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Abstract

In this paper, as a generalization of Urquhart’s formulas, we present a full description of the sets
of inner inverses and (B,C)-inverses over an arbitrary field. In addition, identifying the matrix vector
space with an affine space, we analyze geometric properties of the main generalized inverse sets. We
prove that the set of inner inverses, and the set of (B,C)-inverses, form affine subspaces and we study
their dimensions. Furthermore, under some hypotheses, we prove that the set of outer inverses is not
an affine subspace but it is an affine algebraic variety. We also provide lower and upper bounds for the
dimension of the outer inverse set.
Keywords: outer inverses; inner inverses; Moore-Penrose inverse; (B,C) inverse; affine subspaces;
Urquhart’s formula.
Mathematics Subject Classification: 15A09

1 Introduction

Generalized inverses for a given m × n matrix A over a field are those n × m matrices X, over the
same field, satisfying some of the, so called, Penrose equations that appear in (2.1) and (2.2) in Section
2. Depending on the required conditions from (2.1) and (2.2), different generalized inverses appear. Some
of the most famous generalized inverses are the Moore-Penrose inverse, the Drazin inverse, Core inverses,
group inverses, or the inner and outer inverses (see e.g. [1], [15], [16], [17], [33]). In addition, one may
introduce a fixed n × k matrix B and/or a fixed n × l matrix C and ask the generalized inverse to have
the same range as B and/or the same kernel as C; see (2.3) in Section 2. In this way, the (B,C)-inverses
appear (see e.g. [2], [5], [13], [23], [24], [34], [36], [37], [38] for further details).

These matrices have turned to be important in applications (see e.g. [8], [9], [12], [14], [32]) and many
authors have addressed the study of this type of matrices, both, from the theoretical point of view (see
e.g. [1], [6], [15], [33]) and from the computational point of view (see e.g. [4] [7], [9], [11], [18], [19], [20],
[21], [22], [25], [26], [27], [28]). Additionally, some authors have also studied the so called representation of
generalized inverses (see e.g. [5], [13], [26], [34], [36], [37]). Intuitively, the idea is to analyze the existence,
to characterize, and to study relationships among different types of pseudoinverses. One may say that the
starting point of this branch is the well known Urquhart’s formula, where outer inverses with prescribed
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null and/or range spaces, and expressible of certain particular form, are related to inner inverses (see [30]
and [31]).

In this paper, we work over an arbitrary field K, and we focus on two different aspects: the representation
problem and the analysis of geometric problems. More precisely, we present a generalization of Urquhart’s
formulas showing that all elements in the corresponding generalized inverse sets are expressible as Urquhart
Theorem requires. As a consequence, we provide a full description of the sets of (B,C)-inverses (see
Theorem 3.2). The main reference for our reasonings is [13]. In the second part of the paper, using the
derived description of the (B,C)-inverse sets, we study some geometric properties. For this purpose, we
consider the matrix vector space Km×n, respectively Kn×m, as an affine space. This allows us to see a
matrix as a point in an affine space, and each set of generalized inverses as an affine subset. Therefore, the
natural question on whether the generalized inverse sets are affine (non necessarily linear) varieties appears
and, if so, the investigation on their main geometric properties. The knowledge of the geometric properties
provides important information for the theoretical analysis and for the computational aspects, since they
describe how simple or complex is each set of generalized inverses. To our knowledge, this paper is the first
one dealing with geometric classifications and geometric properties of generalized inverses.

The study of geometric properties starts with the case of inner inverses. With this interpretation of
matrices as points in an affine space, it holds that A{1} is a linear affine subspace of dimension mn −
rank(A)2 (see Theorem 4.1). Observe that this result is a re-interpretation, for the case of K = C, of
Corollary 1 in [1], page 52; see also [31] and [29]. For the outer inverses, when K is not isomorphic to
Z2 and A is not zero matrix, we prove that A{2} is not an affine subspace but it is an affine algebraic
variety different of the whole space (see Lemma 4.1). In addition, we state lower bounds for dim(A{2})
(see Theorem 4.3) and we prove that, when A is not the zero matrix, the dim(A{2}) > 0 which implies
that A{2} has infinitely many elements. In addition, the illustrating examples show that, in general, A{2}
is reducible with components of different dimensions. (B,C)-inverses are also studied. More precisely, we
state that outer inverses with predefined null space and/or range are linear subspaces and we provide lower
and upper bounds for the dimension (see Theorem 4.2). Moreover, for the case of full-column rank (for B)
and of full-row rank (for C), we give the precise dimension of the corresponding affine subspaces. These
results certify that, in general, the computation of inner inverses and (B,C)-inverses can be approached
directly by means of linear algebra techniques. However, the computation and description of A{2} require,
in general, techniques from elimination theory as Gröbner bases.

The global structure of the paper is as follows. In Section 2 we recall the basic definitions and start
with the analysis of some basic properties. In Section 3 we recall Urquhart Theorem and we discuss some
of its possible generalizations. Section 4 is devoted to the geometric study of generalized inverses. We
finish the paper with a brief section where the main conclusions are summarized.

Notation. Throughout this paper we will use the following notation. Let K be a field. We denote by
Km×n (resp. by Km×n

r ) the ring of m× n matrices over K (resp. the set of m× n matrices over K of rank
r). As usual, I and 0 denote, respectively, the unit matrix and the zero matrix of an appropriate order.
The transpose of A is denoted by AT. Furthermore, we denote by R(A), rank(A) and N (A) the range
space, the rank, and the null space of A ∈ Km×n, respectively. Further, Z2 denotes the finite field with
two elements.

2 Generalized inverses over arbitrary fields

This section is devoted to introduce the basic notions of generalized inverses and (B,C)-inverses over
an arbitrary field. In addition, we discuss some properties as the existence of these type of matrices.

LetA ∈ Km×n be a fixed matrix. The problem of pseudoinverses computation leads to the determination
of matrices X ∈ Kn×m satisfying some of the, so called, Penrose equations 1

1For equations (3) and (4), we assume that K is endowed with an involutory automorphism ϕ so that, for a matrix M over
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(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA. (2.1)

in combination with the equations

(1k) Ak+1X = Ak k ≥ ind(A), (5) AX = XA, (2.2)

where ind(A) = min
{
j| rank(Aj) = rank(Aj+1)

}
, under the assumption that A is square. Condition (1k)

is equivalent indeed to ask that Aind(A)+1X = Aind(A) (see e.g. [37], Proposition 1).

