
Enviado: 25/11/2021 Recibido: 21/01/2022 Aceptado: 30/03/2022

VISIÓN ELECTRÓNICA

Algo más que un estado sólido

https://doi.org/10.14483/issn.2248-4728

Cite this article as: F. Trujillo-Romero, “Path planning using metaheuristics”, Visión Electrónica, vol. 16, no. 1,
2022. https://doi.org/10.14483/22484728.18174

A RESEARCH VISION

Path planning using metaheuristics

Planificación de trayectorias usando metaheurísticas

Felipe Trujillo-Romero1

Abstract

In this work, a comparison between two metaheuristic methods to solve the path planning

problem is presented. These methods are 1) Artificial ant colony and 2) Artificial bee colony.

The following metrics are used to evaluate these implementations: 1) Path length and 2)

Execution time. The comparison was tested using ten maps obtained from the University of

Prague Department of Intelligent Cybernetics and the Mobil Robotics Group. Several runs were

carried out to find the best algorithm parameters and get the best algorithm for the route

planning task. The best algorithm was the artificial bee colony. These evaluations were

visualized using the VPython package; here, a differential mobile robot was simulated to follow

the trajectory calculated by the best algorithm. This simulation made it possible to observe that

the robot makes the correct trajectory from the starting point to the objective point in each

evaluated map.

Keywords: Ant Colony Optimization, Artificial Bee Colony, Mobile Robot, Robotic simulation.

1 BSc. in Communications and Electronics Engineering, Universidad de Guanajuato, México. PhD. in Information

systems, Instituto Politecnicos de Toulouse, Francia. Current position: Research Professor at Universidad de
Guanajuato, México. E-mail: fdj.trujillo@ugto.mx ORCID: https://orcid.org/0000-0003-3755-2637

https://doi.org/10.14483/issn.2248-4728
https://doi.org/10.14483/22484728.18174
mailto:fdj.trujillo@ugto.mx
https://orcid.org/0000-0003-3755-2637

Resumen

En este trabajo se presenta una comparación entre dos métodos metaheurísticos para resolver

problemas de planificación de rutas. Estos métodos son: 1) Colonia de hormigas artificiales y

2) Colonia de abejas artificiales. Para evaluar estas implementaciones, se utilizan las

siguientes métricas: 1) Longitud de ruta y 2) Tiempo de ejecución. El comparativo se probó

utilizando diez mapas obtenidos del Departamento de Cibernética Inteligente y Mobil Robotics

Group de la Universidad de Praga. Se realizaron varias ejecuciones con el objetivo de

encontrar los mejores parámetros de los algoritmos y obtener el mejor algoritmo para la tarea

de planificación de ruta. El mejor algoritmo fue la colonia de abejas artificiales. Estas

evaluaciones se visualizaron utilizando el paquete VPython, aquí se simuló un robot móvil

diferencial para seguir la trayectoria calculada por el mejor algoritmo. A partir de esta

simulación fue posible observar que el robot realiza la trayectoria correcta desde el punto de

inicio hasta el punto objetivo en cada uno de los mapas evaluados.

Palabras clave: Colonia de abejas, Colonia de hormigas, Robot Móvil, Simulación de robots.

1. Introduction

Planning trajectories is a problem of interest in different research fields, such as robotics. So

that a robot can move without problems in an environment about which it has specific

information. This information can be in different ways. Such as knowing a priori the map or how

many objects, shapes, and characteristics are on the scene. All this is necessary for the

planning system to find a collision-free path and ensure the shortest route. For this, the system

must know the map, the objects present, the robot's size, and the starting and ending points of

the route.

This problem has been approached with various approaches, from classical algorithms such as

A star (A*) [1] to evolutionary algorithms such as genetic algorithms [2] or ant colony

optimization [3]. In the following paragraphs, we will comment on some of the work done using

so-called classical algorithms to discuss later the work that uses metaheuristic algorithms for

trajectory planning in mobile robots.

It starts by mentioning the work of Guruji et al. [4], who improved the execution time of the A*

algorithm for the planning of mobile robots. In [5], Almanza Ojeda et al. implemented a system

for a mobile robot to avoid obstacles through probabilistic models in embedded hardware. For

their part, Goez et al. [6] used a microcontroller to implement route planning optimization using

the particle swarm optimization (PSO) algorithm. Another work that uses PSO is Cuchango [7],

who used the approach of potential fields and active Brownian particles to calculate trajectories

in mobile robots. Li et at. in [8] improved the PSO algorithm also oriented towards trajectory

planning.

