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Resumo 

A distribuição da infraestrutura verde-azul no Piauí, Brasil. Estudos sobre infraestrutura verde-azul (IVA) 

ainda são incipientes no Brasil. Como o seu acesso e seus benefícios podem não ser bem distribuídos pela 

população, é importante avaliar a distribuição da IVA para dar base ao planejamento territorial e ambiental. 

Isso é especialmente verdade para estados menos urbanizados e menos desenvolvidos, como o Piauí. Desta 

forma, o objetivo deste estudo foi avaliar parâmetros de urbanização, socioeconômicos e da IVA nos municípios 

do Piauí. Uma avaliação quantitativa foi realizada por meio de análise estatística descritiva e de correlação, e 

de visualização espacial de dados considerando população absoluta, densidade demográfica, área construída 

relativa, e área construída por habitante como parâmetros de urbanização; renda per capita, pobreza, e índices 

de desigualdade de GINI e de desenvolvimento humano como parâmetros socioeconômicos; e cobertura 

florestal relativa, cobertura florestal por habitante, cobertura da IVA relativa, e cobertura da IVA por habitante 

como parâmetros de IVA. Correlações fortes foram encontradas entre IVA e urbanização, enquanto correlações 

importantes, porém fracas, foram encontradas entre IVA e variáveis socioeconômicas. Municípios com mais 

IVA são menos urbanizados e têm piores condições socioeconômicas. Resultados indicam que os processos de 

urbanização dos municípios do Piauí precisam garantir espaços abertos para a IVA urbana, assim buscando 

justiça ambiental e o acesso e os benefícios da IVA para todos.    

Palavras-chave: aspectos socioeconômicos, cobertura florestal, justiça ambiental, serviços ecossistêmicos, 

urbanização. 

Abstract 

Studies of blue-green infrastructure (BGI) are still incipient in Brazil. Since its access and benefits may not be 

well-distributed among the population, it is important to evaluate BGI distribution to base territorial and 

environmental planning. This is especially true for less urbanized and developed states, like Piauí. Thus, this 

study aimed to assess urbanization, socioeconomic and BGI parameters in Piauí municipalities. We conducted 

a quantitative assessment through descriptive and correlation statistical analysis and spatial data visualization 

considering absolute population, population density, relative built area, and built area per inhabitant as 

urbanization parameters; per capita income, poverty, GINI inequality, and human development indexes as 

socioeconomic parameters; and relative forest area, forest area per inhabitant, relative BGI area, and BGI area 

per inhabitant as BGI parameters. Strong correlations were found between BGI and urbanization, while 

important but weak correlations were found between BGI and socioeconomic variables. Municipalities with 

more BGI are less urbanized and have worse socioeconomic conditions. Results reinforce that the urbanization 

processes of Piauí municipalities need to ensure open spaces for urban BGI, therefore pursuing environmental 

justice and BGI access and benefits for all.   

Keywords: ecosystem services, environmental justice, forest cover, socioeconomic aspects, urbanization. 
 

INTRODUCTION 

The blue-green infrastructure (BGI) is an interconnected network of natural and semi-natural areas which 

aims to conserve biodiversity and generate a wide range of ecosystem services (SILVA; WHEELER, 2017; 

PAULEIT et al., 2017). BGI includes blue elements, such as rivers, ponds, lakes, lagoons, floodplains, and 

wetlands; and green elements, like forests, other non-forest ecosystems (e.g. savannas, grasslands etc.), and even 

urban green spaces, lawns, and isolated trees. These elements provide many benefits to people including carbon 

storage and climate regulation; soil protection and erosion control; water safety; disaster risk reduction; air and 

noise pollution attenuation; and overall social well-being and physical and mental health (FOOD AND 

AGRICULTURE ORGANIZATION – FAO, 2016; YING et al., 2021). BGI is, therefore, a counterpoint to grey 

infrastructure as a nature-based solution to address societal problems.  

However, there is evidence that BGI access and its benefits are not well-distributed across the population, 

with those in more urbanized areas and in worse socioeconomic conditions being the most negatively affected 

(FAO, 2016; MORATO et al., 2018; REZENDE et al., 2018; ARANTES et al., 2021). People’s right to nature is 
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called environmental justice, which occurs when the BGI is equally distributed without any kind of discrimination 

(SILVA et al., 2018). 

