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ABSTRACT: A copper-catalyzed enantioselective cyclopropanation involving trifluorodiazoethane in the presence of alkenyl 

boronates has been developed. This transformation enables the preparation of 2-substituted-3-

(trifluoromethyl)cyclopropylboronates with high levels of stereocontrol. The products are valuable synthetic intermedi-ates 

by transformation of the boronate group. This methodology can be applied to the synthesis of novel trifluoromethyl-ated 

analogues of trans-2-arylcyclopropylamines, which are prevalent motifs in biologically active compounds. 

 
Cyclopropanes are widespread carbocycles in bioactive natural and synthetic compounds.1 It is currently a 

standard fragment in drug discovery, which allows to modulate properties such as lipophilicity, metabolic 
stability, pKa or binding, among others.2 Nowadays, it is present in numerous drugs, for example Ticagrelor,3 
active against cardiovascular diseases, or Tezacaftor,4 to treat cystic fibrosis.  

 
Numerous methods have been described for the synthesis of substituted cyclopropanes.5 Among all the 

different possibilities, the preparation of cyclopropanes with fluorinated groups, in particular trifluoromethyl, is 
of special interest.6 This functional group is present in a vast number of therapeutic compounds.7 However, the 
enantioselective procedures for the preparation of trifluoromethylcyclopropanes are scarce in the literature.8 All 
the existing protocols, which are summarized in Scheme 1a, led to cyclopropanes with an unsubstituted carbon 
on the three-membered ring. For this reason, there is still a need to develop efficient enantioselective 
methodologies to prepare all-carbon-substituted trifluoromethylcyclopropanes. 

 
On the other hand, the synthesis of versatile cyclopropanes, such as cyclopropylboronates, has also attracted 

the interest of the synthetic community.9 A boronate group can be easily transformed into a wide range of 
different functional groups.10 This allows the generation of compound libraries from a common structure. In this 
area, several strategies have been recently developed to prepare optically active cyclopropylboronates, 
including cyclopropanation of alkenyl boronates with diazo compounds,11 borylative cyclization of allylic 
carbonates, phosphonates,12 or epoxides,13 hydroboration of cyclopropenes,14 zinco‐cyclopropanation of allylic 
alcohols15 and C-H borylation.16 

 

In this context, we focused our attention on the enantioselective preparation of cyclopropanes that include 
simultaneously a trifluoromethyl group and a pinacol boronate as substituents. These versatile compounds 
would give access to a wide range of trifluoromethyl-cyclopropane derivatives. In the literature, there are only 
three examples of this type of compounds, all of them obtained as racemates from monosubstituted vinyl boron 
derivatives (Scheme 1b).17  

 
Herein, we report the enantioselective cyclopropanation of trans-alkenyl boronates with trifluorodiazoethane 

catalyzed by a copper(I)‐bisoxazoline complex to obtain versatile 2-substituted-3-
(trifluoromethyl)cyclopropylboronates. It is worth mentioning that the reactivity between alkenyl boroxines and 

trifluorodiazoethane has been recently reported to prepare α‐trifluoromethyl allylboronic acids,18 by formation of 
highly electrophilic BINOL boronate derivatives in a metal-free procedure. 

 
 
 
 



Scheme 1. Previous synthesis of trifluoromethylcyclopropanes and trifluoromethyl-
cyclopropylboronates. 

 

The cyclopropanation was initially studied with (E)‐styryl pinacolboronate (1a) as model substrate. We 
commenced using Cu(I)-tBuBOX (5 mol%) as catalyst formed in situ in DCE. Initial experiments showed that 
alkenyl boronate was not fully consumed with 2 equiv of diazo added over the course of 2 h (Table 1, entry 1). 
This point was crucial from a practical point of view, as cyclopropane 2a was not easily separable from the 
starting material by column chromatography. Further increase of the amount of the diazo compound (4 equiv) 
combined with a longer reaction time (6 h) raised the conversion to 90% (entries 2-4). The relative configuration 
of cyclopropane 2a was determined by 1H NMR experiments (see Supporting Information). 