Marquez Sanchez et al. [9], perform the generation of trajectories for mobile robots by using

Bézier polynomials. Diaz-Arango et al. [10] use a Spherical Algorithm for trajectory planning in

land mobile robots. In [11], Forero-García et al. implemented the intelligent control of a mobile

robot differential for assistance applications in a house. Another application of trajectory

planning but a variant of the differential evolution algorithm is found in [12]. As the last work of

this block, we will comment on the one developed by Campos-Archila, Pinzón-Saavedra, and

Robayo-Betancourt, who was using fuzzy logic carried out the trajectory control of an aerial

robot [13].

On the side of trajectory planning works using metaheuristic algorithms, we will mention Canca

et al. [14]. They solved the problem of the design and planning of Seville's rapid rail transport

network by developing a metaheuristic algorithm called the Adaptive Neighborhood Search

algorithm. A fascinating application is developed by Kergosein et al. [15]; this uses a

metaheuristic algorithm to solve the problem of routing connected vehicles in a hospital

complex. In [16], Ferreira et al. compared several evolutionary algorithms to solve the problem

of routing mobile robots. Liu and Kozana in [17] implemented a hybrid metaheuristic algorithm

to plan trajectories of a mobile robot to transport parts on a production line.

On the other hand, Guzman and Peña [18] were different bio-inspired algorithms for planning

trajectories, but manipulative robots. Genetic algorithms have also been implemented as a

strategy for planning trajectories. Examples of this are the works presented in [19-20]. In [21],

Wu, Du, and Zhang performed trajectory planning of a mobile robot using wavefront's

generalized algorithm. Finally, in [22], we can find a comparative study of metaheuristic

algorithms applied to the planning of trajectories in mobile robots. These works are just a

sample of metaheuristics to solve the problem of trajectory planning in mobile robots. Now

move on to discuss results where both ant colony (ACO) optimization algorithms [3] and artificial

bee colony (ABC) algorithms [23] are used.

We start the analysis of developments that use ACOs like the one made by Rashid et al. [24],

who directly used it for trajectory planning. While in [25], Liu et al. implemented an improvement

of ACO to plan trajectories in mobile robots. Another modification of the ant colony algorithm

can be reviewed at [26]. Yong et al. implemented a cooperative algorithm for trajectory planning

for a set of robots using ACO [27]. Optimizing the route planning of a school bus using a

distributed ACO is presented in [28]. This brief review of trajectory planning using ACO will

mention two-hybrid implementations. In [29], Gigras et al. performed an ACO and PSO hybrid

algorithm. While in [30], Tao et al. merged ACO with fuzzy logic in both cases with acceptable

results.

Now comment on a couple of papers that use the bee colony algorithm in trajectory planning.

In this section, we start commenting on the work of Contreras-Cruz et al., who in [31] carried

out the implementation of the ABC for the planning of trajectories also using evolutionary

programming to soften the route obtained by ABC In [32], the best pathway for each of the

robots in the scenario is tried, calculated from the robots present. While in [33], it uses an

adaptive ABC approach to estimate the trajectories of robots by evaluating their implementation

in three different scenarios. Liang et al. [34] use the ABC to calculate a collision-free path

between two points efficiently. Finally, Chen et al. use a hybrid neuro-diffuse approach with

ABC to control a mobile robot [35].

2. System Elements

This section presents the different elements used to simulate the generation of the trajectories

using the metaheuristic algorithms of the ant colony and bee colony. These elements are the

maps, the robot, and the simulation environment.

Figure 1.- Maps used to validate the planning algorithms [36]

1

2

3

4

5

6

7

8

9

10

2.1. Map representation

Ten maps were used to carry out the experiments presented in this paper. Figure 1 shows the

maps used. These maps represent the full maps proposed by the Department of Cybernetic

Intelligence and Mobile Robotics group of the University of Prague [36].

The maps used were drawn in the environment with a 5 pixels/cm ratio. The maps represent

different geometries, allowing us to validate the metaheuristic algorithms in different scenarios.

Figure 1 shows the starting and target points on each map. The starting point is marked by a

circumference (°), while the endpoint is represented by an asterisk (*). The trajectory calculation

will be carried out using the implemented metaheuristic algorithms among these points.

