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Abstract. Hydrological models are the basis of operational
flood-forecasting systems. The accuracy of these models is
strongly dependent on the quality and quantity of the input
information represented by rainfall height. Finer space-time
rainfall resolution results in more accurate hazard forecast-
ing. In this framework, an optimum raingauge network is
essential in predicting flood events.

This paper develops an entropy-based approach to evalu-
ate the maximum information content achievable by a rain-
fall network for different sampling time intervals. The pro-
cedure is based on the determination of the coefficients of
transferred and nontransferred information and on the rela-
tive isoinformation contours.

The nontransferred information value achieved by the
whole network is strictly dependent on the sampling time
intervals considered. An empirical curve is defined, to as-
sess the objective of the research: the nontransferred infor-
mation value is plotted versus the associated sampling time
on a semi-log scale. The curve has a linear trend.

In this paper, the methodology is applied to the high-
density raingauge network of the urban area of Rome.

1 Introduction

Rainfall height variability makes data collection a relevant
task for hydrological purposes. Spatial rainfall informa-
tion is usually provided by raingauge networks whose den-
sity is a key parameter for the proper observation of rain-
fall fields (Russo et al., 2005; Villarini et al., 2007). Several
issues, such as hazard nowcasting (Lombardo et al., 2006,
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2009), flood forecasting (Lopez et al., 2005; Russo et al.,
2006; Montesarchio et al., 2009) and sewer-system moni-
toring (Giulianelli et al., 2006) are strictly dependent on the
space-time rainfall resolution; the design and evaluation of
rainfall networks are, therefore, of great importance. Several
authors have dealt with the issues of assessment or design of
water-quality monitoring networks (e.g.,Ozkul et al., 2000;
Mogheir and Singh, 2002; Mogheir et al., 2003, 2004) and
raingauge networks (e.g.,Bras and Rodriguez-Iturbe, 1985;
Husain, 1989; Krstanovic and Singh, 1992a,b; Yoo et al.,
2008).

Bras and Rodriguez-Iturbe(1985) illustrate the use of
static linear estimation to evaluate the accuracy of possi-
ble raingauge configurations and bothKrstanovic and Singh
(1992a,b) and Yoo et al. (2008) use the concept of heuris-
tic entropy to define the optimum number and the density
of raingauges in the network, respectively.Krstanovic and
Singh(1992a,b) assess the raingauge networks of Louisiana,
USA, considering daily, two-day, weekly and monthly data-
sampling intervals, whereasYoo et al. (2008) evaluate the
rainfall network of the Choongiu Dam Basin in Korea, us-
ing a mixed and a continuous distribution function applied to
daily rainfall data. Informational entropy has been widely
applied in hydrological and water resource fields for pur-
poses such as the determination of parameters of a proba-
bility space subject to given constraints (Papoulis, 1991), the
development of a univariate model for long-term stream flow
forecasting (Krstanovic and Singh, 1991a,b), the derivation
of the appropriate distribution of the studied variable (Pa-
poulis, 1991; Koutsoyiannis, 2005) and the determination of
a rainfall threshold value (Montesarchio et al., 2011). This
study develops an entropy-based approach for evaluating the
maximum content of information reached by the network at
different sampling time intervals in an urban area, where the
response to intense rainfall events is generally rapid. The
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Fig. 1. Map of the rainfall network in Rome. Each raingauge is identified by name.

rainfall data are sampled in time intervals that allow the eval-
uation of the most relevant rainfall events for urban concen-
tration times, i.e., every three, six and twelve hours. In ad-
dition, thirty-minute, hourly, daily, weekly, two-week and
monthly sampling times are analysed. First, an overview
of the methodology for rainfall entropy estimation is given.
Then, using the entropy approach, transinformation and non-
transferred information indices are evaluated, to measure the
information content of rainfall data. Subsequently, isoinfor-
mation contours are plotted using the coefficient of nontrans-
ferred information. Finally, a comparative analysis is per-
formed by grouping rainfall data according to seasonality.
Both seasons are then combined for the annual data and com-
pared.