Research on environmental justice has been increasingly conducted, but gaps still exist, mostly in 

developing countries (YING et al., 2021). Moreover, environmental injustice seems more direct in the Global 

North, for example with a high positive correlation between vegetation cover and both education and income 

parameters in the United States (NESBITT et al., 2019). Yet it is not as straightforward in the Global South. 

Hetrick et al. (2013) found, for instance, less forest cover in the more urbanized higher-income city center of 

Altamira, Pará, Brazil, and more forest cover in its less urbanized lower-income surroundings. The same pattern 

was discovered by Arantes et al. (2021) in the city of São Paulo, where native vegetation remnants, in general, are 

more present in lower-income peripheral areas, while public urban green spaces specifically, which have better 

infrastructure, accessibility, and safety, are found in higher-income areas closer to the more urbanized city center. 

Thus, people with worse socioeconomic conditions might live closer to the BGI but have less access to it at the 

same time.   

This may be due to the urbanization patterns of Brazilian cities, which intensified with the 

industrialization policies of the first half of the 20th century (CRUZ, 2018). Urbanization starts in city centers that 

concentrate people and greater life conditions, with better infrastructure, public services, employment, and income. 

However, these centers are initially occupied through deforestation, without territorial or environmental planning, 

limiting the available space for the BGI (ARANTES et al., 2021). Urban sprawl comes later, advancing closer to 

the native vegetation remnants of the peripheral areas, usually with irregular occupations and constructions, in 

addition to limitations on the city center’s benefits (CRUZ, 2018; ARANTES et al., 2021). The BGI is then planned 

and implemented, if at all, mainly at the city centers using the often few open spaces left (ARANTES et al., 2021). 

City centers and other higher-income areas tend to receive higher investments in BGI, favoring the population 

with already better socioeconomic conditions. Furthermore, when BGI is implemented in lower-income areas, it 

may cause environmental gentrification, which is when an area gains value and higher-income people’s interest 

by receiving investments in public urban green spaces, displacing or excluding the lower-income population 

(SILVA et al., 2018). 

Considering these topics, the Brazilian State of Piauí appears as an area of interest to investigate possible 

relations between the distribution of the BGI and urbanization and socioeconomic conditions. Piauí is the state 

with the highest proportion of forest cover outside the Amazon Biome (77,12%) while having the lowest proportion 

of water surface (0,30%) in the country (MAPBIOMAS, 2022). It has one of the smallest urban population together 

with one of the lowest per capita income (INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – 

IBGE, 2016). Moreover, it is one of the less-researched states of Brazil. Understanding these relations is important 

to subsidize territorial and environmental planning, aiming at environmental justice so all people are benefited 

from the BGI. Thus, the objective of this study was to assess urbanization, socioeconomic and BGI parameters for 

the 224 municipalities of Piauí.  

MATERIAL AND METHODS 

Piauí is one of the nine states of the Brazilian Northeast Region (Figure 1). It has an area of 251,755.48 

km², approximately 2.95% of the country’s size, with 0.19% of built area (FUNDAÇÃO BRASILEIRA PARA O 

DESENVOLVIMENTO SUSTENTÁVEL – FBDS, 2022; IBGE, 2022). Piauí is located within the Cerrado and 

Caatinga Biomes, with 52.81% and 47.19% of the state’s area, respectively (IBGE, 2019). The state is fully 

inserted in the Parnaíba hydrogeographic region, mainly composed of intermittent rivers (LIMA, 2017). Its 

population is estimated at 3,289,290 inhabitants in 2021, 1.54% of the country’s population, with 65.77% 

considered urban residents, and an average population density of 13.06 inhabitants per km² (IBGE, 2022). Its 

average per capita income in 2021 was BRL 837.00, the 23rd among the 27 Brazilian states (Brazil’s average per 

capita income was BRL 1,439.00) (IBGE, 2022). Piauí’s proportion of people vulnerable to poverty is 58.13%, 

the 3rd most vulnerable state (Brazil’s poverty index is 32.56%); its GINI inequality index is 0.610, the 13th less 

equal state (almost the same as Brazil’s 0.600); and its Human Development Index (HDI) is 0.646, the 4th less 

developed state (Brazil’s HDI is 0.765) (IBGE, 2016). 

We did a quantitative assessment of the BGI and its relation to urbanization and socioeconomic conditions 

in the 224 municipalities of Piauí. Microsoft Excel 365 software was used for data curation and visualization, IBM 

SPSS Statistics 25 for statistical analysis, and QGIS 3.16.11 for data spatialization and map elaboration.   

