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A B S T R A C T   

Due to global climate change, nuclear power plants are increasingly exposed to the threats of extreme natural 
disasters. In this paper, a resilience engineering approach is applied to tackle all aspects of nuclear safety, 
spanning from design, operation, and maintenance to accident response and recovery, in the case of high-impact 
low-probability events. Petri net models are developed to simulate the losses caused by extreme events, the 
health states of relevant systems, mitigation processes, and the recovery and maintenance processes. The method 
developed is applied to assess the resilience of a single-unit pressurised heavy water reactor under the threat of 
three possible external events. Possible loss of coolant accidents and station blackout accidents caused by the 
events are considered. With the aid of the models developed, both the influence of stochastic deterioration and 
the impact of external events on the resilience of the reactor can be assessed quantitatively. The simulation 
results show that the method can comprehensively describe the resilience of nuclear power plants against various 
disruptive events. It is also found that the stochastic deterioration that does not directly affect the operation of 
nuclear reactors is critical to the resilience of reactors.   

1. Introduction 

Nuclear energy now provides around 10% of the world’s electricity 
from about 440 power reactors [1]. The UK government has set out an 
ambition to construct eight new nuclear reactors to provide 25% of the 
country’s electricity by 2050 [2]. However, the safety of nuclear facil
ities has consistently been a major concern to the public and scientific 
community due to the potentially catastrophic consequences of an ac
cident such as the Fukushima Daiichi nuclear disaster which occurred in 
2011 [3]. Accidents such as this have motivated active research on the 
risk assessment and safety design of nuclear systems [4,5]. This disaster, 
in particular, demonstrated that extreme events beyond the design basis 
can occur, with potentially catastrophic consequences. Hence, when 
considering the safety of Nuclear Power Plants (NPPs), various extreme 
events should be considered. Even if these events are highly improbable, 

they can induce unexpected impacts and vibrations and consecutively 
environmental, health and biological hazards and a heavy economic 
loss. These events are known as high-impact low-probability (HILP) 
events [6,7]. Due to the impact of climate change, the occurrence rates 
of extreme events are expected to keep increasing. In addition, the 
recently developed advanced reactor designs involve increased use of 
automation and digitisation of control systems. While they offer un
doubted advantages in terms of efficiency, they do introduce new and 
often unknown vulnerabilities into the system, especially against HILP 
events. Hence, due to the potential of NPPs to produce a considerable 
proportion of the world’s low-carbon electricity and the catastrophic 
consequences of accidents, the effects of potential HILP events on NPPs 
must be studied in detail. 

Traditional Probabilistic Safety Assessment (PSA) methods based on 
fault tree and event tree analysis have been adopted for decades to 

Abbreviations: BDBA, Beyond design basis accident; CDPP, Combined deterministic and probabilistic procedure; ECIS, Emergency coolant injection system; EDG, 
Emergency diesel generator; GDCS, Gravity-driven cooling system; HILP, High-impact low-probability; IRPN, Immediate response Petri net; MPPN, Mitigation 
process Petri net; NPP, Nuclear power plant; HT, Heat transport; LOCA, Loss of coolant accident; LBLOCA, Large-break loss of coolant accident; PHTS, Primary heat 
transport system; PHWR, Pressurised heavy-water reactor; PN, Petri net; RMPN, Recovery and maintenance Petri net; RSPN, Reactor system Petri net; SHTS, Sec
ondary heat transport system; SBO, Station blackout; SBLOCA, Small-break loss of coolant accident; SCS, Shutdown cooling system; SDG, Standby diesel generator; 
SDS1, Shutoff rods; SDS2, Poison injection system. 

* Corresponding author. 
E-mail address: r.yan@lboro.ac.uk (R. Yan).  