2 Classical definition of information entropy

The concept of entropy was first introduced by Clausius in
the context of thermodynamics; it can be interpreted as a
measure of disorder in a system. To understand the heuris-
tic aspect of entropy, consider a set ofn events. Because it
is not possible to know which of thesen events will occur,
the situation is uncertain. In information theory, entropy is
a measure of the uncertainty associated with the occurrence
of a certain event (Papoulis, 1991). Information entropy has
been applied in different fields because of its important char-
acteristics: versatility, strength and efficiency. An extensive
review of applications of this theory in hydrologic and hy-
draulic fields can be found inSingh(1997).

The entropyH(X) of a discrete-type random vector (RV)
is defined as (Papoulis, 1991):

H (X) = E
[
log2(x)

]
= −

∑
i

pi log2pi (1)

whereP (X = xi) = pi is the probability that the RVX takes
the valuexi .

The above expression can be generalised for use with log-
arithms with bases other than 2. Natural logarithms are used
in this work and the corresponding entropy values are mea-
sured in napiers.

For two discrete-type RVs,X andY , assume the values
xi andyj , respectively; their joint entropy is defined as (Pa-
poulis, 1991; Krstanovic and Singh, 1992a):

H (X,Y ) = −

∑
i,j

pi,j log2pi,j (2)

wherepi,j = p
(
X = xi,Y = yj

)
is the joint probability of a

particular combination of the rainfall records of two rain-
gauges (e.g.,X andY ). H(X,Y ) represents the total amount
of uncertainty associated with realisationxi andyj of the two
raingauges.

The conditional entropy is (Papoulis, 1991; Krstanovic
and Singh, 1992a):

H (X|Y ) = H (X,Y )−H (Y) (3)

The previous results can be generalised to an arbitrary num-
ber of RVs, as explained inKrstanovic and Singh(1992a).
To optimize a rainfall network, it is important to evaluate
how much information is repeated in two or more raingauges
and how much has not yet been transferred. In this way, it
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Fig. 2. Coefficient of nontransferred information for sampling time intervals ofd = 30 min, 6 and 12 h for the summer (left) and winter
(right) seasons in Rome. The maximum content of non-redundant information is quoted in the box for each sampling time. This result is the
value assumed byt , corresponding to the last raingauge added to the network. The same values are presented on a semi-log scale in Fig.5
for each season.

is possible to identify the raingauges that yield repetitive in-
formation. The transinformation index is used to compute
common information provided by two or more variables and
to evaluate their redundant information. For two stochasti-
cally dependent RVsX and Y , the difference between the
sum of the marginal entropies and the joint entropy equals
the transinformation index (Amorocho and Espildora, 1973;
Harmancioglu and Yevjevich, 1985; Krstanovic and Singh,
1992a):

T (X,Y ) = H (X)+H (Y)−H (X,Y ) (4)

This parameter defines the amount of information that is
repeated in both RVs. If two RVs are independent, their
transinformation coefficient equals zero because the vari-
ables considered have no information in common.

In the multivariate case, this index represents a measure of
the repeated information that results when thei-th raingauge
is added to the network and can be defined as (Krstanovic
and Singh, 1992a):

T ((X1,X2,...,Xi−1),Xi) =

= H (X1,X2,...,Xi−1)−H ((X1,X2,...,Xi−1)|Xi), (5)

The coefficient of nontransferred information permits the de-
scription of the amount of uncertainty remaining in the rain-
gauge network when a new raingauge is added. In heuristic
terms, it represents the nontransferred information through
two or more variables. In the bivariate case, the nontrans-
ferred information index is defined as (Harmancioglu and
Yevjevich, 1985; Krstanovic and Singh, 1992a):

t2 =
T0−Ti

T0
,0≤ t2 ≤ 0 (6)

whereT0 is the upper limit of transferrable information be-
tween variables (in the bivariate caseT0 is equal to the
marginal entropy of the RV with the maximum value of
marginal entropy) andTi is the common information be-
tween the considered variables.