The dependent variables selected as BGI parameters were the proportion of forest area relative to 

municipality area, absolute forest area per inhabitant (i.e. forest index), the proportion of BGI area relative to 

municipality area, and absolute BGI area per inhabitant (i.e. BGI index), presented in Table 1. Here, BGI consists 
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of forests, other non-forest native ecosystems, and water covers. We decided to also consider forest cover 

separately from BGI since there is evidence that human health and well-being are positively affected more by 

forests than other vegetation types (REID et al., 2017).  

 

   

Figure 1. Geographic location of Piauí State, Brazil. 

Figura 1. Localização geográfica do estado do Piauí, Brasil. 

Table 1. List of collected and calculated data for the study area. 

Tabela 1. Lista dos dados levantados e calculados para a área de estudo. 

Code Variable Unit of measure Parameter 

id1 Geocode Number - 

id2 Municipality name Name - 

area.km² Municipality area in km² km² - 

area.m² Municipality area in m² m² - 

population Population Number of inhabitants Urbanization 

pop.density Population density N. inhabitants/km² Urbanization 

built Built area m² - 

built% Built area per municipality area % Urbanization 

built.index Built area per inhabitant m²/n. inhabitants Urbanization 

income Average per capita income  BRL Socioeconomic 

poverty Poverty vulnerability  % Socioeconomic 

GINI GINI inequality index 0 low – 1 high Socioeconomic 

HDI Human development index  0 low – 1 high Socioeconomic 

forest Forest area m² - 

forest% Forest area per municipality area % BGI 

forest.index Forest area per inhabitant m²/n. inhabitants BGI 

BGI BGI area m² - 

BGI% BGI area per municipality area % BGI 

BGI.index BGI area per inhabitant m²/n. inhabitants BGI 

Legend: km² = square kilometers; m² = square meters; n. = number; % = percentage; BRL = Brazilian Real; HDI = human development index; 

BGI = blue-green infrastructure. 
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The following independent variables were selected (Table 1): population, population density, proportion 

of built area relative to municipality area, and built area per inhabitant (i.e. built area index) as urbanization 

parameters; and average per capita income, proportion of the population vulnerable to poverty, GINI inequality 

index, and human development index (HDI) as socioeconomic parameters. 

These variables were selected to represent urbanization, socioeconomic status, and BGI based on 

scientific literature. Data on the municipalities' total area and population were collected from the Brazilian Institute 

for Geography and Statistics (IBGE, 2022), land cover from the Brazilian Foundation for Sustainable Development 

(FBDS, 2022), and socioeconomic conditions from the National Survey by Household Sample (IBGE, 2016). 

We applied statistical descriptive analysis of minimum, maximum, mean, and standard deviation values 

for all parameters, as well as bivariate non-parametric correlations with the application of Spearman’s and 

Kendall’s coefficients (Equations 1 and 2), both considered robust and efficient statistic methods (CROUX; 

DEHON, 2010). Correlation coefficients were interpreted considering Table 2 (KOZAK, 2009).   

Equation 1. 𝑟𝑠 = 1 − 6 ∗
∑ 𝑑𝑖

2

𝑛(𝑛2−1)
 

where: rs = Spearman’s rho; di = difference between the ranks of two parameters; n = number of alternatives.  

Equation 2. τ =  
[(concordant)−(discordant)]

0.5∗n∗(n−1)
 

where: τ = Kendall’s tau; concordant = number of concordant pairs; discordant = number of discordant pairs; n = 

number of pairs. 

Table 2. Interpretation of correlation coefficients values (adapted from Kozak (2009)). 

Tabela 2. Interpretação dos valores dos coeficientes de correlação (adaptado de Kozak (2009)). 

Positive values Meaning Negative values Meaning 

0.00 – 0.20 Non-important correlation -1.00 – -0.70 Very strong correlation 

0.20 – 0.50 Weak correlation -0.70 – -0.50 Strong correlation 

0.50 – 0.70 Strong correlation -0.50 – -0.20 Weak correlation 

0.70 – 1.00 Very strong correlation -0.20 – 0.00 Non-important correlation 

Moreover, all data were attributed to a vector file of Piauí municipalities in QGIS. We elaborated maps 

considering five classes of equal number of units (quantiles) to visualize differences between data distribution. 

RESULTS 

The statistical descriptive analysis for the urbanization, socioeconomic, and BGI parameters for the 224 

municipalities of Piauí is presented in Table 3. The municipalities vary greatly both in size and population, thus 

the selection of relative-valued parameters, instead of absolute variables, was appropriate for the assessment. Santo 

Antônio dos Milagres is the smallest municipality, with 33.17 km², and Uruçuí the biggest, with 8,405.41 km². 