For a given A ∈ Km×n and S ⊆ {1, 2, 3, 4, 1k, 5}, we denote by A{S} the set of all X ∈ Kn×m satisfying
the equation (i) for each i ∈ S. An arbitrary matrix from A{S} is called an {S}-inverse of A and it is
designated as A(S). Similarly, A{S}s denotes all {S}-inverses of A of rank s.

Matrices in A{1} are called inner inverses of A. Let see that, in our case, inner inverses always exist.

Lemma 2.1. The set of inner inverses of A ∈ Km×n satisfies that A{1} 6= ∅.

Proof. First, assume that A ∈ Km×m, for some m ≥ 1. Then, using that a field is a regular (Von Neumann)
ring, see e.g. [10] pg. 110, one deduces that Km×m is regular (see Theorem 24, pag 114 in [10]), and hence
A{1} 6= ∅.

In the general case, i.e. A ∈ Km×n, let us consider the case m < n first. In this situation, let

A =

(
A
0

)
be the n× n matrix obtained by attaching n−m zero rows below A, and let Y be the n× n inner inverse
of A. Then, it holds that the n×m principal submatrix of Y is an inner matrix of A.

If m > n, then one may consider the transpose matrix to conclude the result.

Matrices in A{2} are called outer inverses of A.

Lemma 2.2. The set of outer inverses of A ∈ Km×n satisfies A{2} 6= ∅. Moreover, A{2} has more than
one element if and only if A 6= 0.

Proof. Observe that 0 ∈ A{2} for every A. So, A{2} 6= ∅. Furthermore, 0{2} = {0}. In addition, if
A = (ai,j) 6= 0, every nonzero entry ai0,j0 6= 0 generates an outer inverse as follows: X = (xi,j) is defined
as xj0,i0 = 1/ai0,j0 and xi,j = 0 otherwise.

In Section 4, one can find more information on A{2}.

The set A{1, 2, 3, 4} relates to the well-known case of the Moore-Penrose inverse. When K = C,
A{1, 2, 3, 4} contains exactly one element, namely the Moore-Penrose inverse of A, that we denote by A†.
If K is not the field of the complex numbers or ϕ is another involutory automorphism, A{1, 2, 3, 4} could
be either empty or contain exactly one element. Those fields (K, ϕ) such that A{1, 2, 3, 4} 6= ∅ for every
A ∈ Km×n, are called Moore-Penrose fields (see [21] for further details).

If m = n, A{2, 1k, 5} corresponds to the Drazin inverse of A, that we denote by AD. Moreover, if
ind(A) = 1, the Drazin inverse is the group inverse, denoted by A#. Taking into account Theorem 9 in

K, M∗ denotes the transpose of the matrix ϕ(M) (see [21] for further details). If K is a subfield of the field C of the complex
numbers, ϕ is assumed to be the usual complex number conjugation.
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[17], since rank(Aind(A)) = rank(Aind(A)+1) and A2ind(A)+1{1} 6= ∅ (see above), one deduces that A{2, 1k, 5}
contains always exactly one element, namely the Drazin inverse of A.

Now, we consider {S}-inverses with prescribed range (resp. prescribed kernel). So, in addition to
A ∈ Km×n, let us fix B ∈ Kn×k and C ∈ K`×m. Then, we introduce the sets

A{S}R(B),∗ = {X ∈ A{S} |,R(X) = R(B)},

A{S}∗,N (C) = {X ∈ A{S} | N (X) = N (C)},

A{S}R(B),N (C) = A{S}R(B),∗ ∩A{S}∗,N (C).

(2.3)

We observe that if X ∈ A{S} then X ∈ Kn×m, and hence R(X) ⊂ Kn and N (X) ⊂ Km. Moreover,
B ∈ Kn×k and C ∈ K`×m. So, R(B) ⊂ Kn and N (C) ⊂ Km. Therefore, the above equality of vector
subspaces make sense.

Using the same notation criterium as above, the elements in A{S}R(B),∗ will be represented as A
(S)
R(B),∗;

similarly, for A
(S)
∗,N (C) and A

(S)
R(B),N (C). This type of inverses are known as (B,C)-inverses.

A complete analysis on the existence of (B,C)-inverses for matrices over a ring is presented in [13].
The results in [13] can be applied to our case, namely, the case of matrices over a field. For this purpose,
we first observe that A{1} 6= ∅ (see Lemma 2.1). Thus, for every m,n ∈ N, and for every field K, one has
that Km×n is regular. In this situation, the following results follow immediately.

1. Applying Theorem 2.3. (iv) in [13], we get that A{2}R(B),∗ 6= ∅ ⇐⇒ rank(B) = rank(AB) (compare
to Corollary 2.5. in [13] when K = C).

2. Applying Theorem 2.4. (v) in [13], we get that A{1, 2}R(B),∗ 6= ∅ ⇐⇒ rank(B) = rank(AB) =
rank(A) (compare to Corollary 2.5. in [13] when K = C).

3. We observe that every field is a regular ring. So, we have that every field is a right FP-injective ring
(see Def. 2.6. in [13]). Thus, applying Theorem 2.10. (iv) in [13], we get that A{2}∗,N (C) 6= ∅ ⇐⇒
rank(C) = rank(CA) (compare to Corollary 2.12. in [13] when K = C).

4. Similarly, applying Theorem 2.11. (v) in [13], we get that we get that A{1, 2}∗,N (C) 6= ∅ ⇐⇒
rank(C) = rank(CA) = rank(A) (compare to Corollary 2.12. in [13] when K = C).

For further results on the existence of generalized inverses with prescribed range and kernel, see Section 3.

For K = C, the Moore-Penrose inverse A†, the weighted Moore-Penrose inverse A†M,N , the Drazin

inverse AD and the group inverse A# can be derived using appropriate choices of the matrices B and C
(see, e.g. [33]):

A† = A
(2)
R(A∗),N (A∗), A†M,N = A

(2)

R(A]),N (A])
, where A] = N−1A∗M

AD = A
(2)

R(Ak),N (Ak)
, k ≥ ind(A), A# = A

(2)
R(A),N(A), ind(A) = 1.