3 Evaluation of the maximum content of non-
redundant information achieved by the network

To evaluate the adequacy of a raingauge network, it is impor-
tant to know how much information was actually transferred

www.nat-hazards-earth-syst-sci.net/11/2075/2011/ Nat. Hazards Earth Syst. Sci., 11, 2075–2083, 2011
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Fig. 3. Coefficient of nontransferred information for sampling time intervals ofd = 24 h, 1 week and 1 month for summer (left) and winter
(right) seasons in Rome. The maximum content of non-redundant information is quoted in the box for each sampling time. This result is the
value assumed byt , corresponding to the last raingauge added to the network. The same values are presented on a semi-log scale in Fig.5
for each season.

between variables and how much information remains to be
transferred. In this study, the parameters of transferred and
nontransferred information are used to answer these ques-
tions.

First, the most important raingauge of the network is de-
termined. According to the Principle Of Maximum Entropy
(POME), the raingauge with the maximum value of marginal
entropy, as defined in Eq. (1), is the central raingauge of the
network.

Second, the conditional entropy of the central raingauge
with respect to all the others is computed. The raingauge
that gives the lowest redundant information is defined by:

min[T (X,Y )] = min[H (X)−H (X|Y )] (7)

whereX is the RV of the central raingauge andY is the RV of
the raingauge which has the least amount of information in
common with the first. The latter is the second most impor-
tant raingauge in the network. It is then necessary to calculate
how much information will be provided to the network by
adding additional raingauges to the two principals, one rain-
gauge at a time. To find thei-th most important raingauge, it
is necessary to retain the(i −1) most important raingauges

and compute their conditional entropies with respect to the
i-th. The most importanti-th raingauge is evaluated by min-
imising Eq. (5):

min
[
T ((X1,...,Xi−1),Xi)

]
=

= min
[
H (X1,...,Xi−1)−H ((X1,...,Xi−1)|Xi)

]
(8)

By following this process step-by-step, it is possible to evalu-
ate the order of importance of the raingauges in the network.

For every added raingauge in order of importance, the
coefficient of nontransferred information is computed. In
adding thei-th raingauge:

ti =
H ((X1,...,Xi−1)|Xi)

H (X1,...,Xi−1)

=
H (X1,...,Xi)−H (Xi)

H (X1,...,Xi−1)
. (9)

If, at stepi, it is the case thatti ≥ ti−1, then the new rain-
gauge has repetitive information. In contrast, ifti−1 > ti , the
raingauge added at thei-th step has new information. The
greater the difference between the values of the coefficient at
any step, the greater the information gained by the network

Nat. Hazards Earth Syst. Sci., 11, 2075–2083, 2011 www.nat-hazards-earth-syst-sci.net/11/2075/2011/
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Fig. 4. Coefficient of nontransferred information for sampling time intervals ofd = 30 min, 6, 12, 24 h, 1 week and 1 month for annual data
in Rome. The maximum content of non-redundant information is quoted in the box for each sampling time. This result is the value assumed
by t , corresponding to the last raingauge added to the network. The same values are presented on a semi-log scale in Fig.5.

through the addition of a new raingauge at that step. If the
addition of a new raingauge results in no new information,
it can be assumed that the raingauge is contributing only re-
dundant information. Its complementary relative measure,
(1− ti), describes the amount of transferred information.

4 Case study: the urban area of Rome

The methodology is applied to a case study of the metropoli-
tan area of Rome. The target area contains twenty-four sta-
tions in its raingauge network. The dataset covers a period of
eighteen years from 1992 to 2009 and has a ten-minute time
resolution.

The historic rainfall sequences are divided into a summer
season (1 April to 30 September) and a winter season (1 Oc-
tober to 31 March). Both seasons were combined to produce
annual data. For analysis, records were sampled in time in-
tervals of 30 min, 1 h, 3 h, 6 h, 12 h, 1 day, 1 week, 2 weeks
and 1 month. The raingauge named Castello Vici was elim-
inated from the analysis because great amounts of data were

missing. Therefore, twenty-three raingauges were included
in the analysis. A map of the rainfall network examined is
shown in Fig.1.

