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Abstract 

In this paper, the codes implemented for obtaining the power spectral density function plots of 

some line codes are analyzed. A free tool is used to implement the power spectral density 

functions in the time domain to validate their behavior in the frequency domain. This is done for 

the normalized case, where the frequency parameter (f) is equated to the bit rate parameter 

(R), and the value of the bit time parameter (Tb) is obtained as an inverse relation with the data 

rate.  
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Resumen 

En este artículo se analizan los códigos implementados para la obtención de las gráficas de la 

función de la densidad espectral de potencia de algunos códigos de línea. Se utiliza una 

herramienta libre para implementar las funciones de la densidad espectral de potencia en el 

dominio del tiempo, para validar su comportamiento en el dominio de la frecuencia. Esto se 

realiza para el caso normalizado, donde el parámetro de la frecuencia (f) se iguala al parámetro 

tasa de bits (R), y se obtiene el valor del parámetro tiempo de bit (Tb) como una relación inversa 

con la tasa de datos. 

Palabras clave: Tasa de datos, Códigos de línea, Software libre, Potencia, Densidad 

espectral. 

1. Introduction 

The use of free software tools for the analysis of signals, regarding their behavior from one 

domain to another is quite important, since it facilitates their understanding and the 

determination of their behavior in a particular domain, for example in the time or frequency 

domain, among others, as in the scale domain, when small waves or wavelets are used. The 

use of these tools for educational purposes is a good alternative, in which complex calculations 

and the graphing of signals with mathematical functions can be performed with great certainty 

and reliability in the results obtained and to be able to perform an adequate interpretation of a 

function or phenomenon to be analyzed. 

2. Objectives 

To show the coding process for plotting power spectral density functions, using the 

corresponding mathematical expressions, and performing the variation of the bit rate 

parameter, validating its incidence in the corresponding results. 



3. Development methodology 

In this case, the implementation or coding of the power spectral density functions, for some 

unipolar and bipolar, return-to-zero (RZ) and non-return-to-zero (NRZ) line codes, together with 

the two-phase or Manchester codes, is performed. The normalized case is analyzed, along with 

the variation of the bit rate parameter, and its implication on the resulting normalized power 

spectral density plots is validated [1].  

The development interface used is Python, a free and very useful tool, which facilitates the 

development of this type of simulations and analysis. Its mathematical library is used to handle 

sine functions, the sinoc function, along with its squared values or raised to the power. It was 

also possible to implement the sigma function or unit impulse function and the product of these 

functions in the corresponding equations. The parameters taken for the graphing and analysis 

of the signals are the amplitude value (A), frequency (f), bit time (Tb), together with some 

constant values [2]. 

The functions implemented to obtain the power spectral density of the line codes used are listed 

below and are reflected in the respective lines of code. 

 

3.1. Normalized power spectral density functions for the used line codes 

This section contains the power spectral density functions and the normalized power spectral 

density functions for the line codes used. The normalized power spectral density function is 

obtained by dividing the power spectral density function by its maximum value, which is 

obtained by evaluating its autocorrelation function at zero [3]. 

3.1.1. Normalized power spectral density function for unipolar signals without return 

to zero 

Its power spectral density is expressed as: 



𝑆(𝑓) =
𝐴2 ∗ 𝑇𝑏

4
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Where 𝜎(𝑓) 𝑒𝑠 𝑙𝑎 𝑓𝑢𝑛𝑐𝑖𝑜𝑛 𝑑𝑒𝑙𝑡𝑎 𝑜 𝑖𝑚𝑝𝑢𝑙𝑠𝑜 𝑢𝑛𝑖𝑡𝑎𝑟𝑖𝑜; Likewise 𝐴2 = 2.  