Miguel Leão is the municipality with the smallest population, of 1,253 inhabitants, while Teresina, the state’s 

capital, has the biggest, with 814,230 inhabitants. Santa Filomena has the lowest population density, with 1.15 

inhabitants per km², and Teresina has the highest, with 585.34 inhab./km². About 15% of the municipalities (33) 

had no built area (0.00%; 0.00 m²/inhab.), while Teresina had the highest proportion of built area (11.52%) and 

Colônia do Gurguéia had the highest built index (507.94 m²/inhab.). 

Average per capita income varies between BRL 141.79 in Assunção do Piauí and 757.57 in Teresina; 

where 37.83% are vulnerable to poverty, against 85.39% in Madero. The GINI inequality index is 0.431 in São 

José do Piauí and 0.797 in Isaías Coelho; and the HDI vary between 0.485 in São Francisco de Assis do Piauí and 

0.751 in Teresina. 
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In addition to the highest built index, Colônia do Gurguéia has both the lowest proportion of forest and 

forest index (0.00%; 1.49 m²/inhab.), even though its BGI relative area and index are high (83.09%; 59,257.99 

m²/inhab.), due to being in the Caatinga, a non-forest ecosystem. Água Branca has the lowest proportion of BGI 

area (26.58%) and Teresina has the lowest BGI index (746.07 m²/inhab.). Guaribas has the highest forest relative 

area and index (88.84%; 629,287.92 m²/inhab.), and BGI relative area and index (96.85%; 686,020.27 m²/inhab.). 

The spatial distribution of the urbanization, socioeconomic, and BGI parameters is presented in Figure 2. 

Through the maps, it is possible to visually evaluate possible correlations between population density, built area 

relative to municipality area, and the BGI index. Furthermore, it seems that average per capita income, poverty 

vulnerability, and HDI are correlated with each other.  

Table 3. Statistical descriptive analysis (n = 224). 

Tabela 3. Análise estatística descritiva (n = 224). 

Variable code (unit) Minimum Maximum Mean 
Standard 

deviation 

area.km² (km²) 33.1724 8,405.4144 1,123.6191 1,187.9913 

population (inhab.) 1,253 814,230 13,921.25 55,469.20 

pop.density (inhab./km²) 1.1541 585.3355 18.7078 47.0878 

built% (%) 0.00 11.52 0.26 0.89 

built.index (m²/inhab.) 0.0000 507.9390 125.0565 93.0923 

income (BRL) 141.79 757.57 249.39 76.02 

poverty (%) 37.83 85.39 69.47 8.29 

GINI 0.4312 0.7972 0.5450 0.0454 

HDI 0.4850 0.7510 0.5710 0.0401 

forest% (%) 0.00 88.84 44.88 22.57 

forest.index (m²/inhab.) 1.4927 629,287.9236 58,478.7201 75,794.1151 

BGI% (%) 26.58 96.85 70.00 14.82 

BGI.index (m²/inhab.) 746.0735 686,020.2667 120,475.1680 133,128.8687 

Legend: km² = square kilometers; inhab. = number of inhabitants; pop.density = population density; built% = built area per municipality area; 

% = percentage; built.index = built area per inhabitant; m² = square meters; income = average per capita income; BRL = Brazilian Real; poverty 

= poverty vulnerability; GINI = GINI inequality index; HDI = human development index; forest% = forest area per municipality area; 

forest.index = forest area per inhabitant; BGI = blue-green infrastructure; BGI% = BGI area per municipality area; BGI.index = BGI area per 

inhabitant.  
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Legend: km² = square kilometers; inhab. = number of inhabitants; pop.density = population density; BRL = Brazilian Real; poverty = poverty 

vulnerability; HDI = human development index; BGI = blue-green infrastructure. 

Figure 2. Maps of population (A), population density (B), built area per municipality area (C), built area per 

inhabitant (built index) (D), average per capita income (E), poverty vulnerability (F), GINI inequality 

index (G), human development index (HDI) (H), forest area per municipality area (I), forest area per 

inhabitant (forest index) (J), BGI area per municipality area (K), and BGI area per inhabitant (BGI 

index) (L) distribution in Piauí. 