4.1 Data analysis

The entropy approach, as explained in the previous sections,
involves univariate and multivariate discrete probabilities.
To evaluate the marginal probability of each RV, divide the
values of the considered RV intov categories (class inter-
vals). The number of these class intervals has been defined
in Mogheir et al.(2003):

v = 1+1.33log(n) (10)

wheren is the length of the time series of the considered vari-
ables. Once computed, the frequency associated with each
class (i.e., how many values of the time series fall in each
class interval), is divided by the number of elements of the
time series itself (i.e.,n); the marginal probability is thereby
determined.

www.nat-hazards-earth-syst-sci.net/11/2075/2011/ Nat. Hazards Earth Syst. Sci., 11, 2075–2083, 2011



2080 E. Ridolfi et al.: An entropy approach for evaluating the maximum information content

10
1

10
2

10
3

10
4

10
5

0.5

0.6

0.7

0.8

0.9

1

log(time)

t

 

 
t−summer data
regression curve

10
1

10
2

10
3

10
4

10
5

0.5

0.6

0.7

0.8

0.9

1

log(time)

t

 

 
t−winter data
regression curve

10
1

10
2

10
3

10
4

10
5

0.5

0.6

0.7

0.8

0.9

1

log(time)

t

 

 
t−annual data
regression curve

y=−0.085 log(x)+1.029
R2=0.963

y=−0.094 log(x)+1.050
R2=0.990

y=−0.080 log(x)+0.970
R2=0.936
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each plot.

To evaluate the bivariate or multivariate probabilities, it is
necessary to construct either a two- orn-dimensional con-
tingency table, respectively. The bivariate case will be pre-
sented here (Mogheir et al., 2003). Divide the values of the
RV X into v categories. The random variableY is assumed
to haveu categories. The marginal frequencies are denoted
by fi andfj , and the joint frequency isfij . The joint fre-
quency corresponds to the number of elements of theX RV
that fall in thei-th class when elements of theY RV fall in
the j -th class. An extensive description and an example of
this methodology can be found inMogheir et al.(2003).

4.2 Interpretation of nontransferred information
results

The objective of this study is to determine the maximum
non-redundant information content that the network collects
at different sampling time intervals. First, the central rain-
gauge was defined. Then, at each step of the raingauge se-
lection process, another raingauge with the minimum value

of transferred information was added to the network, and the
coefficient of nontransferred information was evaluated as in
Eq. (9).

The coefficient of nontransferred information was plotted
for every sampling time interval.

In both seasons (Figs.2 and3) and for an annual aggrega-
tion time (Fig.4), the last value of the nontransferred infor-
mation index is greater for the 30-min sampling time than for
the monthly sampling time. The amount of non-redundant
information provided by the whole network decreases with
the increase in the rainfall sampling time. In fact, for greater
sampling of time intervals, the information that raingauges
provide is more redundant than that obtained using smaller
sampling times. The reason for this redundancy is that for
greater sampling times, the rainfall field is more uniform over
the area and raingauge measures are nearly similar.

In the winter season, the index reaches a smaller value
than in summer (Figs.2 and3). In urban Rome, winter rain-
gauges provide more valuable information because of the re-
gional climate: because winter is more rainy than summer,

Nat. Hazards Earth Syst. Sci., 11, 2075–2083, 2011 www.nat-hazards-earth-syst-sci.net/11/2075/2011/
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Fig. 6. Rome area isoinformation contours for sampling time intervals ofd = 30 min, 6 and 12 h for summer (left) and winter (right) seasons.
The colour bar varies from 0.34 to 1 and shows the value achieved by the nontransferred information index. The dashed line represents the
Roman roadring.

the network provides a greater quantity of data during that
season, and these data are relatively more redundant.

In the winter season in the weekly sampling time interval
and in both seasons in the monthly sampling time interval
(Fig. 3), the nontransferred information coefficient, after a
little variation, remains constant.

For the monthly sampling time interval, in the summer
season (Fig.3) the 11th raingauge does not provide an infor-
mation gain to the network. Its nontransferred information
index has the same value as that of the previous raingauge.
The same behaviour can be noticed for all the following rain-
gauges. In the winter season (Fig.3), the nontransferred in-
formation index reaches a constant value corresponding to
the 14th raingauge.

For the weekly sampling time interval (Fig.3) in the winter
season, the nontransferred information index remains con-
stant and corresponds to the last two raingauges.