2.2. Robot employee

The mobile robot used to develop this work was a robot with a differential configuration, shown

in Figure 2. The diameter of the robot is a dimension of 10 cm. This robot is made using the

Vturtle module [37] developed in Python using VPython [38].

Figure 2. Virtual representation of the robot [37]

As can be seen in Figure 2, the robot has two main wheels and a freewheel. In addition, it has

a set of sensors that help not collide with the obstacles present in the environment. However,

given the characteristics of this work on this occasion, the sensors will not be used. Since the

robot only executes the trajectory that metaheuristic algorithms have previously calculated.

2.3. Simulation environment

it was necessary to use a simulator to have a visualization that allowed us to appreciate the

robot's behavior when tracking the trajectory obtained.

For that reason, this work uses the environment developed in [37]. This environment was

created in Python and observed the robot's movement on the desired trajectory. This

environment offers us several things: a three-dimensional environment, a differential robot,

placing obstacles, the use of a pencil to trace the movement of the robot in the scenario.

Figure 3. Simulation environment

Source: own.

Adding different obstacles in the regions of our interest allowed us to make the maps used in a

three-dimensional environment. In the case of the robot, it has several sensors that were not

used for this work, but that can be very useful if it wants the robot to be reactive. The significant

point is that the robot can load a tool, which is a pencil that allows observing the trajectory made

by the robot in the environment.

3. Metaheuristic algorithms

The following paragraphs will review in a general way the metaheuristic algorithms

implemented, as well as the description of the parameters used for the planning of trajectories

in both ABC and ACO.

3.1. Artificial Bee Colony (ABC)

In order to solve the trajectory planning problem in a given environment, it was proposed that

the bees initialize in the same node. This node was called the origin. The possible paths that

would connect it to the target node would be created from this source. Therefore, the trajectory's

length would improve with the algorithm's iterations, obtaining minor and less distance between

the nodes. This procedure allowed eliminating the most extensive circuits to be replaced by the

shortest distance. This process of eliminating the most expensive solutions, such as the longer

trajectories, is known as elitism.

Figure 4. Flowchart for ABC

Source: own.

In this way, the robot's path from the initial point to the final point in the trajectory obtained is

generated by the optimization obtained by the bee colony algorithm. Such optimization is

performed according to the flowchart shown in Figure 4.

Following the flowchart in Figure 4, the scout bees are initialized and built different paths that

connect the start node with the end node of the way. After the evaluation stage, the solutions

obtained are compared, allowing us to know the best route generated. This is done by emitting

to the surviving observers to select the best one by knowing the distance of the ways generated.

Subsequently, a local search is carried out, which allows improving the selected route until that

moment. It is evaluated if the criterion of stop in the exploration carried out of the previously

generated roads is met. The purpose of this is to stop exploring the environment and generate

new paths in case of not complying with the condition. Otherwise, if the condition is satisfied,

the unemployment condition of the algorithm is evaluated. Suppose this condition is not met,

the algorithm iterates to continue evaluating and comparing new paths generated. In case the

unemployment condition is met, the algorithm ends. This would indicate that the shortest route

has been found between the start and endpoints of the desired trajectory.

Finally, from the algorithm, as mentioned earlier, we proceed to simulate the trajectory obtained

in the environment made in Vpython with the differential robot in Figure 2. So, for each map

shown in Figure 1 and considering the initial and objective nodes, the following steps are

performed:

• Generate different trajectories without collision.

• Generate a random configuration on the map for each point configuration

• Find a collision-free path that connects the starting position to the target

Table 1 displays the values selected for the implementation of the algorithm.

Table 1. Parameters used for ABC.

Parameter Value
Num. Cycles N*50
Num. Bees 80, 100, 200
No. food sources 75

Source: own.

3.2. Ant Colony Optimization (ACO)

The Ant Colony optimization algorithm serves to find the shortest path in a graph. The main

feature of this graph is that each node represents a place that the ant can visit, and each arc

that joins these nodes has an associated cost that makes it more or less attractive.

However, a graph search does not solve trajectory planning problems since the work

environment is a discrete scenario with free and forbidden regions. Being the free regions, the

areas that the ants can visit and, for their part, the existing obstacles on the map will be

prohibited areas for these.

Therefore, ants must find the shortest path from the nest to food. In other words, they must go

from the starting point to the target point within the assigned map. In this case, there are no

arches. In addition, the nodes are equivalent to spaces on the map. This allows the ant to move

to any free position within the free zones.