Contents lists available at ScienceDirect 

Reliability Engineering and System Safety 

journal homepage: www.elsevier.com/locate/ress 

https://doi.org/10.1016/j.ress.2022.108979 
Received 8 September 2022; Received in revised form 5 November 2022; Accepted 11 November 2022   

mailto:r.yan@lboro.ac.uk
www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2022.108979
https://doi.org/10.1016/j.ress.2022.108979
https://doi.org/10.1016/j.ress.2022.108979
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2022.108979&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Reliability Engineering and System Safety 230 (2023) 108979

2

ensure the safety of reactor designs [8,9]. These methods are known to 
work well when considering predictable situations for which there is 
historical data. However, due to their nature, such information is not 
available for the HILP events. In contrast to traditional PSA methods, 
resilience engineering approaches mainly focus on HILP events, multiple 
simultaneous faults, and common cause failures due to catastrophic 
damages [10,11]. In recent years, a large number of resilience modelling 
and analysis studies have been carried out in various applications 
[12–15]. However, its application in the nuclear engineering sector is 
still limited [16,17]. For example, Nelson et al. used a resilience phi
losophy to assess the impact of human error on the safety of an NPP [18]. 
Ferrario and Zio adopted Goal Tree Success Tree – Dynamic Master Logic 
Diagram and Monte Carlo simulation combined to assess the physical 
resilience of an NPP to an earthquake [16]. They assessed the NPP’s 
resilience by analysing the time required to restore the desired level of 
functionality of a system after the external event. Labaka et al. proposed 
a qualitative resilience framework to improve the resilience level of 
NPPs [17]. Zeng et al. developed a resilience framework based on the 
Markov reward process to model and analyse an NPP under the threat of 
earthquakes [19]. However, the stochastic deterioration of different 
safety systems in the NPP and their response and activation time were 
not considered in the research. In 2022, Yan and Dunnett proposed a 
novel mathematical resilience modelling framework based on Petri nets 
(PN) to assess the impact of station blackout (SBO) accidents on the 
resilience of an NPP consisting of a typical pressurised heavy water 
reactor (PHWR) [20]. In the study, the stochastic deterioration, damages 
caused by external extreme events, operating regimes, and recovery 
strategies were considered. However, only the safety systems needed 
during SBO accidents were considered and the overall resilience of NPPs 
was not assessed. Hence, this paper aims to adopt and further develop 
the mathematical resilience modelling framework proposed by the au
thors in [20] to achieve reactor system designs, operating regimes and 
recovery strategies which result in a safe and rapid response to accidents 
caused by any extreme HILP event beyond the design basis occurring at 
any point in its lifetime. 

In the paper, two typical nuclear accidents which are the most sig
nificant contributors to the nuclear core melt frequency, i.e. loss of 
coolant accident (LOCA) and SBO accidents, are considered. Although 
the probability of two events happening at the same time is considered 
to be ‘highly unlikely’, they could occur under the impact of extreme 
events [21,22]. These accidents have rarely been studied previously but 
is attracting interest from both academic and industrial communities in 
recent years [23]. For example, Yang et al. used a genetic algorithm to 
optimise the total plant costs subject to the overall plant safety goal 
constraints, which takes into account both LOCA and off-site power 
losses [24]. Sun and Yang assessed a LOCA under a loss of power con
dition for a typical 3-loop NPP [23]. Maio et al. proposed a sensitivity 
analysis method to quantify the uncertainties affecting the safety 
parameter evolution along a nuclear accident scenario, which is an SBO 
followed by a LOCA for a pressurised water reactor [25]. 

In this paper, PNs are adopted to develop the resilience modelling 
framework for NPPs. PNs have been widely used for describing complex 
systems and processes [26,27]. For example, Yan et al. adopted PNs to 
evaluate reliability and maintenance issues in automated guided vehicle 
systems [28,29]. Zhou and Reniers proposed a probabilistic PN-based 
approach to assess the effectiveness of emergency response in prevent
ing fire-induced domino effects [30]. Liu et al. proposed a PN-based 
approach to model the data-flow error detection and correction strat
egy for business processes [31]. In this study, the PN model-based 
framework for resilience analysis is applied to analyse the resilience of 
a typical pressurised heavy-water reactor (PHWR) under the threat of 
three external disruptive events. 