For the annual data from the monthly sampling time in-
terval (Fig. 4), the constant value of the nontransferred
information index is reached for the last raingauge added.

It can, therefore, be inferred that the network converges
on a constant value of nontransferred information that repre-
sents the maximum value of information that the network can
achieve. This behaviour can be observed for each sampling
time: theti oscillates around a constant value in correspon-
dence to the last raingauges added to the network. The lower
the magnitude of the difference between ati and ati−1 value,
the less the information that is added by thei-st raingauge.

For each sampling time interval, the constant value is
achieved by considering a different number of raingauges.

The maximum value of information reached at each sam-
pling time can be described with an empirical curve.

For both seasons and for the annual aggregate data, the
latter value of the nontransferred information index is plot-
ted against the corresponding sampling time interval on a
semi-log scale (Fig.5). The plot shows scale-invariance. The
relation between the two variables is linear on the semi-log
scale. It can, thus, be inferred that once this curve is known
for a given network, the maximum value of nontransferred
information can be obtained for the other sampling times.

www.nat-hazards-earth-syst-sci.net/11/2075/2011/ Nat. Hazards Earth Syst. Sci., 11, 2075–2083, 2011
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Fig. 7. Rome area isoinformation contours for sampling time intervals ofd = 1 day, 1 week and 1 month for summer (left) and winter
(right) seasons. The colour bar varies from 0.34 to 1 and shows the value achieved by the nontransferred information index. The dashed line
represents the Roman roadring.

4.3 Isoinformation contours

In evaluating the coefficient of nontransferred information
between the central and the other raingauges, it is possible
to construct isoinformation contours, the lines of equal com-
mon information between thei raingauges considered. The
value ofti is evaluated with Eq. (9). Contours of isoinforma-
tion plotted on a map of the area analysed provide a comple-
mentary view of the results represented in Figs.6 and7.

These contours encompass the central raingauge, where
ti has a value of 1 and no information has been transferred.
Summer and winter evaluations are compared for each sam-
pling time interval. As explained in the previous section, the
network reaches a lower value of nontransferred information
with smaller sampling time intervals in winter. It can be ob-
served that in the summer season, the central raingauge is
Capannacce (Figs.6 and7), located in the northeast near the
Sabatini Mountains. In summer, significant amounts of in-
formation are accrued in the rainiest area (located near the
mountains), whereas in the urban and coastal areas, less in-
formation is collected. For sampling times of 3, 12 and 24 h,

1 day, 1 week and 1 month, the raingauge that gives the low-
est nontransferred information index value is located on the
coast, on the other side of the network. In winter, the princi-
pal raingauge is not the same for each sampling time interval.
Therefore, the rainfall information is distributed over the re-
gion, not concentrated in a single area.

5 Conclusions

This work presents an evaluation of the rainfall network of
the metropolitan area of Rome using entropy and defines
an empirical method to assess the maximum non-redundant
information achievable by a rainfall network at different sam-
pling time intervals.

The rainfall records are divided according to seasonality
and into different sampling intervals. For each season and
each sampling time, the raingauge that contains the greatest
rainfall information is identified.

Data from the summer and winter seasons are merged to
obtain an annual rainfall record. The results for the summer
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and winter seasons and for the yearly aggregation are then
compared. For longer sampling time intervals, an equal num-
ber of raingauges accumulates less information in summer
than in winter. Rainfall is more frequent in winter than in
summer and yields more information. The entropy coeffi-
cients, a measure of information, illustrate this difference.
The comparison of the nontransferred information indices
for each sampling time interval indicates that if the sam-
pling time interval is greater, then the redundant information
reached by the network is also greater.

For smaller sampling times, the index of nontransferred
information is greater than that of the other sampling times
because the rainfall measures are less similar.

The maximum non-redundant information values and the
corresponding sampling times are linearly related on a semi-
log scale. Thus, once the equation of this curve is known
for a given network the non-redundant information content
is uniquely defined.

This important behaviour can be observed for both sea-
sonal and for yearly sampling. Additional research into the
physical meaning of this behaviour is underway.

Because this paper represents a preliminary study, these
conclusions should be tested using different climatic condi-
tions.
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