Gratifyingly, good results of diastereo- and enantiocontrol were obtained under these catalytic conditions (92:8 
dr, 95:5 er). We examined different organic solvents such as THF or toluene (see SI). Toluene significantly 
reduced reactivity and diastereoselectivity, and THF led to no conversion of the olefin. Subsequently we 
investigated different commercially available BOX ligands. Whereas the iPrBOX (L2) ligand decreased the 
conversion and stereocontrol of the reaction, PhBOX (L3) slightly improved the diastereoselectivity (entries 5-
6). At this stage, concentration of trifluorodiazoethane was increased from ca. 0.5 to 1 M, conducting to complete 
conversion (entry 7). Furthermore, the amount of diazo compound could be reduced to 2 equivalents (entry 8). 

Under the optimized conditions, using 5 mol% of [Cu(NCMe)4]PF6 and tBuBOX as the catalyst and 2 equiv of 
trifluorodiazoethane added during 6 hours, 69% of cyclopropylboronate 2a was isolated, with high level of 
stereocontrol (94:6 dr, 95:5 er). 
 
  



Table 1. Optimization of the Reaction Conditions.a 

 

entry ligand diazo (equiv) t (h) conv (%) dr er 

1 L1 2 2 72 92:8 - 

2 L1 2 6 58 92:8 - 

3 L1 4 2 89 92:8 - 

4 L1 4 6 90 92:8 95:5 

5 L2 4 6 72 79:21 88:12 

6 L3 4 6 87 94:6 95:5 

7 L3 4b 6 100 94:6 95:5 

8 L3 2b 6 100 (69)c 94:6 95:5 
 

aReaction conditions: 1 (0.4 mmol), [Cu(NCMe)4]PF6 (0.02 mmol, 5 mol%), L (0.02 mmol, 5 mol%), DCE (1 
mL), inert atmosphere, trifluorodiazoethane (0.5 M DCE, 2-4 equiv) 6 h slow addition. Conversion measured by 
1H NMR. Diastereomeric ratio (dr) determined by 19F NMR analysis of the crude reaction mixture. Enantiomeric 
ratio (er) determined by HPLC analysis of the isolated product. bTrifluorodiazoethane (1.06 M DCE). cIsolated 
yield. 

 

With the optimized conditions in hand, the scope of the cyclopropanation was examined (Scheme 2). The 

procedure was successful with a variety of (E)-alkenyl boronates, considering electron-withdrawing and 

electron-donating groups (alkyl, halogens, trifluoromethyl, ether and ester substituents) at different positions in 

the aromatic substituent of the olefin. Moderate to good yields were obtained for the whole series (40-77%) and 

high stereoselectivity was also achieved, in terms of diastereoselectivity (up to 95:5) and enantioselectivity (up 

to 97:3). Notably, both parameters increase as the electron density of the aromatic ring decreases. A similar 

result was obtained with an electron-rich heterocycle such as thiophene (2l), with moderate enantioselectivity 

(90:10 er). Furthermore, an aliphatic-substituted cyclopropane (2m) was also accessible with moderate yield 

and levels of enantioinduction. In several substrates, an increase of the equivalents of trifluorodiazoethane was 

necessary to achieve complete conversion, whereas the reaction was suppressed in the presence of functional 

groups such as nitrile or nitro. The absolute configuration of the stereogenic centers of the cyclopropane were 

determined by single crystal X‐ray diffraction analysis of p-bromo and p-methoxy derivatives 2i and 2l (Scheme 

2).19 

  



Scheme 2. Substrate scope of copper-catalyzed cyclopropanation of alkenyl boronates.a 
 

 
aReaction conditions: 1 (0.61 mmol), [Cu(NCMe)4]PF6 (0.03 mmol, 5 mol%), (S,S)-L3 (0.03 mmol, 5 mol%), DCE (1.5 

mL), inert atmosphere trifluorodiazoethane in DCE (2 equiv), 6 h slow addition. Isolated yields.  b76% at 1.25 mmol scale. 

cTrifluorodiazoethane (6 equiv). dTrifluorodiazoethane (4 equiv). eThermal ellipsoids are drawn at the 50% probability level. 