Figura 2. Mapas da distribuição da população (A), densidade demográfica (B), área construída por área do 

município (C), área construída por habitante (índice de área construída) (D), renda média per capita (E), 

vulnerabilidade à pobreza (F), índice de desigualdade de GINI (G), índice de desenvolvimento humano 

(IDH) (H), área de cobertura florestal por área do município (I), área de cobertura florestal por habitante 

(índice de cobertura florestal) (J), área de infraestrutura verde-azul (IVA) por área do município (K), e 

área de IVA por habitante (índice de IVA) (L) no Piauí.   

Of the 64 bivariate correlations performed (considering four BGI parameters as dependent variables, four 

urbanization parameters and four socioeconomic parameters as independent variables, and two correlation 

coefficients), 18 were not statistically significant, with a calculated error above 5%, and therefore were excluded 

from this assessment (Table 4). 

Considering the remaining 46 correlations, 19 were non-important (41.30%) and 27 were important 

(58.70%). Two were interpreted as strong negative correlations (4.35%) and another two as very strong negative 

correlations (4.35%), both between BGI and urbanization parameters. They are between BGI area per municipality 

A B C D 

E F G H 

I J K L 



Universidade Federal do Paraná 
Setor de Ciências Agrárias 

Pós-graduação em Engenharia Florestal 

Revista Floresta 
 

FLORESTA, Curitiba, PR, v. 52, n.4, p. 562 - 570, out/dez/2022 

Viezzer, J. T. et. al.   
ISSN eletrônico 1982-4688  

DOI: 10.5380/rf.v52 i4. 86136 

568 

 

area and population density (rs = -0.566); BGI area per inhabitant and built area per municipality area (rs = -0.593); 

and BGI area per inhabitant and population density (rs = -0.979; τ = -0.889). This means that municipalities with 

more BGI (both in relative area and per inhabitant) are the ones with less population density. Also, municipalities 

with a higher proportion of BGI are the ones with a lower proportion of built area. 

Among BGI and socioeconomic parameters, correlations between the forest index and income (rs = -

0.351; τ = -0.241), poverty (rs = 0.259), and HDI (rs = -0.308; τ = -0.209); and between the BGI index and income 

(rs = -0.233), poverty (rs = 0.233), and the GINI inequality index (rs = 0.254) were important, even though they are 

interpreted as weak. This indicates that municipalities with better BGI indicators have worse socioeconomic 

conditions.    

Table 4. Statistical correlation analysis using Spearman’s and Kendall’s coefficients (n = 224). 

Tabela 4. Análise de correlação estatística usando os coeficientes de Spearman e de Kendall (n = 224). 

Predictor 

variables 
forest% forest.index BGI% BGI.index 

population 
rs = 0.016 (0.812) 

τ = 0.011 (0.800) 

rs =-0.310 (0.000)** 

τ = -0.214 (0.000)** 

rs =-0.235 (0.000)** 

τ = -0.158 (0.001)** 

rs = -0.383 (0.000)** 

τ = -0.264 (0.000)** 

pop.density 
rs = 0.231 (0.000)** 

τ = 0.149 (0.001)** 

rs =-0.484 (0.000)** 

τ = -0.436 (0.000)** 

rs = -0.566 (0.000)** 

τ = -0.387 (0.000)** 

rs = -0.979 (0.000)** 

τ = -0.889 (0.000)** 

built% 
rs = 0.070 (0.300) 

τ = 0.042 (0.355) 

rs = -0.440 (0.000)** 

τ = -0.320 (0.000)** 

rs = -0.241 (0.000)** 

τ = -0.162 (0.001)** 

rs =-0.593 (0.000)** 

τ = -0.450 (0.000)** 

built.index 
rs = -0.201 (0.003)** 

τ = -0.139 (0.002)** 

rs = -0.234 (0.001)** 

τ = -0.160 (0.001)** 

rs = 0.180 (0.007)** 

τ = 0.118 (0.006)** 

rs = 0.076 (0.255) 

τ = 0.048 (0.289) 

income 
rs = -0.109 (0.105) 

τ = -0.070 (0.118) 

rs = -0.351 (0.000)** 

τ = -0.241 (0.000)** 

rs = -0.041 (0.541) 

τ = -0.027 (0.553) 

rs = -0.233 (0.000)** 

τ = -0.155 (0.001)** 

poverty 
rs = 0.013 (0.845) 

τ = 0.006 (0.887) 

rs = 0.259 (0.000)** 

τ = 0.177 (0.000)** 

rs = 0.033 (0.626) 