The detailed methodology developed in this study is described 
below. Section 2 presents a state-of-art review of related works. In 
Section 3 the experimental PHWR and its responses to mitigate the 
impact of LOCAs and SBO accidents on the reactor are described. The PN 

modelling method is then briefly reviewed in Section 4 and the PN 
models developed for simulating the NPP are described in Section 5. The 
simulation calculations and discussion of results are conducted in Sec
tion 6. Finally, the paper concludes with a few key conclusions and 
future work in Section 7. 

2. Resilience in the context of nuclear safety engineering 

The term resilience originally described the characteristic of a sub
stance or object to return to its original shape after being bent [15]. Over 
time, as the term and its philosophy were applied to various scientific 
fields, its definition evolved to become more specific for different ap
plications. In terms of engineering applications, although resilience 
engineering is still far from being well established and lacks a univer
sally agreed definition [10,15], its concept has been applied as avoiding, 
withstanding, recovering from and adapting to threats [32,33]. In the 
field of engineering and industrial systems, it usually means the ability 
of a system to respond to disruptive events and focuses on how rapidly 
and efficiently the system can be restored to its pre-event operation state 
[15,34]. For example, Haimes defined resilience as the “ability of a 
system to withstand a major disruption within acceptable degradation 
parameters and to recover with a suitable time and reasonable costs and 
risks”[35]. Pan et al. conducted a resilience analysis to assess the dam
age and recovery of the transportation system[36]. Han et al. used the 
concept of resilience to assess the damage and recovery of urban lifeline 
networks against intentional attacks [37]. Iannacone et al. used the 
resilience philosophy to quantify infrastructure’s ability to recover after 
disruptive events [38]. In the paper, we define resilience as the ability of 
assets, networks and systems to anticipate, absorb, adapt to or rapidly 
recover from a disruptive event. 

It is a common practice to visualise these features as a system resil
ience curve (SRC) [39–41]. A typical example of SRC adapted from [42] 
is given in Fig. 1. In the figure, the system operation is assumed to be 
characterised by a steady-state performance (Phase 1) until the occur
rence of the disruptive event at time t0. This compromises the normal 
operation of the system, triggering the action of available safety systems 
aimed at mitigating and absorbing the impact of the event during Phase 
2. The worst performance of the system, reached at time t1, is expected 
to be restricted within the recoverable region before any recovery ac
tions can be conducted. It is worth noting that the gradient of the curve 
and the value of the performance minimum reached within Phase 2 
depend on many factors such as the magnitude of the event, the avail
able safety systems, the response time of control systems, etc. In Phase 3, 
recovery actions are conducted to restore any critical functionality of the 
system. The duration of this phase depends on the difficulty of identi
fying and diagnosing all failures and conducting the corresponding 

Fig. 1. An example of a system resilience curve after a disruptive event, rep
resenting normal operation (Phase 1), shock and response (Phase 2), recovery 
and maintenance (Phase 3), performance restoration (Phase 4), adaptation from 
threat (Phase 5) [43]. 
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recovery actions. Following this, the system can be fully restored to its 
original status in Phase 4. In addition, as shown in Phase 5, the system is 
expected to learn from the event that occurred in order to improve its 
resilience against future similar events. 

However, the SRC in its current form cannot be applied to the 
resilience assessment for NPPs. This is because the top priority in an NPP 
is always to ensure safety rather than maintaining the normal perfor
mance of the system [44]. In addition, the SRC cannot reflect the un
certainties of disruptive events and their impact (e.g. the damage 
probabilities of components). Therefore, a new method is required to 
address these issues for meeting the unique needs of the resilience 
assessment of NPPs. 

The mathematical resilience modelling framework developed in [20] 
aims to achieve reactor system designs, operating regimes and recovery 
strategies which result in a safe and rapid response for any type of threat 
occurring at any point of its lifetime. The framework consists of three 
stages:  

(1) define the vulnerability of the system’s subsystems to external 
disruptive events; The vulnerability of the system’s subsystems 
will be defined as the probability that the subsystems are 
damaged by different external events.  

