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Abstract 

In this work, a comparison between two metaheuristic methods to solve the path planning 

problem is presented. These methods are 1) Artificial ant colony and 2) Artificial bee colony. 

The following metrics are used to evaluate these implementations: 1) Path length and 2) 

Execution time. The comparison was tested using ten maps obtained from the University of 

Prague Department of Intelligent Cybernetics and the Mobil Robotics Group. Several runs were 

carried out to find the best algorithm parameters and get the best algorithm for the route 

planning task. The best algorithm was the artificial bee colony. These evaluations were 

visualized using the VPython package; here, a differential mobile robot was simulated to follow 

the trajectory calculated by the best algorithm. This simulation made it possible to observe that 

the robot makes the correct trajectory from the starting point to the objective point in each 

evaluated map.  
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Resumen 

En este trabajo se presenta una comparación entre dos métodos metaheurísticos para resolver 

problemas de planificación de rutas. Estos métodos son: 1) Colonia de hormigas artificiales y 

2) Colonia de abejas artificiales. Para evaluar estas implementaciones, se utilizan las 

siguientes métricas: 1) Longitud de ruta y 2) Tiempo de ejecución. El comparativo se probó 

utilizando diez mapas obtenidos del Departamento de Cibernética Inteligente y Mobil Robotics 

Group de la Universidad de Praga. Se realizaron varias ejecuciones con el objetivo de 

encontrar los mejores parámetros de los algoritmos y obtener el mejor algoritmo para la tarea 

de planificación de ruta. El mejor algoritmo fue la colonia de abejas artificiales. Estas 

evaluaciones se visualizaron utilizando el paquete VPython, aquí se simuló un robot móvil 

diferencial para seguir la trayectoria calculada por el mejor algoritmo. A partir de esta 

simulación fue posible observar que el robot realiza la trayectoria correcta desde el punto de 

inicio hasta el punto objetivo en cada uno de los mapas evaluados.  

Palabras clave: Colonia de abejas, Colonia de hormigas, Robot Móvil, Simulación de robots. 

1. Introduction 

Planning trajectories is a problem of interest in different research fields, such as robotics. So 

that a robot can move without problems in an environment about which it has specific 

information. This information can be in different ways. Such as knowing a priori the map or how 

many objects, shapes, and characteristics are on the scene. All this is necessary for the 

planning system to find a collision-free path and ensure the shortest route. For this, the system 

must know the map, the objects present, the robot's size, and the starting and ending points of 

the route. 

This problem has been approached with various approaches, from classical algorithms such as 

A star (A*) [1] to evolutionary algorithms such as genetic algorithms [2] or ant colony 



 

 
 

optimization [3]. In the following paragraphs, we will comment on some of the work done using 

so-called classical algorithms to discuss later the work that uses metaheuristic algorithms for 

trajectory planning in mobile robots.   

It starts by mentioning the work of Guruji et al. [4], who improved the execution time of the A* 

algorithm for the planning of mobile robots. In [5], Almanza Ojeda et al. implemented a system 

for a mobile robot to avoid obstacles through probabilistic models in embedded hardware. For 

their part, Goez et al. [6] used a microcontroller to implement route planning optimization using 

the particle swarm optimization (PSO) algorithm. Another work that uses PSO is Cuchango [7], 

who used the approach of potential fields and active Brownian particles to calculate trajectories 

in mobile robots. Li et at. in [8] improved the PSO algorithm also oriented towards trajectory 

planning. 

Marquez Sanchez et al. [9], perform the generation of trajectories for mobile robots by using 

Bézier polynomials.  Diaz-Arango et al. [10] use a Spherical Algorithm for trajectory planning in 

land mobile robots. In [11], Forero-García et al. implemented the intelligent control of a mobile 

robot differential for assistance applications in a house. Another application of trajectory 

planning but a variant of the differential evolution algorithm is found in [12].  As the last work of 

this block, we will comment on the one developed by Campos-Archila, Pinzón-Saavedra, and 

Robayo-Betancourt, who was using fuzzy logic carried out the trajectory control of an aerial 

robot [13]. 