Therefore, its normalized power spectral density is expressed as: 
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3.1.2. Normalized power spectral density function for polar signals without zero 

return 

Its power spectral density is expressed as: 

𝑆𝑋(𝑓) = 𝐴2 𝑇𝑏 ∗ 𝑠𝑒𝑛𝑐2(𝑓 𝑇) 

Likewise, 𝐴2 = 1 and its normalized power spectral density is expressed as: 

𝑃𝑋(𝑓) =  𝑇𝑏 ∗ 𝑠𝑒𝑛𝑐2(𝑓 𝑇) 

3.1.3. Normalized power spectral density function for unipolar signals with zero 

return 

Its power spectral density is expressed as: 

𝑆(𝑓) =
𝐴2 ∗ 𝑇𝑏
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Where 𝐴2 = 4 where the normalized power spectral density is: 

𝑃𝑋(𝑓) =
𝑇𝑏

4
𝑠𝑒𝑛𝑐2 (

𝑓 ∗ 𝑇𝑏

2
) [1 +

1

𝑇𝑏
∑

∞

𝑛=−∞

𝜎 (𝑓 −
𝑛

𝑇𝑏
)] 

3.1.4. Normalized power spectral density function for bipolar signals with zero return 

Its power spectral density is: 



𝑆(𝑓) =
𝐴2 ∗ 𝑇𝑏

4
 𝑠𝑒𝑛𝑐2 (
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2
) 𝑠𝑒𝑛2(𝜋 ∗ 𝑓 ∗ 𝑇𝑏) 

Where 𝐴2 = 4 where the normalized power spectral density is: 

𝑃𝑋(𝑓) = 𝑇𝑏 𝑠𝑒𝑛𝑐2 (
𝑓 ∗ 𝑇𝑏

2
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3.1.5. Normalized power spectral density function for Manchester encoded signals 

Its power spectral density is: 

𝑆(𝑓) = 𝐴2 ∗ 𝑇𝑏  𝑠𝑒𝑛𝑐2 (
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Where 𝐴2 = 1 where the normalized power spectral density is: 

𝑃𝑋(𝑓) = 𝑇𝑏  𝑠𝑒𝑛𝑐2 (
𝑓 ∗ 𝑇𝑏

2
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2
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In the implementation or development of each function in the code, the mathematical library of 

the software is used, together with the library for graphing, and the tool's function invocation 

method. The parameters that were defined for the amplitude, bit time and frequency parameters 

are used in each case.  

The x-axis corresponds to the frequency, which extends up to a maximum value of twice the 

bit rate (2R), i.e., if a bit rate of one bit per second (1 bps) is used, as in the case of analysis 

1A, the frequency values extend from the origin up to two Hertz (2 Hz). In the case of the y-

axis, the normalized power spectral density is found, which will take a maximum value up to 

the value of the bit time, i.e., if the value of that parameter is one second (1 sec), the maximum 

normalized power value will be one watt (1 watt) [4].  



This change in the limits for the x-axis and y-axis in the graphs and in the code will be reflected 

when the bit rate parameter is varied, as in case 1-B, where a value of one thousand bits per 

second (1000 bps) is used, which affects the values reached in the resulting graphs. 

4. Cases 

4.1. Case 1-A 

F=R; Tb=1/R. R= 1bps, f= 1Hz, Tb= 1sec. 

Figure 1. Code lines to obtain the power spectrum of the signal with Manchester coding. 

 

In this case the bit time parameter is one second, and the amplitude is one volt. The frequency 

values are defined in the variable values_x, in an array of values from zero to two point two, 

with increment of sample values from zero point two. In the variable values_y, the power 

spectral density function is described, also on the y-axis is defined an excursion limit that goes 

from zero-to-zero point six, then the function is drawn with respect to the values obtained and 

shown with the corresponding labels. For the definition of the power spectral density function, 

the squared sine squared function and the squared sine function are used, considering the 

values of frequency and bit time.  

Figure 2. Lines of code to obtain the power spectrum of the unipolar signal with return to zero 

 



In this function the bit time parameter is taken to be one second, the amplitude is two volts. The 

frequency values are taken in the variable values_x, taking values between zero and two with 

zero point two increments.  

In this expression a summation is found with respect to the values of n, with the purpose of 

evaluating the delta function, which is displaced on the x-axis, varying its magnitude; in this 

case the integer values are taken for the displacement of the function between zero and two. 