(2) simulate the responses of the reactor system to mitigate the 
impact of the events on the system and evaluate the physical 
status of the reactor;  

(3) model the maintenance process and the system’s restoration. 

In the first phase, the subsystems’ failure caused by stochastic 
deterioration will also be considered. The second phase aims to model 
different responses and operations of related safety systems against 
disruptive events and evaluate the resultant physical status of the 
reactor. The final phase considers different kinds of inspections, main
tenance processes, and restart processes that are essential to restore the 
normal operation of the reactor. In this paper, the three metrics defined 
in [20] and a newly defined overall resilience metric are employed to 
characterise resilience metrics. They are assessed respectively by  

(1) resistant capability – the probability that the reactor can maintain 
its performance after an external disruptive event;  

(2) absorption capability – the probability of different operation and 
health states of the reactor core;  

(3) recoverability – the probability of different times that are needed 
to fully recover the reactor performance.  

(4) overall resilience - the probability that a single-unit NPP will be 
able to absorb the impact of a disruptive event without degrading 
performance, or fully restore its performance within an accept
able time period in the event of a shutdown or performance 
degradation, provided the reactor is not significantly damaged or 
melted. This allows economic losses as well as social and envi
ronmental impacts to be kept within acceptable limits. It in
tegrates the resistant, absorption and recovery capabilities 
together to quantitatively describe the resilience of an NPP 
against a disruptive event. 

3. Description of system and accidents considered 

3.1. The PHWR 

An experimental PHWR [45] in a single-unit NPP is described below. 
Its heat transport (HT) system is shown in Fig. 2. The uranium fuel is 
loaded into horizontal pressure tubes placed within a large vessel. With 
the aid of the pumps, the heavy water coolant in the primary heat 
transport system (PHTS) is circulated in a closed-loop through the 
reactor core’s tubes, taking away the heat generated by the fission chain 
reaction in the reactor core. The yellow and blue lines in Fig. 2 represent 
the hot and cooled coolants, respectively. The thermal energy is then 

transferred to the secondary heat transport system (SHTS) to convert 
water into high-pressure steam in the steam generators. The steam 
generated can then drive the turbines connected to the electrical 
generator to generate electricity. The calandria is filled with 
low-pressure heavy water moderator, which slows fast neutrons down to 
make them more effective in the fission chain reaction. 

3.2. Loss of coolant accident (LOCA) 

Coolant escapes from the heat transport system if pipes break, or 
pump seals fail. Once a LOCA is detected, the reactor must be shut down 
immediately. Two independent fast-acting shutdown systems, namely 
shutoff rods (SDS1) and poison injection system (SDS2), will be acti
vated automatically to safely shut down the reactor [46]. However, after 
the reactor is shut down, heat is still generated by the fuel inside the 
reactor due to the decay of radioactive fission products. This heat is 
known as decay heat, which represents a small fraction of the heat 
produced during normal operation. Hence, after the shutdown, the 
emergency coolant injection system (ECIS) will be activated to protect 
the fuel and heat transport system. Its purpose is to set up an alternative 
heat flow path for removing decay heat. The ECIS considered in the 
paper consists of three different subsystems, i.e., high-pressure safety 
injection system (HPSIS), low-pressure safety injection system (LPSIS), 
and recovery system. The HPSIS is activated to limit fuel overheating, 
pressure-tube deformation, and forces early cooling once the pressure in 
the PHTS is reduced to around 5.3 MPa. The time taken to reach this 
pressure varies due to the break size. In this study, LOCA-type accidents 
are divided into three categories, i.e. large-break LOCA (LBLOCA), 
small-break LOCA (SBLOCA), and leak, according to the size of the break 
in the PHTS. 