On the side of trajectory planning works using metaheuristic algorithms, we will mention Canca 

et al. [14]. They solved the problem of the design and planning of Seville's rapid rail transport 

network by developing a metaheuristic algorithm called the Adaptive Neighborhood Search 

algorithm. A fascinating application is developed by Kergosein et al. [15]; this uses a 

metaheuristic algorithm to solve the problem of routing connected vehicles in a hospital 

complex. In [16], Ferreira et al. compared several evolutionary algorithms to solve the problem 



 
 

of routing mobile robots. Liu and Kozana in [17] implemented a hybrid metaheuristic algorithm 

to plan trajectories of a mobile robot to transport parts on a production line.  

On the other hand, Guzman and Peña [18] were different bio-inspired algorithms for planning 

trajectories, but manipulative robots. Genetic algorithms have also been implemented as a 

strategy for planning trajectories. Examples of this are the works presented in [19-20]. In [21], 

Wu, Du, and Zhang performed trajectory planning of a mobile robot using wavefront's 

generalized algorithm.   Finally, in [22], we can find a comparative study of metaheuristic 

algorithms applied to the planning of trajectories in mobile robots.  These works are just a 

sample of metaheuristics to solve the problem of trajectory planning in mobile robots. Now 

move on to discuss results where both ant colony (ACO) optimization algorithms [3] and artificial 

bee colony (ABC) algorithms [23] are used. 

We start the analysis of developments that use ACOs like the one made by Rashid et al. [24], 

who directly used it for trajectory planning. While in [25], Liu et al. implemented an improvement 

of ACO to plan trajectories in mobile robots. Another modification of the ant colony algorithm 

can be reviewed at [26]. Yong et al. implemented a cooperative algorithm for trajectory planning 

for a set of robots using ACO [27]. Optimizing the route planning of a school bus using a 

distributed ACO is presented in [28]. This brief review of trajectory planning using ACO will 

mention two-hybrid implementations. In [29], Gigras et al. performed an ACO and PSO hybrid 

algorithm. While in [30], Tao et al. merged ACO with fuzzy logic in both cases with acceptable 

results. 

Now comment on a couple of papers that use the bee colony algorithm in trajectory planning. 

In this section, we start commenting on the work of Contreras-Cruz et al., who in [31] carried 

out the implementation of the ABC for the planning of trajectories also using evolutionary 

programming to soften the route obtained by ABC In [32], the best pathway for each of the 

robots in the scenario is tried, calculated from the robots present. While in [33], it uses an 



 

 
 

adaptive ABC approach to estimate the trajectories of robots by evaluating their implementation 

in three different scenarios. Liang et al. [34] use the ABC to calculate a collision-free path 

between two points efficiently. Finally, Chen et al. use a hybrid neuro-diffuse approach with 

ABC to control a mobile robot [35]. 

2. System Elements 

This section presents the different elements used to simulate the generation of the trajectories 

using the metaheuristic algorithms of the ant colony and bee colony. These elements are the 

maps, the robot, and the simulation environment. 

Figure 1.- Maps used to validate the planning algorithms [36] 
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2.1. Map representation 

Ten maps were used to carry out the experiments presented in this paper. Figure 1 shows the 

maps used. These maps represent the full maps proposed by the Department of Cybernetic 

Intelligence and Mobile Robotics group of the University of Prague [36]. 

The maps used were drawn in the environment with a 5 pixels/cm ratio. The maps represent 

different geometries, allowing us to validate the metaheuristic algorithms in different scenarios. 

Figure 1 shows the starting and target points on each map. The starting point is marked by a 

circumference (°), while the endpoint is represented by an asterisk (*). The trajectory calculation 

will be carried out using the implemented metaheuristic algorithms among these points. 

2.2. Robot employee 

The mobile robot used to develop this work was a robot with a differential configuration, shown 

in Figure 2. The diameter of the robot is a dimension of 10 cm. This robot is made using the 

Vturtle module [37] developed in Python using VPython [38]. 

Figure 2.  Virtual representation of the robot [37] 

 

 

As can be seen in Figure 2, the robot has two main wheels and a freewheel. In addition, it has 

a set of sensors that help not collide with the obstacles present in the environment. However, 



 

 
 

given the characteristics of this work on this occasion, the sensors will not be used. Since the 

robot only executes the trajectory that metaheuristic algorithms have previously calculated. 

2.3. Simulation environment 

it was necessary to use a simulator to have a visualization that allowed us to appreciate the 

robot's behavior when tracking the trajectory obtained. 

For that reason, this work uses the environment developed in [37]. This environment was 

created in Python and observed the robot's movement on the desired trajectory. This 

environment offers us several things: a three-dimensional environment, a differential robot, 

placing obstacles, the use of a pencil to trace the movement of the robot in the scenario. 