Another critical point is that the pheromone must be deposited in the areas visited by ants, thus

generating a heuristic of movement preference that depends on the distance between the ant

and the desired final configuration.

However, ants cannot move without having a possible route to follow. It is necessary to

generate random nodes to construct a probabilistic map stored as a graph. The nodes are

collision-free configurations, and the edges are feasible trajectories between these

configurations.

The goal is to build a connected graph, and then the search phase responsible for finding a

path through the graph that connects the initial and final configurations.

The results were obtained by planning the trajectories from an initial configuration from the

algorithm shown in Figure 5.

Figure 5. Algorithm for planning trajectories using ACO

Source: own.

To determine the values of the parameters to be used in the experimentation stage, the values

suggested in the literature for implementations of the ACO algorithm showed better

performance was chosen. These parameters are the number of routes generated, the rate of

evaporation of the pheromone, the level of the pheromone trail, and the number of ants.

The number of routes generated corresponds to the number of cycles performed by the

algorithm multiplied by the number of ants in each cycle. That is the total of solutions that the

algorithm calculates. We chose to use 50 cycles for each iteration of the algorithm performed.

In addition, it was determined to use three different numbers of ants to carry out the experiments

carried out in this work. These were 80,100 and 200 ants.

The evaporation rate of the pheromone, represented by ρ, is the speed with which an ant fade

leaves the trail. The value used was 0.1 since it showed a better result than with other values

analyzed.

In the case of the value corresponding to the level of the pheromone trace, Dorigo [3] suggests

using a minimal value. Therefore, it was decided to use the value of 0.0001 to implement this

algorithm. This parameter is represented by 0. Table 2 is appreciated in a concentrated way,

both the parameters used in the implementation of ACO and the corresponding values for each

of them.

Table 2. Parameters used for ACO.

Parameter Value
Num. Cycles N*50
Num. ants 80, 100, 200
𝜌 0.1
𝜏0 0.0001

Source: own.

4. Results

Once the two algorithms were implemented, the relevant tests were carried out for each of

them. For each map depicted in Figure 1, 50 executions were performed with each algorithm.

The parameters considered to evaluate performance were runtime speed and path length.

What was interesting was obtaining a fast implementation that obtained the minor travel. From

these 50 executions were obtained the average value of execution time and path length

performed by each of the algorithms in each map evaluated.

Figure 6 shows the execution time of the algorithms implemented for each of the ten maps.

Also, in Figure 6, it is possible to see that the ACO algorithm spends a more significant amount

of time finding the best route between the start and end points given for each map. It was the

implementation of ABC the one that obtained better performance in time.

Figure 6. Runtime performance

Source: own.

Figure 7. Performance of the path length obtained.

Source: own.

Figure 7, is shown the performance of ABC and ACO in the path length obtained for each map

evaluated. In the same way, as for speed performance, 50 runs were used for each map shown

in Figure 1. It is shown in Figure 7 the average values of these executions.

Figure 8. Route found by ABC for map number 1.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Source: own.

In Figure 8, we can see different captures of the trajectory that was obtained by the ABC

algorithm for map number 1 shown in Figure 1. In the figure, we can see that the robot executes

the planned trajectory without colliding. The stroke, in yellow color, allows us to realize how

many nodes it visits between the initial and final points. In this case, there are five nodes

considering the target node. Although it could have a trajectory with fewer nodes, it must be

taken into account that when calculating the trajectory in each map, a margin is added to the

obstacles due to the robot's size.

Figure 9. Trajectories found by ABC for other of the maps evaluated.

(a)

(b)

(c)

(d)

(e)

 (f)

(g)

(h)

(i)

Source: own.

The trajectories obtained for maps 2 to 10 (see Figure 1) are shown in Figure 9. These

trajectories were generated with the bee colony algorithm because it was better in the tests

carried out, and what was sought was to have an efficient planner. We can highlight from the

trajectories obtained that although parts on the maps could be assumed that the path found

would be as direct as possible, this is not always the case. This is because the nodes initialized

by the algorithm are random, allowing some edges in the path. The path found is the shortest

in each of the maps.

5. Conclusions

The tests performed for the trajectory planning problem with each of the algorithms, both ACO

and ABC applied to the evaluated maps, showed that the implementation of the ABC algorithm

was the one that obtained a better performance both in speed and in the length of trajectory

found.