(2.4)

3 Representations of generalized inverses over arbitrary fields

We start this section recalling the well known Urquhart formula for generalized inverses. The Urquhart
characteriztion was originally introduced in [30], and later continued in [33, Theorem 1.3.7, pg. 28] and [1,
Theorem 13, pag. 72]. The formula is usually presented for matrices over C, but one can check that the
proof is indeed valid over any field. For completeness reasons, we restate it here for an arbitrary field K.

Theorem 3.1. [Urquhart formula] Let A ∈ Km×n, B ∈ Kn×k, C ∈ Kl×m and X := B(CAB)(1)C.
Then:

4



(1) X ∈ A{1} ⇐⇒ rank(CAB) = rank(A).

(2) X ∈ A{2}R(B),? ⇐⇒ rank(CAB) = rank(B).

(3) X ∈ A{2}?,N (C) ⇐⇒ rank(CAB) = rank(C).

(4) X ∈ A{2}R(B),N (C) ⇐⇒ rank(CAB) = rank(B) = rank(C).

(5) X ∈ A{1, 2}R(B),N (C) ⇐⇒ rank(CAB) = rank(B) = rank(C) = rank(A).

For properly selected matrices A,B,C as in Theorem 3.1, Urquhart formula provides sufficient and
necessary condition for a matrix X of the form

X = BMC, M ∈ (CAB){1} (3.1)

to be an element in different sets of generalized inverses. However, it does not ensure whether all matrices
in each generalized inverse set are necessarily of the form (3.1). In Theorem 3.2 we show that indeed this
is the case. In the following we will use some results from [13]. For this purpose, we recall that Km×n is a
regular (Von Neumann) ring (see Lemma 2.1), and that every field is a FP-injective ring.

Theorem 3.2. [Generalized Urquhart formula] Let A ∈ Km×n and X ∈ Kn×m. It holds that

(1) The next statements are equivalent:

(i) X ∈ A{1}.
(ii) There exist k, l ∈ N, and B ∈ Kn×k, C ∈ Kl×m such that X = B(CAB)(1)C, and rank(CAB) =

rank(A).

(2) Let B ∈ Kn×k. Then the following statements are equivalent

(i) X ∈ A{2}R(B),∗.

(ii) rank(AB) = rank(B) and there exists M ∈ (AB){1} such that X = BM .

(iii) There exist C ∈ Kl×m, with l ∈ N, and M ∈ (CAB){1} such that rank(CAB) = rank(B) and
X = BMC.

(3) Let C ∈ Kl×m. Then the next assertions are mutually equivalent:

(i) X ∈ A{2}∗,N (C).

(ii) rank(CA) = rank(C) and there exists M ∈ (CA){1} such that X = MC.

(iii) There exist B ∈ Kn×k, with k ∈ N, and M ∈ (CAB){1} such that rank(CAB) = rank(C) and
X = BMC.

(4) Let B ∈ Kn×k and C ∈ Kl×m. Then the following statements are equivalent:

(i) X ∈ A{2}R(B),N (C).

(ii) rank(CAB) = rank(B) = rank(C) and there exists M ∈ (CAB){1} such that X = BMC.

(5) Let B ∈ Kn×k and C ∈ Kl×m. The subsequent statements are equivalent

(i) X ∈ A{1, 2}R(B),N (C).

(ii) rank(CAB) = rank(B) = rank(C) = rank(A) and there exists M ∈ (CAB){1} such that
X = BMC.

Proof.
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(1) (i)⇒(ii). Let X ∈ A{1}. Let k = n, l = m, and let B = In and C = Im. Then, X can be expressed
in the form X = B(CAB)(1)C exactly as X = A(1) = In(ImAIn)(1)Im. Moreover, rank(CAB) =
rank(A).
(ii)⇒(i). It follows from Theorem 3.1 (1).

(2) (i)⇒(ii). Let X ∈ A{2} and R(X) = R(B). Then, Theorem 2.3, statement(i) in [13] holds, and hence
using the same theorem one gets thatX can be represented asB(AB)(1), for some (AB)(1) ∈ (AB){1}.
Furthermore, since X ∈ A{2}R(B),?, by Theorem 2.3 (iv) in [13], one has that N (B) = N (AB). Thus
rank(AB) = rank(B).
(ii)⇒ (iii) Follows from the particular settings l = m and C = Im.
(iii)⇒(i). It follows from Theorem 3.1 (2).

(3) (i)⇒ (ii) Let X ∈ A{2} satisfy N (X) = N (C). Then, as every field is a FP-injective ring, one can
apply Theorem 2.10 (i) in [13] to get that X can be represented as (CA)(1)C for some (CA)(1) ∈
(CA){1}. Moreover, since X ∈ A{2}?,N (C), by Theorem 2.10 in [13], one has that R(C) = R(CA).
Thus rank(CA) = rank(C).
(ii)⇒ (iii) from taking k = n and C = In.
(iii)⇒(i). It follows from Theorem 3.1 (3).

(4) (i)⇒(ii). It follows from Theorem 2.15. (i),(vi) in [13].
(ii)⇒(i). It follows from Theorem 3.1 (4).

(5) Let X ∈ A{1, 2}R(B),N (C). Then, X ∈ A{2}R(B),N (C). So, by the statement (4)(i), we get that X =

B(CAB)(1)C, and using Theorem 2.13, (i) and (iv), in [13], we conclude rank(CAB) = rank(B) =
rank(C) = rank(A).
(ii)⇒(i). It follows from Theorem 3.1 (5).

Remark 3.1. The main differences between Theorem 3.1 and Theorem 3.2 can be highlighted as follows.

1. Theorem 3.1 considers X := B(CAB)(1)C and then gives corresponding statements about X. On the
other hand, Theorem 3.2 gives characterizations of the set of inner and outer inverses.

2. Theorem 3.1 does not give answer to the following question: is it possible to find inner or outer
inverses in the form which is different than B(CAB)(1)C? On the other hand, Theorem 3.2 reveals
that every inner and outer matrix can be represented in the form B(CAB)(1)C.

3. Theorem 3.1 gives statements about A ∈ Km×n
r , B ∈ Kn×k, C ∈ Kl×m and X = B(CAB)(1)C of

fixed dimensions. On the other hand, Theorem 3.2 considers B,C of variable orders n×k and l×m,
respectively.