Figure 3.  Simulation environment 

 

Source: own. 

Adding different obstacles in the regions of our interest allowed us to make the maps used in a 

three-dimensional environment. In the case of the robot, it has several sensors that were not 

used for this work, but that can be very useful if it wants the robot to be reactive. The significant 

point is that the robot can load a tool, which is a pencil that allows observing the trajectory made 

by the robot in the environment. 



 
 

3. Metaheuristic algorithms  

The following paragraphs will review in a general way the metaheuristic algorithms 

implemented, as well as the description of the parameters used for the planning of trajectories 

in both ABC and ACO. 

3.1. Artificial Bee Colony (ABC) 

In order to solve the trajectory planning problem in a given environment, it was proposed that 

the bees initialize in the same node. This node was called the origin. The possible paths that 

would connect it to the target node would be created from this source. Therefore, the trajectory's 

length would improve with the algorithm's iterations, obtaining minor and less distance between 

the nodes. This procedure allowed eliminating the most extensive circuits to be replaced by the 

shortest distance. This process of eliminating the most expensive solutions, such as the longer 

trajectories, is known as elitism. 

Figure 4.  Flowchart for ABC 

 

Source: own. 



 

 
 

In this way, the robot's path from the initial point to the final point in the trajectory obtained is 

generated by the optimization obtained by the bee colony algorithm. Such optimization is 

performed according to the flowchart shown in Figure 4. 

Following the flowchart in Figure 4, the scout bees are initialized and built different paths that 

connect the start node with the end node of the way. After the evaluation stage, the solutions 

obtained are compared, allowing us to know the best route generated. This is done by emitting 

to the surviving observers to select the best one by knowing the distance of the ways generated. 

Subsequently, a local search is carried out, which allows improving the selected route until that 

moment. It is evaluated if the criterion of stop in the exploration carried out of the previously 

generated roads is met. The purpose of this is to stop exploring the environment and generate 

new paths in case of not complying with the condition. Otherwise, if the condition is satisfied, 

the unemployment condition of the algorithm is evaluated. Suppose this condition is not met, 

the algorithm iterates to continue evaluating and comparing new paths generated. In case the 

unemployment condition is met, the algorithm ends. This would indicate that the shortest route 

has been found between the start and endpoints of the desired trajectory. 

Finally, from the algorithm, as mentioned earlier, we proceed to simulate the trajectory obtained 

in the environment made in Vpython with the differential robot in Figure 2. So, for each map 

shown in Figure 1 and considering the initial and objective nodes, the following steps are 

performed: 

• Generate different trajectories without collision. 

• Generate a random configuration on the map for each point configuration 

• Find a collision-free path that connects the starting position to the target 

Table 1 displays the values selected for the implementation of the algorithm. 



 
 

Table 1.  Parameters used for ABC. 

Parameter Value 
Num. Cycles N*50  
Num. Bees 80, 100, 200  
No. food sources 75 

Source: own. 

3.2. Ant Colony Optimization (ACO) 

The Ant Colony optimization algorithm serves to find the shortest path in a graph. The main 

feature of this graph is that each node represents a place that the ant can visit, and each arc 

that joins these nodes has an associated cost that makes it more or less attractive. 

However, a graph search does not solve trajectory planning problems since the work 

environment is a discrete scenario with free and forbidden regions. Being the free regions, the 

areas that the ants can visit and, for their part, the existing obstacles on the map will be 

prohibited areas for these. 

Therefore, ants must find the shortest path from the nest to food. In other words, they must go 

from the starting point to the target point within the assigned map. In this case, there are no 

arches. In addition, the nodes are equivalent to spaces on the map. This allows the ant to move 

to any free position within the free zones. 

Another critical point is that the pheromone must be deposited in the areas visited by ants, thus 

generating a heuristic of movement preference that depends on the distance between the ant 

and the desired final configuration. 

However, ants cannot move without having a possible route to follow. It is necessary to 

generate random nodes to construct a probabilistic map stored as a graph. The nodes are 

collision-free configurations, and the edges are feasible trajectories between these 

configurations. 



 

 
 

The goal is to build a connected graph, and then the search phase responsible for finding a 

path through the graph that connects the initial and final configurations. 