Another relevant point observed while evaluating the implementations in scenarios used is the

metaheuristic algorithms. In this case, ACO and ABC are robust because a route between the

starting and ending points for each map evaluated is always found as long as there was a route

between those points.

Some directives to continue this work that has been considered are those listed below:

• Validate the ACO and ABC algorithms in a real robot. Mainly ABC that gave better

results.

• Implement other metaheuristic algorithms for more exhaustive comparison

• Evaluate the performance of algorithms in real scenarios.

• Perform the smoothing of the obtained path

References

[1] P. E. Hart, N. J. Nilsson, B. Raphael, "A Formal Basis for the Heuristic Determination

of Minimum Cost Paths", IEEE Transactions on Systems Science and Cybernetics, vol.

4, no. 2, pp. 100-107, 1968. https://doi.org/10.1109/TSSC.1968.300136

[2] J. H. Holland, “Genetic algorithms”, Scientific American, vol. 267, no. 1, pp. 44-50,

1992. https://doi.org/10.1038/scientificamerican0792-66

[3] M. Dorigo, G. Di Caro. "Ant colony optimization: a new meta-heuristic", Congress on

Evolutionary Computation, 1999. CEC 99. Proceedings of 1999, vol. 2, 1999.

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1038/scientificamerican0792-66

[4] A. K. Guruji, H. Agarwal, D. K. Parsediya, "Time-efficient A* Algorithm for Robot Path

Planning", Procedia Technology, vol. 23, pp. 144-149, 2016,

https://doi.org/10.1016/j.protcy.2016.03.010

[5] D. L. Almanza Ojeda, Y. Gomar Vera, M. A. Ibarra Manzano, "Obstacle Detection and

Avoidance by a Mobile Robot Using Probabilistic Models", IEEE Latin America

Transactions, vol. 13, no. 1, pp. 69-75, 2015.

https://doi.org/10.1109/TLA.2015.7040630

[6] G. D. Goez, R. A. Velasquez Velez, J. S. Botero Valencia, "UAV route planning

optimization using PSO implemented on microcontrollers", IEEE Latin America

Transactions, vol. 14, no. 4, pp. 1705-1710, 2016.

https://doi.org/10.1109/TLA.2016.7483504

[7] H. E. Espitia Cuchango, J. Sofrony Esmeral, “Algoritmo para la planeación de

trayectorias de robots móviles empleando enjambres de partículas brownianas”, Visión

Electrónica, vol. 5, no. 1, pp. 4–14, 2011.

[8] X. Li, D. Wu, J. He, M. Bashir, M. Liping, "An Improved Method of Particle Swarm

Optimization for Path Planning of Mobile Robot”, Journal of Control Science and

Engineering, 2020. https://doi.org/10.1155/2020/3857894

[9] C. Marquez Sanchez et al., "Trajectory Generation for Wheeled Mobile Robots Via

Bézier Polynomials”, in IEEE Latin America Transactions, vol. 14, no. 11, pp. 4482-

4490, 2016. https://doi.org/10.1109/TLA.2016.7795818

[10] G. Diaz-Arango, H. Vázquez-Leal, L. Hernandez-Martinez, M. T. S. Pascual and M.

Sandoval-Hernandez, "Homotopy Path Planning for Terrestrial Robots Using Spherical

Algorithm”, in IEEE Transactions on Automation Science and Engineering, vol. 15, no.

2, pp. 567-585, 2018. https://doi.org/10.1109/TASE.2016.2638208

[11] S. G. Moctezuma Gutiérrez, A. Cruz Pazarán, R. Galicia Mejía, L. N. Oliva Moreno,

“Desarrollo de plataforma para implementación de robots colaborativos”, Vis. Electron.,

vol. 12, no. 1, pp. 22–31, 2018. https://doi.org/10.14483/22484728.13308

[12] A. Rodríguez-Molina, J. Solís-Romero, M. G. Villarreal-Cervantes, O. Serrano-Pérez,

and G. Flores-Caballero, “Path-Planning for Mobile Robots Using a Novel Variable-

Length Differential Evolution Variant”, Mathematics, vol. 9, no. 4, p. 357, 2021

https://doi.org/10.3390/math9040357

[13] F. Campos Archila, V. Pinzón Saavedra, F. Robayo Betancourt, “Fuzzy control of

quadrotor Ar. Drone 2.0 in a controlled environment”, Vis Electron., vol. 13, no. 1, pp.