Theorem 3.2 shows that the elements in A{2}R(B),?, A{2}?,N (C), A{2}R(B),N (C) and A{1, 2}R(B),N (C)

can be expressed in terms of inner inverses. More precisely, one gets that
A{2}R(B),? =

⋃
l∈N

{
BMC |C ∈ Kl×m with rank(CAB) = rank(B) and M ∈ (CAB){1}

}
A{2}?,N (C) =

⋃
k∈N

{
BMC |B ∈ Kn×k with rank(CAB) = rank(C) and M ∈ (CAB){1}

}
.

(3.2)

Let M,U, V matrices of suitable orders. In the sequel, we use the following notation

UM{1} = {UR |R ∈M{1}}, M{1}V = {RV |R ∈M{1}}, UM{1}V = {URV |R ∈M{1}}. (3.3)

In this situation, the next theorem, which is a direct consequence of the results in [13], gives a closer
description of these sets of generalized inverses.
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Theorem 3.3. Consider A ∈ Km×n, B ∈ Kn×k, C ∈ Kl×m. It holds that

(1) A{2}R(B),? =

{
B (AB){1}, if rank(AB) = rank(B)

∅, otherwise

(2) A{2}?,N (C) =

{
(CA){1}C, if rank(CA) = rank(C)

∅, otherwise

(3) A{2}R(B),N (C) =

{
B (CAB){1}C, if rank(CAB) = rank(C) = rank(B)

∅, otherwise

(4) #(A{2}R(B),N (C)) =

{
1, if rank(CAB) = rank(C) = rank(B)
0, otherwise

(5) A{1, 2}R(B),N (C) =

{
A{2}R(B),N (C), if rank(CAB) = rank(C) = rank(B) = rank(A)

∅, otherwise.

Proof. Statement (1) follows from Theorem 2.3. in [13] and Lemma 2.1.
Statement (2) follows from Theorem 2.10. in [13].
Statement (3) follows from Theorem 3.2 (4)(i).
Statement (4) follows from Theorem 2.15. in [13].
Statement (5): by Theorem 2.13. and Theorem 2.15 in [13], one gets that A{1, 2}R(B),N (C) 6= ∅ ⇐⇒
rank(CAB) = rank(A) = rank(C) = rank(B). Moreover, ifA{1, 2}R(B),N (C) 6= ∅ usingA{1, 2}R(B),N (C) ⊂
A{2}R(B),N (C) and statement (3) and (4) above, one gets the result.

Theorem 3.3 simplifies the description in (3.2) by taking l = m and C = Im for A{2}R(B),?, and k = n
and B = In for A{2}?,N (C). In the following, we generalize the result by showing that C and B can be
taken as full-column and full-row rank matrices, respectively.

The aim of Theorem 3.4 is to show that A{2}∗,N (C) can be generated using even a full-row rank
rectangular matrix B over the complex numbers C.

Theorem 3.4. Let A ∈ Cm×n, C ∈ Cl×m be given and B ∈ Cn×k be of full row rank. If rank(CAB) =
rank(C), then

A{2}∗,N (C) = B(CAB){1}C. (3.4)

Proof. The proof is based on the reverse order law for inner inverses proposed in Corollary 2.9 from [35].
In our case, we consider the matrices (CA) ∈ Cl×n and B ∈ Cn×k

n . Since the conditions of part (iii) of
Corollary 2.9 from [35] hold, it follows that

B{1}(CA){1} ⊆ (CAB){1}.

where B{1}(CA){1} = {RS |R ∈ B{1}, S ∈ (CA){1}}. But, the right inverse B−1R = B∗(BB∗)−1 belongs
to B{1}. Consequently,

B−1R (CA){1} ⊆ B{1}(CA){1} ⊆ (CAB){1}

which implies
(CA){1}C = BB−1R (CA){1}C ⊆ B(CAB){1}C.

On the other hand, A{2}∗,N (C) = (CA){1}C implies B(CAB){1}C ⊆ (CA){1}C, which completes the
proof.

The dual result is obtained in Theorem 3.5 and shows that A{2}R(B),∗ can be generated using even a
full-column rank rectangular matrix C.

Theorem 3.5. Let A ∈ Cm×n and B ∈ Cn×k be given and C ∈ Cl×m
m be of full column rank. If

rank(CAB) = rank(B), it follows that

A{2}R(B),∗ = B(CAB){1}C. (3.5)
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Remark 3.2. The proofs in Theorems 3.4 and 3.5 uses [35], which is stated for complex matrices, and
cannot be applied directly to the case of arbitrary field. These proofs use, for instance, the claim: if B is
full row rank the BBT is non-singular. However, this is not true for every field. For instance,

B =

(
1 1 1
0 1 0

)
∈ (Z2)2×3

is full row rank but

BBT =

(
1 1
1 1

)
is singular. So, the verification of these statements in arbitrary filed requires an alternative proof.

In the following we show how to generalize Theorems 3.4 and 3.5 to the case of arbitrary fields. For
this purpose, we start with the following technical lemma.

Lemma 3.1.

(1) Let W ∈ Kn×l and let B ∈ Kn×k be a full row rank. Then, there exists M ∈ Kk×l such that W = BM .

(2) Let W ∈ Kl×n and let C ∈ Kk×n be a full column rank. Then, there exists M ∈ Kl×k such that
W = MC.

Proof. (1) Equivalent vector form of the matrix equation W = BM can be derived using the property
vect(JKL) =

(
LT ⊗ J

)
vect(K), where vect denotes the vectorization operator. So,

vect(W ) = (Il ⊗B) vect(M) ∈ Knl.

As a consequence, we consider the linear system of equations

(Il ⊗B)X = vect(W ), X ∈ Kkl. (3.6)

Let (Il ⊗B | vect(W )) ∈ Knl×(kl+1) denote the augmented matrix of the linear system (3.6). Then,

nl = rank(Il ⊗B) ≤ rank ((Il ⊗B | vect(W ))) ≤ nl.

So, rank(Il ⊗B) = rank((Il ⊗B | vect(W ))). Thus, the linear system is consistent and hence M exists,
namely vect(M) is any solution to (3.6).

(2) Follows from (1) taking transposes.

Theorem 3.6.