The results were obtained by planning the trajectories from an initial configuration from the 

algorithm shown in Figure 5. 

Figure 5.  Algorithm for planning trajectories using ACO 

 

Source: own. 

To determine the values of the parameters to be used in the experimentation stage, the values 

suggested in the literature for implementations of the ACO algorithm showed better 

performance was chosen. These parameters are the number of routes generated, the rate of 

evaporation of the pheromone, the level of the pheromone trail, and the number of ants. 

The number of routes generated corresponds to the number of cycles performed by the 

algorithm multiplied by the number of ants in each cycle. That is the total of solutions that the 

algorithm calculates. We chose to use 50 cycles for each iteration of the algorithm performed. 



 
 

In addition, it was determined to use three different numbers of ants to carry out the experiments 

carried out in this work. These were 80,100 and 200 ants. 

The evaporation rate of the pheromone, represented by ρ, is the speed with which an ant fade 

leaves the trail. The value used was 0.1 since it showed a better result than with other values 

analyzed. 

In the case of the value corresponding to the level of the pheromone trace, Dorigo [3] suggests 

using a minimal value. Therefore, it was decided to use the value of 0.0001 to implement this 

algorithm. This parameter is represented by 0. Table 2 is appreciated in a concentrated way, 

both the parameters used in the implementation of ACO and the corresponding values for each 

of them. 

Table 2. Parameters used for ACO. 

Parameter Value 
Num. Cycles N*50  
Num. ants 80, 100, 200  
𝜌 0.1  
𝜏0 0.0001 

Source: own. 

4. Results 

Once the two algorithms were implemented, the relevant tests were carried out for each of 

them. For each map depicted in Figure 1, 50 executions were performed with each algorithm. 

The parameters considered to evaluate performance were runtime speed and path length. 

What was interesting was obtaining a fast implementation that obtained the minor travel. From 

these 50 executions were obtained the average value of execution time and path length 

performed by each of the algorithms in each map evaluated. 



 

 
 

Figure 6 shows the execution time of the algorithms implemented for each of the ten maps. 

Also, in Figure 6, it is possible to see that the ACO algorithm spends a more significant amount 

of time finding the best route between the start and end points given for each map. It was the 

implementation of ABC the one that obtained better performance in time. 

Figure 6.  Runtime performance 

 

Source: own. 

Figure 7.  Performance of the path length obtained. 

 

Source: own. 



 
 

Figure 7, is shown the performance of ABC and ACO in the path length obtained for each map 

evaluated. In the same way, as for speed performance, 50 runs were used for each map shown 

in Figure 1. It is shown in Figure 7 the average values of these executions. 

Figure 8. Route found by ABC for map number 1. 
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Source: own. 

In Figure 8, we can see different captures of the trajectory that was obtained by the ABC 

algorithm for map number 1 shown in Figure 1. In the figure, we can see that the robot executes 

the planned trajectory without colliding. The stroke, in yellow color, allows us to realize how 

many nodes it visits between the initial and final points. In this case, there are five nodes 



 

 
 

considering the target node. Although it could have a trajectory with fewer nodes, it must be 

taken into account that when calculating the trajectory in each map, a margin is added to the 

obstacles due to the robot's size. 

Figure 9. Trajectories found by ABC for other of the maps evaluated. 
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Source: own. 

The trajectories obtained for maps 2 to 10 (see Figure 1) are shown in Figure 9. These 

trajectories were generated with the bee colony algorithm because it was better in the tests 

carried out, and what was sought was to have an efficient planner. We can highlight from the 

trajectories obtained that although parts on the maps could be assumed that the path found 



 
 

would be as direct as possible, this is not always the case. This is because the nodes initialized 

by the algorithm are random, allowing some edges in the path. The path found is the shortest 

in each of the maps. 

5. Conclusions 

The tests performed for the trajectory planning problem with each of the algorithms, both ACO 

and ABC applied to the evaluated maps, showed that the implementation of the ABC algorithm 

was the one that obtained a better performance both in speed and in the length of trajectory 

found. 

Another relevant point observed while evaluating the implementations in scenarios used is the 

metaheuristic algorithms. In this case, ACO and ABC are robust because a route between the 

starting and ending points for each map evaluated is always found as long as there was a route 

between those points. 

Some directives to continue this work that has been considered are those listed below: 

• Validate the ACO and ABC algorithms in a real robot. Mainly ABC that gave better 

results. 

