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The Gibbs-Appell equations, describing the dynamics of the given model of a skateboard, 
may be written as follows: 
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 (6) 

Equation (5) implies, that point  has a constant forward speed . Hence  will be treated 
as a parameter in the equation (6). 

C u u

Now let us make the stability analysis of the system. For stable motion all the coefficients in 
the equation (6) must be positive. The first coefficient is always positive; hence, the 
conditions of stability of motion have a following form: 
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We can make now simple conclusions using equation (6) and conditions (7)-(8). Note, first of 
all, that the stability of motion depends on its direction. If one direction of motion is stable, the 
opposite direction is necessarily unstable. If the speed  is zero, motion of u γ  is oscillatory 
and bounded in the case, where the torsional spring constant is sufficient to overcome the 
destabilizing gravity torque.  

,f rλ λ λ= =For the symmetric case, when 2b a=  and  the γ&
u

 coefficient is zero. In this case, 
we can note, that the nonzero forward speed  can stabilize γ  motion. Indeed, when 
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above which γ  motion will be stable. Thus, it is theoretically possible to have a vehicle, 
which is initially unstable at zero speed and becomes stable at higher speeds due to inertia 
effects. 
Let us assume, that ,f rλ λ λ= =  2ab ≠  and condition (8) is valid. Then, from condition (7) 
we obtain, that the stability of γ  motion depends on the location of the rider. If the rider 
stands closer to the front truck ( 2b a< ) , the motion will be stable and when the rider stands 
closer to the rear truck ( , the motion will be unstable. )2b a>

CONCLUSION: In this study we construct the simple mathematical model describing the 
motion of the rider on the skateboard. The equations of motion for this model have been 
derived in the form of Gibbs-Appell equations and stability criteria presented. The stability of 
this system depends on the sign and the value of velocity of forward motion. 

REFERENCES: 
Hubbard, M. (1979). Lateral Dynamics and Stability of the Skateboard. Journal of Applied Mechanics, 
46, 931-936. 
Hubbard, M. (1980). Human Control of the Skateboard. Journal of Biomechanics, 13, 745-754. 
Ispolov, Yu.G. & Smolnikov B.A. (1996). Skateboard Dynamics. Computer methods in Applied 
Mechanics and Engineering, 131, 327-333. 
Wisse, M. & Schwab, A.L. (2005). Skateboards, Bicycles and Three-dimensional Biped Walking 
Machines: Velocity-dependent Stability by Means of Lean-to-yaw Coupling. International Journal of 
Robotics Research, 24, 417-429. 
Synge, J.L. & Griffith, B.A. (1959). Principles of Mechanics. New York: McGraw Hill. 
Lewis, A.D. (1996). The geometry of the Gibbs-Appell equations and Gauss’ principle of least 
constraint, Reports on Math. Phys., 38, 11-28. 
 

 

4  XXIV ISBS Symposium 2006, Salzburg - Austria 