τ = 0.018 (0.683) 

rs = 0.233 (0.000)** 

τ = 0.159 (0.000)** 

GINI 
rs = -0.166 (0.013)* 

τ = -0.107 (0.017)* 

rs = 0.007 (0.919) 

τ = 0.005 (0.906) 

rs = 0.132 (0.046)* 

τ = 0.088 (0.050)* 

rs = 0.254 (0.000)** 

τ = 0.173 (0.000)** 

HDI 
rs = -0.145 (0.030)* 

τ = -0.097 (0.031)* 

rs = -0.308 (0.000)** 

τ = -0.209 (0.000)** 

rs = 0.065 (0.333) 

τ = 0.048 (0.287) 

rs = -0.173 (0.010)** 

τ = -0.119 (0.008)** 

Legend: forest% = forest area per municipality area; forest.index = forest area per inhabitant; BGI = blue-green infrastructure; BGI% = BGI 

area per municipality area; BGI.index = BGI area per inhabitant; pop.density = population density; built% = built area per municipality area; 

built.index = built area per inhabitant; income = average per capita income; poverty = poverty vulnerability; GINI = GINI inequality index; 

HDI = human development index; rs = Spearman’s coefficient; τ = Kendall’s coefficient. Correlation coefficients are shown with standard error 

in brackets. Significance: in grey = not-significant (p-value > α-value 0.05); * = p-value ≤ α-value 0.05; ** = p-value ≤ α-value 0.01.  

DISCUSSION 

This study aimed at assessing urbanization, socioeconomic and BGI parameters in Piauí. The results 

indicated a strong negative correlation between BGI and urbanization, with more BGI in municipalities with fewer 

people per km² and less relative built area. These findings were compatible with those of Hetrick et al. (2013) and 

Arantes et al. (2021) in Brazilian cities, with more urban forests observed in less urbanized areas both in Altamira, 

PA (HETRICK et al., 2013) and in São Paulo, SP (ARANTES et al., 2021). 

The relations between BGI and socioeconomic conditions found by those authors were also observed 

here, through important, however weak, correlations. This may have occurred due to the use of the municipality 

as an assessment unit, preventing the study from finding inter-municipal specificities. Therefore, we recommend 

that more detailed studies should be conducted in Piauí’s municipalities in the future. Nevertheless, the analyzed 

data show negative correlations between BGI and socioeconomic development. This result possibly expresses a 

connection between urbanization and socioeconomic parameters, both inverse to the BGI, since cities tend to 

provide better living conditions.    
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We could not compare our results with forest cover recommendations, since they aim mostly at the urban 

forest specifically, while we considered the BGI as a whole. Moreover, we could not separate private from public 

BGI from our data, which could be important to assess people’s physical access to the BGI. The World Health 

Organization recommends 15 m2 of accessible urban green spaces (WHO, 2017) while, the ideal amount, would 

be 50 m2 (WHO, 2010). Van den Bosch (2022) proposes the 3-30-300 rule, where every person should be able to 

see three trees from their home, have 30% of tree canopy cover in every neighborhood, and be at most 300 meters 

from a public green area. Thus, we suggest further studies in urban forestry in Piauí to make these distinctions.  

The thresholds that could lead the BGI to its tipping point are not known (REYER et al., 2015). For the 

Amazon, for example, Lovejoy and Nobre (2018) affirm that 20 to 25% of deforestation would destabilize the 

Biome. All of Piauí’s municipalities already have a higher rate than 25% of other land covers besides the BGI, 

which should be a point of concern for the territorial and environmental planning of the state.  

Finally, we also indicate the need to update this research when newer official socioeconomic data is 

available for the study area, since the data used here are relatively outdated, from 2015. Thus, relations between 

BGI and socioeconomic parameters may not be currently the same as the ones presented in this study.  

CONCLUSIONS 

• BGI covers an average of 70% of the Piauí municipalities’ areas, varying from 26.58 to 96.85%, with 

58,478.72 m²/inhab. on average, ranging from 746.07 to 686,020.27 m²/inhab.  

• Strong negative correlation was found between BGI and urbanization, meaning that there is more BGI in less 

urbanized municipalities. 

• Important but weak correlation was found between BGI and socioeconomic conditions when there is more 

BGI in municipalities with worse socioeconomic conditions. This relation should be further investigated 

considering inter-municipal distributions. 

• Results found here reinforce that the urbanization processes of Piauí municipalities need territorial and 

environmental planning, ensuring open spaces for urban BGI, therefore pursuing environmental justice and 

BGI access and benefits for all. 
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