• Implement other metaheuristic algorithms for more exhaustive comparison 

• Evaluate the performance of algorithms in real scenarios. 

• Perform the smoothing of the obtained path 

References  

[1] P. E. Hart, N. J. Nilsson, B. Raphael, "A Formal Basis for the Heuristic Determination 

of Minimum Cost Paths", IEEE Transactions on Systems Science and Cybernetics, vol. 

4, no. 2, pp. 100-107, 1968. https://doi.org/10.1109/TSSC.1968.300136  

[2] J. H. Holland, “Genetic algorithms”, Scientific American, vol. 267, no. 1, pp. 44-50, 

1992. https://doi.org/10.1038/scientificamerican0792-66  

[3] M. Dorigo, G. Di Caro. "Ant colony optimization: a new meta-heuristic", Congress on 

Evolutionary Computation, 1999. CEC 99. Proceedings of 1999, vol. 2, 1999. 

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1038/scientificamerican0792-66


 

 
 

[4] A. K. Guruji, H. Agarwal, D. K. Parsediya, "Time-efficient A* Algorithm for Robot Path 

Planning", Procedia Technology, vol. 23, pp. 144-149, 2016, 

https://doi.org/10.1016/j.protcy.2016.03.010  

[5] D. L. Almanza Ojeda, Y. Gomar Vera, M. A. Ibarra Manzano, "Obstacle Detection and 

Avoidance by a Mobile Robot Using Probabilistic Models", IEEE Latin America 

Transactions, vol. 13, no. 1, pp. 69-75, 2015. 

https://doi.org/10.1109/TLA.2015.7040630  

[6] G. D. Goez, R. A. Velasquez Velez, J. S. Botero Valencia, "UAV route planning 

optimization using PSO implemented on microcontrollers", IEEE Latin America 

Transactions, vol. 14, no. 4, pp. 1705-1710, 2016. 

https://doi.org/10.1109/TLA.2016.7483504  

[7] H. E. Espitia Cuchango, J. Sofrony Esmeral, “Algoritmo para la planeación de 

trayectorias de robots móviles empleando enjambres de partículas brownianas”, Visión 

Electrónica, vol. 5, no. 1, pp. 4–14, 2011. 

[8] X. Li, D. Wu, J. He, M. Bashir, M. Liping, "An Improved Method of Particle Swarm 

Optimization for Path Planning of Mobile Robot”, Journal of Control Science and 

Engineering, 2020. https://doi.org/10.1155/2020/3857894  

[9] C. Marquez Sanchez et al., "Trajectory Generation for Wheeled Mobile Robots Via 

Bézier Polynomials”, in IEEE Latin America Transactions, vol. 14, no. 11, pp. 4482-

4490, 2016. https://doi.org/10.1109/TLA.2016.7795818  

[10] G. Diaz-Arango, H. Vázquez-Leal, L. Hernandez-Martinez, M. T. S. Pascual and M. 

Sandoval-Hernandez, "Homotopy Path Planning for Terrestrial Robots Using Spherical 

Algorithm”, in IEEE Transactions on Automation Science and Engineering, vol. 15, no. 

2, pp. 567-585, 2018. https://doi.org/10.1109/TASE.2016.2638208  

[11]  S. G. Moctezuma Gutiérrez, A. Cruz Pazarán, R. Galicia Mejía, L. N. Oliva Moreno, 

“Desarrollo de plataforma para implementación de robots colaborativos”, Vis. Electron., 

vol. 12, no. 1, pp. 22–31, 2018. https://doi.org/10.14483/22484728.13308  

[12] A. Rodríguez-Molina, J. Solís-Romero, M. G. Villarreal-Cervantes, O. Serrano-Pérez, 

and G. Flores-Caballero, “Path-Planning for Mobile Robots Using a Novel Variable-

Length Differential Evolution Variant”, Mathematics, vol. 9, no. 4, p. 357, 2021 

https://doi.org/10.3390/math9040357  

[13] F. Campos Archila, V. Pinzón Saavedra, F. Robayo Betancourt, “Fuzzy control of 

quadrotor Ar. Drone 2.0 in a controlled environment”, Vis Electron., vol. 13, no. 1, pp. 