In the variable y_values, the power spectral density function is defined, and an excursion limit 

is defined on the y-axis between zero and zero point six, then the function is drawn, and the 

corresponding labels are defined for each axis. For this case we have the squared sinoc 

function and the delta function, with respect to the frequency and bit time values. 

Figure 3. Lines of code to obtain the power spectrum of the unipolar signal without return to 

zero 

 

For this case, the logic used in the previous cases is maintained with respect to the use of the 

variables, the bit time and amplitude values are one second and the amplitude squared is two 

volts. The frequency values on the x-axis and the delta function, which is determined at the 

origin, are established. The power spectral density function is defined on the y-axis, and the 

excursion limits of the function are set, then the labels for each axis are defined and the 

corresponding function is drawn. For this case, the squared sinoc function is taken, taking as 

arguments the frequency and bit time parameters.  



Figure 4. Code lines to obtain the power spectrum of the bipolar signal with return to zero. 

 

The bit time parameter is one second, and the amplitude value is two volts, so its amplitude 

value squared is four volts. 

In this case the squared sine function and the squared sine function are used, having as 

arguments the values of frequency and bit time. Likewise, the signal is plotted on the y-axis, 

with respect to the evaluated values of the power spectral density function on the x-axis.  

 

Figure 5. Code lines to obtain the power spectrum of the polar signal without return to zero 

 

The bit time value is one second, and the amplitude value is one volt. The squared sinoc 

function is used with respect to the frequency and bit time values. In the variable values_x, the 

frequency values are defined and in values_y the power density function is set. The resulting 

graph is obtained with respect to these two variables [5]. 

4.2. Case 1-B 

F=R, Tb= 1/R, R= 1000bps, f= 1000 Hz, Tb= 1msec= 0.001 sec 

The following is the case 1-B, which is normalized, keeping the frequency equal to the bit rate, 

and it is intended to evaluate the effect of the variation of the bit rate, in the normalized power 



spectral density function plot, when the bit rate is greater than one thousand times, compared 

to the value of the bit rate, used in case 1-A.  

In this case, the same procedure is maintained in the coding with respect to the previous case, 

evidencing a variation in the bit time, which goes from one second to one millisecond, and the 

frequency range is extended, which is from zero to two thousand, with increments of two. The 

maximum excursion values in the power spectral density function would then be up to a 

maximum value of one milliwatt. 

The code for each case is attached, and the corresponding power density functions are 

evaluated, taking into account the variation of the frequency and bit time parameters; the bit 

time parameter is related to the data rate in an inverse relationship, i.e., the bit time decreases 

when the data rate increases and vice versa. 

Figure 6. Code lines to obtain the power spectrum of the signal with Manchester coding 

 

Figure 7. Lines of code to obtain the power spectrum of the unipolar signal with return to zero 

 



The amplitude parameter remains constant with respect to the previous case and according to 

the values determined for the normalized power spectral density, as evidenced above. This is 

in accordance with the existing theory for the analysis of the power spectral density of line 

codes.  

Figure 8. Lines of code to obtain the power spectrum of the unipolar signal without return to 

zero 

 

Figure 9. Lines of code to obtain the power spectrum of the bipolar signal with return to zero 

 

Figure 10. Lines of code to obtain the spectrum of the polar signal without return to zero 

 



5. Results 

The mathematical calculations required to obtain the power spectral density can be performed 

using specific functions such as the sine-square function, the sine-square function and the dirac 

delta function.  

These functions can be properly implemented, together with the frequency parameters and the 

corresponding normalized power spectral density function in each case, to obtain and analyze 

the corresponding results.  

These analyses allow to corroborate the existing theory, and also to validate the effects of the 

direct current components, for the frequency value equal to zero, and the power spectral density 

waveforms in which the effects of these components can be mitigated, or their effects are not 

significant.  

The effect of the harmonic components of the power spectral density function can also be found 

in each case.   

6. Conclusions 

The use of free tools allows the analysis of functions and signals in an appropriate way, using 

the corresponding mathematical editors.  

The use and diffusion of this type of tools in educational and academic environments allows a 

better understanding and compression of signals and functions, by means of analysis and 

experimentation, through simulation. 
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