(1) Let A ∈ Km×n, B ∈ Kn×k, and let C ∈ Kl×m be full column rank. Then,

A{2}R(B),? =

{
B(CAB){1}C, if rank(CAB) = rank(B)

∅, otherwise.

(2) Let A ∈ Km×n, C ∈ Kl×m, and let B ∈ Kn×k be full row rank. Then,

A{2}?,N (C) =

{
B(CAB){1}C, if rank(CAB) = rank(C)

∅, otherwise.

Proof. We first observe that, since C is of full-column rank, then rank(CAB) = rank(AB). By Theo-
rem 3.3 (1) we have that A{2}R(B),? = B(AB){1} iff rank(CAB) = rank(AB) = rank(B). Let us see
that B(BA){1} = B(CAB){1}C. Let Z ∈ B(AB){1}. Then, Z can be written as Z = BW where
(AB)W (AB) = AB. Therefore

(CAB)W (AB) = CAB.

By Lemma 3.1, W can be factorized as W = MC. Thus

(CAB)M(CAB) = CAB

and Z = BMC. So, M ∈ (CAB){1}. This implies that Z ∈ B(CAB){1}C. The other inclusion follows
from (3.2) and Theorem 3.3 (1). The proof of statement (2) is analogous.
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4 Geometrical structure of generalized inverses

In this section, we study the geometric structure of some of the generalized inverses sets. For this
purpose, in this section, we consider the vector space Kn×m as an affine space. Therefore, a matrix
A ∈ Kn×m is seen as a point, and hence it makes sense to analyze geometric properties of subsets, formed
by generalized inverse matrices, in this affine space.

The results in the previous section show that all the elements inA{2}R(B),?, A{2}?,N (C) andA{2}R(B),N (C)

are expressible in terms of inner inverses. This motivates to start our study with the set A{1} of inner
inverses.

Theorem 4.1. The set A{1} is a linear affine subspace of Kn×m and dim(A{1}) = mn− rank(A)2.

Proof. By Lemma 2.1, we know that A{1} 6= ∅. Let A(1) ∈ A{1}, then A{1} can be expressed as (see2 [31]
or Corollary 1 in [1] p. 52)

A{1} = {A(1) + Z −A(1)AZAA(1) | Z ∈ Kn×m}.

Therefore, A{1} is an affine subspace of Km×n. The dimension of A{1}, as affine subspace, is the dimension
of the solution space of the associated linear system to the matrix equality AXA = A. On the other hand,
the vectorization of the equation AXA = A is vect(AXA) =

(
AT ⊗A

)
vect(X) = vect(A). Therefore, it

holds that the matrix equation AX A = A is equivalent to the linear system
(
AT ⊗A

)
vect(X) = vect(A)

whose coefficient matrix is the Kronecker product AT ⊗ A. We know by Lemma 2.1 that the system is
compatible, and rank(AT ⊗A) = rank(AT) rank(A) = rank(A)2 (see e.g. [29]). Since the linear system
includes nm variables and the rank of the matrix of the system is rank(A)2, the dimension of the solution
space is mn− rank(A)2.

Remark 4.1. Based on the proof of Theorem 4.1, the set A{1} is expressible as

A{1} = A(1) + V(A{1}),

where
V(A{1}) = {Z −A(1)AZAA(1) |Z ∈ Kn×m}

is the transition vector space of A{1} satisfying AV(A{1})A = {O}.
Remark 4.2.

1. The minimum dimension of A{1} is achieved when A has full rank. In this case,

dim(A{1}) = mn−min{m,n}2 = min{m,n} (max{m,n} −min{m,n}) .

2. dim(A{1}) = 0 iff m = n = rank(A) iff A is square and non-singular. In this case, A{1} = {A−1}.

3. The maximum dimension of A{1} is achieved when A = 0. In this case, A{1} = Kn×m.

Example 4.1. In this example we illustrate the affine structure of A{1} corresponding to the inner inverses
of 1× 2 matrices. Let

A =
(
a11 a12

)
∈ K1×2.

If A = 0 then A{1} = K1×2, which dimension is 2. Let A 6= 0; solving the equation AX A = A one gets

A{1} =



(
0
1

a12

)
+

{
λ

(
1
0

) ∣∣∣∣ λ ∈ K
}
, if a11 = 0

(
1

a11

0

)
+

{
λ

(
a12
a11

) ∣∣∣∣ λ ∈ K
}
, if a11 6= 0.

Note that dim(A{1}) = 1, and applying Theorem 4.1 we get that dim(A{1}) = 1 · 2− 1 = 1.

2In [31] the field is not explicitly stated, and in [1] the proof is for complex matrices. However, one can check that the
proof is valid over any field.
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Now, we analyze the set A{2} of outer inverses. A{2}, by definition, can be seen as the zero-set of
finitely many polynomial equations (see the Penrose condition (2) in Section 2). Therefore, A{2} is an
affine algebraic variety in Kn×m. A natural question is whether this affine algebraic variety is linear. We
observe that 0{2} = {0} and (1Z2

){2} = Z2, where (1Z2
) is the unit 1× 1 matrix over Z2; note that all the

elements of Z2 satisfy the equation x2 = x. So, in these two cases we get an affine subspace. However, as
the Lemma 4.1 shows, in general, A{2} is not an affine subspace.

Lemma 4.1. Let K not be isomorphic to Z2. It holds that

1. If A 6= 0, then A{2} is not an affine subspace of Kn×m.

2. ∅ 6= A{2} ( Kn×m.

Proof. (1) Since 0 ∈ A{2}, one has that A{2} is an affine subspace iff A{2} is a vector subspace. Since
A 6= 0, by Lemma 2.2, there exists M ∈ A{2} with M 6= 0. Let λ ∈ K\{0, 1}; note that K is not isomorphic
to Z2 and hence λ exists. In this situation, (λM)A(λM) = λ2M 6= λM . Therefore, λM 6∈ A{2}. Thus,
A{2} is not an affine subspace.

(2) If A = 0, then A{2} = {0} 6= Kn×m. Let A = (aij) with ai0j0 6= 0. We consider X = (xij) ∈ Kn×m such
that 0 6= xj0i0 6= 1/ai0j0 and xij = 0 otherwise; note that this is possible because K is not isomorphic to Z2

and hence K \ {0, 1} 6= ∅. Then, the position (j0, i0) of the matrix XAX −X is xj0i0(ai0j0xj0i0 − 1) 6= 0.
So, X 6∈ A{2}, and therefore A{2} 6= Kn×m.