An LBLOCA involves a break in the heat transport system pressure 
boundary of sufficient magnitude that the reactor regulating system is 
incapable of maintaining reactivity balance. If an LBLOCA occurs, the 
HPSIS can be activated within seconds. The low-pressure safety injection 
system (LPSIS) takes over when the high-pressure water tanks are nearly 
empty. It uses low-pressure (~1 MPa) pumps and draws cold water from 
the dousing tank. This low-pressure injection phase ensures that enough 
water leaked out can be collected in the basement (i.e., sump) of the 
containment building before the next recovery phase starts. In recovery 
injection, the recovery pumps are activated to take water from the 
containment sump. They pump this water through the heat exchangers 
to cool it before returning it to the heat transport system. The pressure in 
the PHTS can be kept low continuously. A new cooling loop is hence 
formed and it is assumed that this loop can operate for an indefinite time 
in the study. This phase is the long-term heat sink. 

An SBLOCA refers to a break where the reactor regulating system is 
capable of preventing a significant power excursion. It may occur due to 
a break in a header or other heat transport parts such as feeders [47]. 
During an SBLOCA, the coolant begins to boil, and the fuel channels 
gradually fill with steam. For SBLOCAs, the heat transport system 
pressure falls slowly because the leak rate is slow. For the injection of the 

Fig. 2. A schematic of a PHWR heat transport system [20].  
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HPSIS to start quickly, heat must be removed from the system. The 
steam valves open automatically to release steam. This quickly reduces 
the heat transport system temperature and pressure so that the injection 
begins. 

For an even smaller PHTS break with a much lower leaking rate, the 
reactor regulating system is able to keep the heat transport system 
pressure normal. This is called a leak. For leaks, since crack growth can 
become unstable and continue, it is essential that the operators detect 
the presence of the leak and take action before the crack reaches its 
critical crack length and then grows in an unstable manner [48]. The 
operators can shut down the reactor manually with the aid of the normal 
control system. Based on the past literature, it is assumed that the time 
available for operator response before the leak propagates to a LOCA is 
100 h [49]. The operators can manage a controlled shutdown, reduce 
the pressure, and bring in reserve heavy water. Hence, in this case, none 
of the special injection safety systems is required. 

3.3. Station blackout (SBO) accident 

The loss of offsite power is usually caused by stochastic deterioration 
of its components or direct damage from external events. It can also be 
caused by a sudden loss of a large amount of electric power generation 
due to the reactor unit tripping [21]. If the reactor does not trip, the 
reactor system is designed to switch to onsite power to maintain normal 
operation after an offsite power failure. The onsite power is generated by 
the reactor itself. However, if onsite power is also unavailable, this is 
known as an SBO accident. Due to the loss of power supply, the PHTS 
will take away the decay heat via natural circulation if there is no leak in 
the PHTS. To maintain natural circulation over time, the steam gener
ators in the SHTS need to be filled with cooling water constantly. The 
water must be delivered to the steam generators by the pump of the 
Shutdown Cooling System (SCS), which requires power to run. 

However, if a LOCA also occurs simultaneously, the LPSIS and re
covery system for establishing an alternative cooling loop of the PHTS 
cannot function as both of them need electric power to operate. In 
addition, the cooling water circulated by the recovery system also needs 
to be cooled by the SHTS. Any one of the three onsite standby diesel 
generators (SDGs) is sufficient to meet this power demand. However, if 
all three SDGs fail, one of three emergency diesel generators (EDGs) 
stored in a safer location must be activated as an alternative to providing 
the required power. The EDGs are designed to be seismically qualified, 
which means that they are unlikely to fail during earthquakes. In 
extreme circumstances, when all the power supplies used for emergency 
cooling are no longer working, the decay heat cannot be removed. This 
is known as a total SBO accident. This type of accident occurred in 2011 
when a 15-meter-high tsunami flooded the Fukushima Daiichi NPP in 
Japan [50]. In this case, water can be injected into the SHTS temporarily 
by a gravity-driven cooling system (GDCS). The GDCS consists of several 
pools, which are located above the reactor in the containment. Once the 
GDCS is activated, the light water in the pools will flow into the steam 
generator under the action of gravity. Such a self-activating system can 
temporarily maintain the circulation of cooling water inside the system, 
thereby providing time for the deployment of emergency mitigation 
equipment. The emergency mitigation equipment considered in this 
NPP consists of three fire trucks that can pump water into the SHTS 
directly. Two of them are required to provide the sufficient cooling 
capability. However, if more than two of them are unavailable, the 
water in the steam generators will evaporate. The heavy water coolant in 
the PHTS will heat up until boiling. Once the primary coolant is 
exhausted, the fuel will begin to be damaged. As a consequence of this, 
the moderator in the calandria will start to boil. Once this happens, fire 
trucks need to inject the water directly into the calandria to prevent 
further fuel damage [51]. Otherwise, the fuel will continue to overheat 
and eventually cause the core to melt. 