 

As mentioned above, cyclopropylboronates are versatile intermediates in organic synthesis by the 
transformation of the carbon-boron bond. To highlight the synthetic utility of the new compounds, we performed 
several transformations of the pinacol boronate group following reported methodologies (Scheme 3). Boronic 
acid 3 was smoothly obtained by treatment with methylboronic acid.20 Standard conditions of Suzuki-Miyaura 
cross-coupling led to 3-trifluoromethyl-1,2-diarylsubstituted cyclopropane 4 in good yield. Furthermore, 
oxidation of the boronate group could be achieved under basic conditions to get alcohol 5. Finally, amination of 
the cyclopropylboronate was accomplished by using BCl3 and BnN3 to get the benzylamine derivative in good 
yield (6).21 The latter transformations gave access to substituted trans-2-trifluoromethylcyclopropan-1-amine 
and trans-2-trifluoromethylcyclopropanol, rarely described in the literature in an enantioselective manner.22 

 

Scheme 3. Transformations of cyclopropylboronate ester. 
 

 
aReaction conditions: (a) MeB(OH)2 (5 equiv), TFA (5%)/DCM, 8 h, 72%. (b) 4-iodoanisole (1.5 equiv), Pd2(dba)3·CHCl3 

(10 mol %), PPh3 (1 equiv), Ag2O (1.5 equiv), THF, 70 °C, 24 h, 45 %. (c) 3M NaOH 30% H2O2 THF, 30 min, 68%. (d) BCl3 

(5.0 equiv, CH2Cl2, 25 °C, 1.5 h), then BnN3 (3.0 equiv, CH2Cl2, from 0 to 25 °C, 2 h), 51%. 



Then, we focused our interest in amine derivative 6, as a trifluoromethylated analogue of trans-2-
arylcyclopropylamines. This scaffold is common to numerous biological active compounds23 and is present in 
drugs such as Tranylcypromine (antidepressant), Ticagrelor (platelet aggregation inhibitor) or candidates under 
clinical trials for the treatment of cancer and neurodegenerative diseases.23,24 Due to the implication of fluorine 
atoms in the properties of bioactive compounds, 25 we targeted the enantioselective synthesis of a CF3 analogue 
of a lysine-specific demethylase 1 (LSD1) inhibitor (Scheme 4).  The amination of cyclopropylboronate 2a with 
3-(azidomethyl)-2-methoxypyridine (7) allowed us to obtain the trifluoromethyl analogue 8 of LSD1 inhibitor in 
a good yield. 

 
Scheme 4. Preparation of a trifluoromethyl analog of LSD1 inhibitor. 

 

 
aReaction conditions: (a) BCl3 (5.0 equiv, CH2Cl2, 25 °C, 1.5 h), then 7 (3.0 equiv, CH2Cl2, from 0 to 25 °C, 4 h), 55%. 

 

In summary, we have developed a catalytic approach for the preparation of enantiomerically enriched 2-
substituted-3-(trifluoromethyl)cyclopropylboronates by cyclopropanation of (E)-alkenyl boronates with 
trifluorodiazoethane. This methodology is general for a variety of substrates, using commercially available 
copper catalyst and ligand. Valuable synthetic intermediates can be obtained by the functionalization of the C−B 
bond. This route provides straightforward access to enantioenriched 2-aryl-3-
(trifluoromethyl)cyclopropylamines, a relevant scaffold in medicinal chemistry. 
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