In the following Example 4.2 we see that the outer inverses set of complex 1× 2 matrices decomposes
as a union of two affine linear subsets. Nevertheless, in Example 4.3 we see that the outer inverses set of
complex 2×3 matrices decomposes as a union of two affine linear subspaces and non-linear affine varieties.

Example 4.2. Let A be as in the Example 4.1. If A = 0, then A{2} = {0}. Let A 6= 0. Using Gröbner
bases to solve the system of algebraic equations derived from the matrix equality XAX = X, we get that
A{2} decomposes as the union of a point, namely the null matrix, and a line. More precisely,

A{2} =


{0} ∪

{(
0
1

a12

)
+ λ

(
1
0

) ∣∣∣∣ λ ∈ K
}
, if a11 = 0

{0} ∪
{(

1
a11

0

)
+ λ

(
−a12
a11

) ∣∣∣∣ λ ∈ K
}
, if a11 6= 0.

Example 4.3. In this example, we analyze A{2} for A ∈ C2×3. As above, we assume that A 6= 0. In the
analysis of A{2} via Gröbner bases, we distinguish several cases. Let us denote by δi the 2 × 2 minors of
A, i.e.,

δ1 = a11a22 − a12a21, δ2 = a11a23 − a13a21, δ3 = a12a23 − a13a22.

We decompose C2×3 as C2×3 = Ω1 ∪ · · · ∪ Ω5, where

Ω1 =
{

(aij) ∈ C2×3 ∣∣ a11a22δ1δ2 6= 0
}
,Ω2 =

{
(aij) ∈ C2×3 ∣∣ a11 = 0

}
,Ω3 =

{
(aij) ∈ C2×3 ∣∣ a22 = 0

}
,

Ω4 =
{

(aij) ∈ C2×3 ∣∣ δ1 = 0
}
,Ω5 =

{
(aij) ∈ C2×3 ∣∣ δ2 = 0

}
.

In the following, we analyze the problem for the open set Ω1. For the other cases, the close sets Ωi, i =
2, . . . , 5, the reasoning is similar.

If A ∈ Ω1, then A{2} decomposes as the union of 3 affine varieties (one point, one line, and a 3-
dimensional affine algebraic variety of degree 3). More precisely,

A{2} = V1 ∪ V2 ∪ V3.
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Let us describe the varieties Vi.
To begin with V1 = {0}.
In addition, V2 has degree 3 and dimension 3, and it represents the affine algebraic variety

V2=


 x11 x12
x21 x22
x31 x32

∈C3×2

∣∣∣∣∣∣∣∣∣∣∣∣

−x11x22 + x12x21 =0
x32x11 − x12x31 =0
x32x21 − x22x31 =0

a11x11x21 + a12x21
2 + a13x21x31 + a21x11x22 + a22x21x22 + a23x22x31 − x21 =0

a11x11
2 + a12x11x21 + a13x11x31 + a21x11x12 + a22x11x22 + a23x12x31 − x11 =0

a11x11 + a12x21 + a13x31 + a21x12 + a22x22 + x32a23 =1


.

Further, V3 is the line (note that, since the entries of A are taken in Ω1, the line V3 does not pass through
the zero matrix)

V3 =


 x11 x12

x21 x22
x31 x32

 ∈ C3×2

∣∣∣∣∣∣∣∣∣∣
a11x31 + x32a21 = 0
δ1x22 + δ2x32 = a11

a11δ1x21 − a21δ2x32 = −a11a21
δ1x12 − δ3x32 = a12

a11δ1x11 + a21δ3x32 = a11a22

 .

One may check that Vi ∩Vj = ∅ for i 6= j. Furthermore, since V2 and V3 have no singularities, one has that
A{2} is smooth.

Parametrization of the line V3 indicates that the outer inverses of A included in V3 are of the form

V3 =


1

δ1


a22 −a12
−a21 a11

0 0

+ λ


−a21δ3 a11δ3

a21δ2 −a11δ2
−δ1a21 a11δ1


∣∣∣∣∣∣∣∣ λ ∈ C

 .

The variety V2 is rational, and can be expressed parametrically as (note that, in general, a rational
parametrization does not cover the whole variety and additional lower dimensional parametrizations are
required; see [3])

V2 = Σ1 ∪ · · · ∪ Σ5,

where
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Σ1=




−
(
µ2a23 + (λ a13 + ρ a22 − 1)µ+ a12ρ λ

)
λ

(λ a11 + µa21)µ

−λµa13 − a12ρ λ− µ2a23 − µρ a22 + µ

λa11 + µa21

λ ρ

µ
ρ

λ µ



∣∣∣∣∣∣∣∣∣∣∣∣
λ, µ, ρ ∈ C



Σ2 =




−λ a21
a11

λ

((µa23 − 1) a11 − a13a21µ) a21
a11 (a11a22 − a12a21)

−µa11a23 + a13a21µ+ a11
a11a22 − a12a21

−µa21
a11

µ



∣∣∣∣∣∣∣∣∣∣∣∣∣
λ, µ ∈ C



Σ3 =




−λ (λ a12 + µa22 − 1)

λ a11 + µa21
−µ (λ a12 + µa22 − 1)

λ a11 + µa21

λ µ

0 0


∣∣∣∣∣∣∣∣∣∣
λ, µ ∈ C


Σ4 =



−λ a12 − µa13 + 1

a11
0

λ 0

µ 0


∣∣∣∣∣∣∣∣∣ λ, µ ∈ C



Σ5 =



−λ a21 + 1

a11
λ

0 0

0 0


∣∣∣∣∣∣∣∣∣ λ, µ ∈ C

 .

In Theorem 4.2, applying Theorem 3.3 and Theorem 4.1, we show that outer inverses with prescribed
subspaces are affine subspaces. For this purpose, we will use the notation as in Remark 4.1, and consider
the following linear maps ΦB and ϕC . Let B ∈ Kn×k and C ∈ Kl×m, then we define

ΦB : Kk×m 7→ Kn×m,
M 7→ BM

ϕC : Kn×l 7→ Kn×m

M 7→ M C.