39–49, feb. 2019. https://doi.org/10.14483/22484728.14406  

[14] D. Canca, A. De-Los-Santos, G. Laporte, J. A. Mesa, "An adaptive neighborhood 

search metaheuristic for the integrated railway rapid transit network design and line 

planning problem”, Elsevier Computers & Operations Research, vol. 78, pp. 1–14, 

2017. https://doi.org/10.1016/j.cor.2016.08.008  

https://doi.org/10.1016/j.protcy.2016.03.010
https://doi.org/10.1109/TLA.2015.7040630
https://doi.org/10.1109/TLA.2016.7483504
https://doi.org/10.1155/2020/3857894
https://doi.org/10.1109/TLA.2016.7795818
https://doi.org/10.1109/TASE.2016.2638208
https://doi.org/10.14483/22484728.13308
https://doi.org/10.3390/math9040357
https://doi.org/10.14483/22484728.14406
https://doi.org/10.1016/j.cor.2016.08.008


 
 

[15] Y. Kergosein, Ch. Lenté, J. Billaut, S. Perrin, "Metaheuristic algorithms for solving two 

interconnected vehicle routing problems in a hospital complex”, Elsevier Computers & 

Operations Research, vol. 40, pp. 2508–2518, 2013. 

https://doi.org/10.1016/j.cor.2013.01.009  

[16] J. C. Ferreira, M. T. Arns Steiner, and M. Siqueira Guersola, "A Vehicle Routing 

Problem Solved Through Some Metaheuristics Procedures: A Case Study”, in IEEE 

Latin America Transactions, vol. 15, no. 5, pp. 943-949, 2017. 

https://doi.org/10.1109/TLA.2017.7910210  

[17] S. Q. Liu, E. Kozana, "A hybrid metaheuristic algorithm to optimize a real-world robotic 

cell”, Elsevier Computers & Operations Research, 2016. 

https://doi.org/10.1016/j.cor.2016.09.011  

[18] R. M. Molano Pulido, F. Parca Acevedo, F. M. Cabrera, H. Ñungo Londoño, “Prototipo 

control de vehículo robot por señales EMG”, Vis. Electron., vol. 15, no. 2, 2021. 

[19] K. Hao, J. Zhao, K. Yu, C. Li, C. Wang, "Path Planning of Mobile Robots Based on a 

Multi-Population Migration Genetic Algorithm”, Sensors, vol. 20, no. 20, p. 5873, 2020. 

https://doi.org/10.3390/s20205873  

[20] R. K. Panda, B. B. Choudhury, "An Effective Path Planning of Mobile Robot Using 

Genetic Algorithm”, 2015 IEEE International Conference on Computational Intelligence 

& Communication Technology, pp. 287-291, 2015. 

https://doi.org/10.1109/CICT.2015.145  

[21] S. Wu, Y. Du, Y. Zhang, "Mobile Robot Path Planning Based on a Generalized 

Wavefront Algorithm”, Mathematical Problems in Engineering, vol. 2020, 2020. 

https://doi.org/10.1155/2020/6798798  

[22] S. K. Pattnaik, D. Mishra,  S. Panda, “A comparative study of meta-heuristics for local 

path planning of a mobile robot”, Engineering Optimization, 2021. 

https://doi.org/10.1080/0305215X.2020.1858074  

[23] D. Karaboga, "An idea based on honey bee swarm for numerical optimization”, 

Technical report-tr06, Erciyes university, engineering faculty, computer engineering 

department, vol. 200, 2005. 

[24] R. Razif, N. Perumal, I. Elamvazuthi, M. Kamal Tageldeen, M. Ahamed Khan, S. 

Parasuraman, "Mobile robot path planning using Ant Colony Optimization", in Robotics 

and Manufacturing Automation (ROMA), 2016 2nd IEEE International Symposium on, 

pp. 1-6, 2016. https://doi.org/10.1109/ROMA.2016.7847836  

[25] L. Jianhua, J. Yang, H. Liu, X. Tian, M. Gao. "An improved ant colony algorithm for 

robot path planning", Soft Computing, vol. 21, no. 19, pp. 5829-5839, 2017. 

https://doi.org/10.1007/s00500-016-2161-7  

[26] Y. Zhongrui, Y. Houyu, H. Miaohua, "Improved Ant Colony Optimization Algorithm for 