39–49, feb. 2019. https://doi.org/10.14483/22484728.14406

[14] D. Canca, A. De-Los-Santos, G. Laporte, J. A. Mesa, "An adaptive neighborhood

search metaheuristic for the integrated railway rapid transit network design and line

planning problem”, Elsevier Computers & Operations Research, vol. 78, pp. 1–14,

2017. https://doi.org/10.1016/j.cor.2016.08.008

https://doi.org/10.1016/j.protcy.2016.03.010
https://doi.org/10.1109/TLA.2015.7040630
https://doi.org/10.1109/TLA.2016.7483504
https://doi.org/10.1155/2020/3857894
https://doi.org/10.1109/TLA.2016.7795818
https://doi.org/10.1109/TASE.2016.2638208
https://doi.org/10.14483/22484728.13308
https://doi.org/10.3390/math9040357
https://doi.org/10.14483/22484728.14406
https://doi.org/10.1016/j.cor.2016.08.008

[15] Y. Kergosein, Ch. Lenté, J. Billaut, S. Perrin, "Metaheuristic algorithms for solving two

interconnected vehicle routing problems in a hospital complex”, Elsevier Computers &

Operations Research, vol. 40, pp. 2508–2518, 2013.

https://doi.org/10.1016/j.cor.2013.01.009

[16] J. C. Ferreira, M. T. Arns Steiner, and M. Siqueira Guersola, "A Vehicle Routing

Problem Solved Through Some Metaheuristics Procedures: A Case Study”, in IEEE

Latin America Transactions, vol. 15, no. 5, pp. 943-949, 2017.

https://doi.org/10.1109/TLA.2017.7910210

[17] S. Q. Liu, E. Kozana, "A hybrid metaheuristic algorithm to optimize a real-world robotic

cell”, Elsevier Computers & Operations Research, 2016.

https://doi.org/10.1016/j.cor.2016.09.011

[18] R. M. Molano Pulido, F. Parca Acevedo, F. M. Cabrera, H. Ñungo Londoño, “Prototipo

control de vehículo robot por señales EMG”, Vis. Electron., vol. 15, no. 2, 2021.

[19] K. Hao, J. Zhao, K. Yu, C. Li, C. Wang, "Path Planning of Mobile Robots Based on a

Multi-Population Migration Genetic Algorithm”, Sensors, vol. 20, no. 20, p. 5873, 2020.

https://doi.org/10.3390/s20205873

[20] R. K. Panda, B. B. Choudhury, "An Effective Path Planning of Mobile Robot Using

Genetic Algorithm”, 2015 IEEE International Conference on Computational Intelligence

& Communication Technology, pp. 287-291, 2015.

https://doi.org/10.1109/CICT.2015.145

[21] S. Wu, Y. Du, Y. Zhang, "Mobile Robot Path Planning Based on a Generalized

Wavefront Algorithm”, Mathematical Problems in Engineering, vol. 2020, 2020.

https://doi.org/10.1155/2020/6798798

[22] S. K. Pattnaik, D. Mishra, S. Panda, “A comparative study of meta-heuristics for local

path planning of a mobile robot”, Engineering Optimization, 2021.

https://doi.org/10.1080/0305215X.2020.1858074

[23] D. Karaboga, "An idea based on honey bee swarm for numerical optimization”,

Technical report-tr06, Erciyes university, engineering faculty, computer engineering

department, vol. 200, 2005.

[24] R. Razif, N. Perumal, I. Elamvazuthi, M. Kamal Tageldeen, M. Ahamed Khan, S.

Parasuraman, "Mobile robot path planning using Ant Colony Optimization", in Robotics

and Manufacturing Automation (ROMA), 2016 2nd IEEE International Symposium on,

pp. 1-6, 2016. https://doi.org/10.1109/ROMA.2016.7847836

[25] L. Jianhua, J. Yang, H. Liu, X. Tian, M. Gao. "An improved ant colony algorithm for

robot path planning", Soft Computing, vol. 21, no. 19, pp. 5829-5839, 2017.

https://doi.org/10.1007/s00500-016-2161-7

[26] Y. Zhongrui, Y. Houyu, H. Miaohua, "Improved Ant Colony Optimization Algorithm for