Theorem 4.2. Let A ∈ Km×n, B ∈ Kn×k, C ∈ Kl×m, with B 6= 0 and C 6= 0. The following statements
are valid.

(1) The assumption rank(AB) = rank(B) initiates A{2}R(B),? is the affine subspace in Kn×m defined by

A{2}R(B),? = B(AB)(1) + ΦB(V((AB){1})). (4.1)

Moreover,

m rank(B)− rank(B)2 ≤ dim(A{2}R(B),?) ≤ min{m rank(B)− 1, mk − rank(B)2}.

(2) The assumption rank(CA) = rank(C) implies that A{2}?,N (C) is the affine subspace in Kn×m given
in the form

A{2}?,N (C) = (CA)(1)C + ϕC(V((CA){1})). (4.2)
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Moreover,

n rank(C)− rank(C)2 ≤ dim(A{2}?,N (C)) ≤ min{n rank(C)− 1, nl − rank(C)2}.

(3) If rank(CAB) = rank(C) = rank(B) then A{2}R(B),N (C) is the zero-dimensional affine subspace

A{2}R(B),N (C) = {B (CAB)(1)C}.

(4) If rank(CAB) = rank(C) = rank(B) = rank(A), then A{1, 2}R(B),N (C) is the zero-dimensional affine
subspace A{2}R(B),N (C).

Proof. Statement (1): since ΦB(V((AB){1})) is a vector subspace, applying Theorem 3.3 (1) and Remark
4.1, one gets that A{2}R(B),? is the affine subspace defined by (4.1). Let us prove now the claim on the
dimension. Clearly, ΦB(V((AB){1})) ⊂ Im(ΦB). Let us see that the inclusion is strict. Indeed, let M ∈
(AB){1} ⊂ Kk×m. Then, ΦB(−M) = −BM ∈ Im(ΦB). Let us assume that −BM ∈ ΦB(V((AB){1})).
Then, 0 = BM − BM ∈ A{2}R(B),?. But, B 6= 0 and hence R(B) 6= R(0). Thus, ΦB(V((AB){1})) (
Im(ΦB). On the other hand, the matrix representation of the linear map ΦB is Im ⊗ B. Therefore,
dim(Im(ΦB)) = m rank(B). So, dim(A{2}R(B),?) ≤ m rank(B) − 1. Furthermore, from Theorem 4.1, we
get

dim(A{2}R(B),?) = dim(ΦB(V((AB){1})) ≤ dim(V((AB){1}) = mk − rank(AB)2.

Now, using the hypothesis on the rank, we get that dim(A{2}R(B),?) ≤ mk − rank(B)2.
Let ΦB,V((AB){1}) denote the restriction of ΦB to V((AB){1}. Then Ker(ΦB,V((AB){1})) ⊂ Ker(ΦB).

So,
dim(A{2}R(B),?) = dim(ΦB(V((AB){1}))

= dim(Im(ΦB,V ((AB){1})))
= dim(V((AB){1}))− dim(Ker(ΦB,V((AB){1})))
≥ dim(V((AB){1}))− dim(Ker(ΦB))
= mk − rank(B)2 − (mk − rank(Im ⊗B))
= mk − rank(B)2 − (mk −m rank(B))
= m rank(B)− rank(B)2.

Statement (2) follows analogously.
Statment (3): it follows from Theorem 3.3 (3), (4).
Statment (4): it follows from Theorem 3.3 (5).

Remark 4.3.

1. Note that if the rank conditions in Theorem 4.2 do not hold, then the corresponding generalized
inverses set is empty.

2. Observe that, if rank(AB) = rank(B), then rank(B) ≤ min{m, k, n}, and hence the lower bound in
Theorem 4.2 (1) is non-negative. Similarly for the lower bound in Theorem 4.2 (2).

The following result is a consequence of Theorem 4.2.

Corollary 4.1. Let A ∈ Km×n, B ∈ Kn×k, C ∈ Kl×m. It holds that

1. If rank(B) = 1 or B is of full-column rank, and rank(AB) = rank(B), then

dim
(
A{2}R(B),?

)
= (m− rank(B)) rank(B).

2. If rank(C) = 1 or C is of full-row rank, and rank(CA) = rank(A), then

dim
(
A{2}?,N (C)

)
= (n− rank(C)) rank(C).
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We know that A{2} is an affine algebraic variety that, in general, is not linear (see Lemma 4.1). In
the following, we analyze its dimension. For this purpose, in the sequel, we assume that the field K is not
isomorphic to Z2 and that A 6= 0. In this situation, Lemma 4.1 (2) implies that dim(A{2}) < nm. The
strategy to derive lower bounds is to find a matrix B, or C, satisfying the hypotheses in Theorem 4.2.
Then, it holds that

dim(A{2}) ≥ max
{

dim(A{2}R(B),?, dim(A{2}?,N (C)

}
.

More precisely, we state the next theorem.

Theorem 4.3. Let K not be isomorphic to Z2. If A 6= 0, it holds that

max {max{m,n} − 1, rank(A)(max{m,n} − rank(A))} ≤ dim(A{2}) < nm.

Proof. The upper bound follows from Lemma 4.1 (2). We first prove that max{m,n} − 1 ≤ dim(A{2}).
Indeed, since A 6= 0, there exists at least one entry of A = (aij) that is not zero. Say ai0j0 6= 0. Then,
let C ∈ Km×1 be the row matrix corresponding to the i0th vector of the canonical basis, and B ∈ Kn

be the column matrix corresponding to the j0 vector of the canonical basis. Then, CA is the i0th row
of A and BC is the j0th column of A. So, by the construction, it holds that rank(CA) = rank(C) and
rank(AB) = rank(B). The statement now follows from Theorem 4.2 (1), (2).

Next, we prove that rank(A) (max{m,n} − rank(A)) ≤ dim(A{2}). We consider the factorization
PA = LU where P is an m×m permutation matrix, L is an m×m non-singular lower triangular matrix,
and U is an m× n upper triangular matrix. Note that U can be expressed as

U =

(
V
0

)
,

with V ∈ Krank(A)×n and rank(V ) = rank(A). Now, if it is necessary, we right-multiply by a permutation
n× n matrix Q such that

U Q =

(
V1 V2
0 0

)
,

where V1 ∈ Krank(A)×rank(A), rank(V1) = rank(A), and V2 ∈ Krank(A)×(n−rank(A)). Moreover, let

J =

(
Irank(A)

0

)
∈ Kn×rank(A).