4. Brief review of petri net modelling technique 

Since PNs are not only able to capture the features in Fault Tree or 
Event Tree analysis but also the impact of response, maintenance and 
recovery processes for different failures [28,52], they have been 
increasingly adopted in reliability studies. For example, Cho et al. 
applied PNs to evaluate the cyber-physical security and dependability of 
digital control systems in NPPs [53] and Gonçalves et al. adopted the PN 
technique to assess the safety of unmanned aerial vehicles [54]. Wootton 
et al. adopted PNs to assess the risks of stochastic deterioration of nu
clear reactor systems and the effectiveness of scheduled maintenance 
strategy in reducing the probability of early shutdown [55]. Yan and 
Dunnett proposed a PN-based method to assess the resilience of NPPs 
against SBO accidents [20]. 

The PNs model the system of interest graphically using four types of 
symbols that are illustrated in Fig. 3. In the figure, circles represent the 
places, which indicate the conditions or states of the system. In this 
paper, coloured patterns are used to differentiate different types of 
places. The condition place, filled with yellow horizontal lines, means 
that the model will perform predefined actions when the conditions in 
the place are satisfied. The place filled with red vertical lines means that 
the simulation will be ended when a token is placed in it. Rectangles 
represent the transitions, which are actions or events causing the change 
in condition or state. If the time of the transition is zero, the rectangle is 
filled in black, otherwise, it is empty. Arrows in PNs are known as arcs, 
which link places and transitions together. Arcs with a slash and a 
number, n, next to the slash represent a combination of n single arcs, i.e. 
the arc has a weight n. When the weight is one, the slash will be absent 
from the arc for simplicity. A transition is enabled only if the number of 
tokens in every input place is not less than the corresponding weights of 
the arcs to the transition. The dashed arcs mean that the links between 
the connected places and transitions are conditional. The arc with a 
small circle on one end is known as the inhibitor arc, which is able to 
stop a transition from firing even if enabled. Finally, small black-filled 
circles in places represent tokens, which carry the information in PNs. 
Tokens move between the places in a net and the movement of tokens 
enables dynamic properties to be effectively modelled. To ease under
standing, an example of PN is shown in Fig. 4. 

In Fig. 4, the places on the left-hand side of the net contain more 
tokens than the weights of the arcs linking the places to the transition 
‘D1’. Therefore, the transition is enabled. Hence, the transition will fire 
after the time interval t associated with the transition. When a transition 
fires, it takes tokens out of the input places. The number of tokens to be 
taken out is defined by the arc weight linking the place to the transition. 
Simultaneously, tokens will be produced in the output place. The 
number of tokens to be produced is equal to the weight of the arc linking 

Fig. 3. Graphic representations of different PN symbols [20].  
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the transition and the output place. Following this rule, after the tran
sition ‘D1’ is fired, one token is taken out of the top input place and two 
from the lower and one token is placed in the output place, as shown in 
the net on the right side of the figure. 

As described in [20], four types of PNs are developed:  

• Reactor System Petri Net (RSPN) – simulates the health states of all 
the reactor subsystems and safety systems.  