Intelligent Vehicle Path Planning”, 2017 International Conference on Industrial

https://doi.org/10.1016/j.cor.2013.01.009
https://doi.org/10.1109/TLA.2017.7910210
https://doi.org/10.1016/j.cor.2016.09.011
https://doi.org/10.3390/s20205873
https://doi.org/10.1109/CICT.2015.145
https://doi.org/10.1155/2020/6798798
https://doi.org/10.1080/0305215X.2020.1858074
https://doi.org/10.1109/ROMA.2016.7847836
https://doi.org/10.1007/s00500-016-2161-7

Informatics - Computing Technology, Intelligent Technology, Industrial Information

Integration (ICIICII), Wuhan, pp. 1-4, 2017. https://doi.org/10.1109/ICIICII.2017.55

[27] L. Yong, L. Yu, G. Yipei, C. Kejie, "Cooperative path planning of robot swarm based on

ACO”, 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation

Control Conference (ITNEC), Chengdu, pp. 1428-1432, 2017.

https://doi.org/10.1109/ITNEC.2017.8285033

[28] E. Mouhcine, M. Khalifa, Y. Mohamed, "Route optimization for school bus scheduling

problem based on a distributed ant colony system algorithm”, 2017 Intelligent Systems

and Computer Vision (ISCV), Fez, pp. 1-8, 2017.

[29] Y. Gigras, K. Choudhary, K. Gupta, Vandana, "A hybrid ACO-PSO technique for path

planning”, 2015 2nd International Conference on Computing for Sustainable Global

Development (INDIACom), New Delhi, pp. 1616-1621, 2015.

[30] Y. Tao, H. Gao, F. Ren, C. Chen, T. Wang, H. Xiong, S. Jiang, "A Mobile Service Robot

Global Path Planning Method Based on Ant Colony Optimization and Fuzzy Control”,

Applied Sciences, vol. 11, no. 8, p. 3605, 2021. https://doi.org/10.3390/app11083605

[31] M. Contreras-Cruz, V. Ayala-Ramirez, H. Hernandez-Belmonte. "Mobile robot path

planning using artificial bee colony and evolutionary programming", Applied Soft

Computing, vol. 30, pp. 319-328, 2015. https://doi.org/10.1016/j.asoc.2015.01.067

[32] P. Bhattacharjee, P. Rakshit, I. Goswami, A. Konar, A. Nagar, "Multi-robot path-

planning using artificial bee colony optimization algorithm", in Nature and Biologically

Inspired Computing (NaBIC), pp. 219-224, 2011.

https://doi.org/10.1109/NaBIC.2011.6089601

[33] A. Nizar Hadi, J. Ahmed Abdulsaheb. "An Adaptive Multi-Objective Artificial Bee Colony

Algorithm for Multi-Robot Path Planning", Association of Arab Universities Journal of

Engineering Sciences, vol. 24, no. 3, pp. 168-189, 2017.

[34] L. Jun-Hao, C. Hung Lee. "Efficient collision-free path planning of multiple mobile robots

system using efficient artificial bee colony algorithm”, Advances in Engineering

Software, vol. 79, pp. 47-56, 2015. https://doi.org/10.1016/j.advengsoft.2014.09.006

[35] C. H. Chen, S. Y. Jeng, C. J. Lin, "Using an Adaptive Fuzzy Neural Network Based on

a Multi-Strategy-Based Artificial Bee Colony for Mobile Robot Control”, Mathematics,

vol. 8, no. 8, p. 1223, 2020. https://doi.org/10.3390/math8081223

[36] V. Vanásek, “Intelligent and Mobile Robotics Group”, 2009. [online]. Available:

http://imr.felk.cvut.cz/planning/maps.xml

[37] Possiblywrong, “Web simulador turtle”,

https://possiblywrong.wordpress.com/2010/12/04/robot-simulator-and-turtle-graphics/

[38] Python, “Web Visual Python”, http://vpython.org/

https://doi.org/10.1109/ICIICII.2017.55
https://doi.org/10.1109/ITNEC.2017.8285033
https://doi.org/10.3390/app11083605
https://doi.org/10.1016/j.asoc.2015.01.067
https://doi.org/10.1109/NaBIC.2011.6089601
https://doi.org/10.1016/j.advengsoft.2014.09.006
https://doi.org/10.3390/math8081223
http://imr.felk.cvut.cz/planning/maps.xml
https://possiblywrong.wordpress.com/2010/12/04/robot-simulator-and-turtle-graphics/
http://vpython.org/