Then

AQJ = PTLUQJ = PTL

(
V1 V2
0 0

)(
Irank(A)

0

)
= PTL

(
V1
0

)
.

Moreover, since PTL is non-singular, rank(AQJ) = rank(V1) = rank(A) = rank(J). And since Q is
invertible, rank(AQJ) = rank(J) = rank(QJ). Thus, by Theorem 3.3 (1), ∅ 6= A{2}R(QJ),? ⊂ A{2}.
Moreover, by Theorem 4.2 (1), taking B = QJ and using that rank(QJ) = rank(J) = rank(A), we get that

m rank(A)− rank(A)2 ≤ dim(A{2}R(J),?) ≤ dim(A{2}). (4.3)

Now, we consider a factorization of the form AQ = WR where Q is an n× n permutation matrix, R is an
n × n non-singular upper triangular matrix, and W is an m × n lower triangular matrix. Repeating the
above reasoning, left-multiplying if necessary by an m×m permutation matrix P , one deduces

n rank(A)− rank(A)2 ≤ dim(A{2}?,N (J)) ≤ dim(A{2}). (4.4)

Now, from (4.3) and (4.4) one deduces the lower bound in the statement.

Remark 4.4. We observe that, in the proof of Theorem 4.3, the hypothesis on the field K is only used to
prove the upper bound and not the lower bound.
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Corollary 4.2 shows that the only matrices with finitely many outer inverses are the zero matrix and
the 1× 1 matrices.

Corollary 4.2. Let A ∈ Km×n, A 6= 0. Then, dim(A{2}) > 0 if and only if mn > 1.

Proof. If A = (a) ∈ K1×1, then A{2} = {0, a}. On the other hand, if mn > 1, since A 6= 0, Theorem 4.3,
we have that dim(A{2}) ≥ max{m,n} − 1 ≥ 1.

Let us illustrate the above results by means of an example.

Example 4.4. We consider the following matrices over C:

A =

(
1 1 1
0 0 0

)
, B =

 0
0
1

 , C =
(

1 1
)
.

Since rank(AB) = 1 = rank(B), by Theorem 3.3 (1) or by Theorem 4.2 (1), it holds that A{2}R(B),? 6= ∅.
Furthermore, since (AB){1} is the affine line

(AB){1} =
{(

1 0
)

+ λ
(

0 1
) ∣∣λ ∈ C

}
,

we get that A{2}R(B),? is the affine line

A{2}R(B),? =
{
B
(

1 0
)

+ λB
(

0 1
) ∣∣λ ∈ C

}
=


 0 0

0 0
1 0

+ λ

 0 0
0 0
0 1

∣∣∣∣∣∣λ ∈ C

 .

Note that dim(A{2}R(B),?) = 1 (compare to Theorem 4.2 (1) and Corollary 4.1 4.3 (1)). On the other
hand, since A{2}R(B),? ⊂ A{2}, let us compute A{2} and see how this inclusion works. Using Gröbner
basis, one gets that A{2} decomposes as

A{2} = V1 ∪ {0},

where

V1 =


 x11 x12

x21 x22
x31 x32

 ∈ C3×2

∣∣∣∣∣∣∣∣
x11 + x21 + x31 = 1
−x21x32 + x31x22 = 0

x21x12 + x21x22 + x21x32 − x22 = 0
x31x12 + x21x32 + x31x32 − x32 = 0

 .

Moreover, dim(V1) = 3, degree(V1) = 3, and A{2}R(B),? ⊂ V1 ⊂ A{2}. Therefore, dim(A{2}) = dim(V1) =
3; observe that the lower bound given by Theorem 4.3 is 2.

Let us analyze now A{2}?,N (C). Since rank(CA) = 1 = rank(C), by Theorem 3.3 (2) or by Theorem
4.2 (2), it holds that A{2}?,N (C) 6= ∅. Furthermore, since (CA){1} is the affine plane

(CA){1} =


 1

0
0

+ λ

 −1
1
0

+ µ

 −1
0
1

∣∣∣∣∣∣λ, µ ∈ C


we get that A{2}?,N (C) is the affine plane

A{2}?,N (C) =


 1

0
0

 C + λ

 −1
1
0

 C + µ

 −1
0
1

 C

∣∣∣∣∣∣λ, µ ∈ C


=


 1 1

0 0
0 0

+ λ

 −1 −1
1 1
0 0

+ µ

 −1 −1
0 0
1 1

∣∣∣∣∣∣λ, µ ∈ C

 .
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Note that dim(A{2}?,N (C)) = 2 (compare to Theorem 4.2 (2) and Corollary 4.1 (2)). Furthermore, remark
that A{2}?,N (C) ⊂ V1 ⊂ A{2}. On the other hand, it is observable that

A{2}R(B),N (C) = A{2}R(B),? ∩A{2}?,N (C) =


 0 0

0 0
1 1

 ∈ V1.
Observe that rank(CAB) = rank(A) = rank(B) = rank(C) = 1, accrodingly with Theorem 3.3 (4) and
Theorem 4.2 (4).

5 Conclusion

In this paper, we present a full description of the sets of (B,C)–inverses (see Theorem 3.2). In addition,
identifying the matrix vector space with an affine space, we visualize each matrix as a point in an affine
space, and we study the geometric structure of the most important generalized inverses sets. In particular,
we prove that inner inverses and (B,C)-inverses form affine subspaces. Moreover, we analyze their dimen-
sion. Studying a particular example, we observe that the situation, for the set of outer inverses, is much
more complicated and several components, that are not affine subspaces and with different dimensions,
appear. Motivated by this example, we show that, when K is not isomorphic to Z2 and A 6= 0, the set
A{2} is not an affine subspace but it is an affine algebraic variety. We also analyze the dimension of this
algebraic variety.

The knowledge of these geometric properties provides important information for the theoretical analysis
and for the computational aspects, since they describe how simple or complex is each set of generalized
inverses. In particular, these results certify that, in general, the computation of inner inverses and (B,C)-
inverses can be approached directly by means of linear algebra techniques. However, the computation and
description of A{2} is more complicated and require, in general, other techniques as Gröbner bases. This
may be an interesting topic for future research.
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