Intelligent Vehicle Path Planning”, 2017 International Conference on Industrial 

https://doi.org/10.1016/j.cor.2013.01.009
https://doi.org/10.1109/TLA.2017.7910210
https://doi.org/10.1016/j.cor.2016.09.011
https://doi.org/10.3390/s20205873
https://doi.org/10.1109/CICT.2015.145
https://doi.org/10.1155/2020/6798798
https://doi.org/10.1080/0305215X.2020.1858074
https://doi.org/10.1109/ROMA.2016.7847836
https://doi.org/10.1007/s00500-016-2161-7


 

 
 

Informatics - Computing Technology, Intelligent Technology, Industrial Information 

Integration (ICIICII), Wuhan, pp. 1-4, 2017. https://doi.org/10.1109/ICIICII.2017.55  

[27] L. Yong, L. Yu, G. Yipei, C. Kejie, "Cooperative path planning of robot swarm based on 

ACO”, 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation 

Control Conference (ITNEC), Chengdu, pp. 1428-1432, 2017. 

https://doi.org/10.1109/ITNEC.2017.8285033  

[28] E. Mouhcine, M. Khalifa, Y. Mohamed, "Route optimization for school bus scheduling 

problem based on a distributed ant colony system algorithm”, 2017 Intelligent Systems 

and Computer Vision (ISCV), Fez, pp. 1-8, 2017. 

[29] Y. Gigras, K. Choudhary, K. Gupta, Vandana, "A hybrid ACO-PSO technique for path 

planning”, 2015 2nd International Conference on Computing for Sustainable Global 

Development (INDIACom), New Delhi, pp. 1616-1621, 2015. 

[30] Y. Tao, H. Gao, F. Ren, C. Chen, T. Wang, H. Xiong, S. Jiang, "A Mobile Service Robot 

Global Path Planning Method Based on Ant Colony Optimization and Fuzzy Control”, 

Applied Sciences, vol. 11, no. 8, p. 3605, 2021. https://doi.org/10.3390/app11083605  

[31] M. Contreras-Cruz, V. Ayala-Ramirez, H. Hernandez-Belmonte. "Mobile robot path 

planning using artificial bee colony and evolutionary programming", Applied Soft 

Computing, vol. 30, pp. 319-328, 2015. https://doi.org/10.1016/j.asoc.2015.01.067  

[32] P. Bhattacharjee, P. Rakshit, I. Goswami, A. Konar, A. Nagar, "Multi-robot path-

planning using artificial bee colony optimization algorithm", in Nature and Biologically 

Inspired Computing (NaBIC), pp. 219-224, 2011. 

https://doi.org/10.1109/NaBIC.2011.6089601  

[33] A. Nizar Hadi, J. Ahmed Abdulsaheb. "An Adaptive Multi-Objective Artificial Bee Colony 

Algorithm for Multi-Robot Path Planning", Association of Arab Universities Journal of 

Engineering Sciences, vol. 24, no. 3, pp. 168-189, 2017. 

[34] L. Jun-Hao, C. Hung Lee. "Efficient collision-free path planning of multiple mobile robots 

system using efficient artificial bee colony algorithm”, Advances in Engineering 

Software, vol. 79, pp. 47-56, 2015. https://doi.org/10.1016/j.advengsoft.2014.09.006  

[35] C. H. Chen, S. Y. Jeng, C. J. Lin, "Using an Adaptive Fuzzy Neural Network Based on 

a Multi-Strategy-Based Artificial Bee Colony for Mobile Robot Control”, Mathematics, 

vol. 8, no. 8, p. 1223, 2020. https://doi.org/10.3390/math8081223  

[36] V. Vanásek, “Intelligent and Mobile Robotics Group”, 2009. [online]. Available: 

http://imr.felk.cvut.cz/planning/maps.xml  

[37] Possiblywrong, “Web simulador turtle”, 

https://possiblywrong.wordpress.com/2010/12/04/robot-simulator-and-turtle-graphics/  

[38] Python, “Web Visual Python”, http://vpython.org/  

 

https://doi.org/10.1109/ICIICII.2017.55
https://doi.org/10.1109/ITNEC.2017.8285033
https://doi.org/10.3390/app11083605
https://doi.org/10.1016/j.asoc.2015.01.067
https://doi.org/10.1109/NaBIC.2011.6089601
https://doi.org/10.1016/j.advengsoft.2014.09.006
https://doi.org/10.3390/math8081223
http://imr.felk.cvut.cz/planning/maps.xml
https://possiblywrong.wordpress.com/2010/12/04/robot-simulator-and-turtle-graphics/
http://vpython.org/