• Immediate Response Petri Net (IRPN) – simulates the immediate 
response to different accidents.  

• Mitigation Process Petri Net (MPPN) - simulates the short-term and 
long-term mitigation processes for maintaining the safety of the 
reactor system. 

• Recovery and Maintenance Petri Net (RMPN) - simulates the recov
ery and maintenance processes of the reactor system. 

These four different types of PNs are connected, as illustrated in 
Fig. 5. The health states of the reactor systems and safety systems are 
simulated in the RSPN. The output of the RSPN, i.e. the conditions that 
activate safety systems and the health states of different systems, will be 
fed into the IRPN and MPPN, both of which simulate the responses to the 
accidents. The maintenance and recovery of the systems are modelled by 
the RMPN. The final damage level of the reactor and its resilience can be 
assessed based on key information obtained from the PN, such as the 
pattern of token markings in the PNs and the time spent in each net. 

5. Petri net development for resilience assessment 

5.1. Reactor System Petri Net (RSPN) 

The RSPN is developed for simulating the health states of the reactor 
subsystems and safety systems as shown in Fig. 6. 

In contrast to the PN model developed in [20], which only simulates 
SBO accidents, two different nuclear accidents, namely SBO accidents 
and LOCAs, and the health states of the related subsystems are modelled. 
The LOCA considered is caused by a break in the primary coolant 
pressure boundary in the PHTS while the failure of offsite power is the 
precursor of the SBO accident. The safety systems and the road access 
condition that are essential to mitigate the impact of these accidents 
have been included in the net. In detail, 12 different kinds of safety 
systems, i.e., SDS1, SDS2, normal control system, onsite power, GDCS, 
SCS, three SDGs, three EDGs, three fire trucks, HPSIS, LPSIS, and re
covery system are considered in the model. The failure of safety systems 
will only be revealed during testing or when demand occurs. In the 
modelling process, only two health states of the systems, namely normal 
(‘UP’) and failed (‘DOWN’), are considered for simplicity. Three states 
for the condition of the access road are considered in the model i.e. 
normal, moderate damage, and major damage. It is assumed that the 
road access conditions are only affected by external events. However, its 
condition has a significant impact on the time required for fire trucks to 
approach the nuclear reactor system. 

All ‘UP’ places in the figure for the subsystems contain a token, which 
represents all the systems in a working state. The timed transitions (‘IS1’ 
to ‘IS9’, ‘SG4’ to ‘SG6’, ‘EG4’ to ‘EG6’, ‘FT4’ to ‘FT6’, and ‘D3’) between 
‘the UP’ and ‘DOWN’ places represent the stochastic deterioration pro
cesses of these systems. In addition, the LOCA scenarios considered in 
the study are classified into three levels, namely leak, SBLOCA, and 
LBLOCA. Depending on the break size, the break flow from the primary 
coolant system is determined, resulting in different depressurisation 
and, hence different core cooling behaviours. The transitions ‘D7’, 
‘D11’, and ‘D14’ represents the natural occurrence of a leak, SBLOCA, 
and LBLOCA respectively. In the study, it is assumed that they follow an 
exponential distribution, the failure rates are 0.0282, 0.0020, and 
0.0004 failures per year, respectively [56]. The times for these transi
tions are computed using a random sampling method [57], of which the 
failure data follows a certain probability distribution with the parame
ters taken from the literature and listed in Table 1. 

In Fig. 6, external events (e.g. earthquakes, tsunamis, etc.) that can 
lead to LOCA or SBO accidents are considered. The time delay ‘D1’ 
represents the time interval to the next external event, which can be 
obtained from local historical data. The transitions ‘IS10’ to ‘IS18’, ‘SG1’ 
to ‘SG3’, ‘EG1’ to ‘EG3’, ‘FT1’ to ‘FT3’, ‘RA1’, ‘D4’, and ‘D12’ represent 
the impact of the external event on the systems. The conditional arcs, 
represented by dashed arrows, connect these transitions to the places 
representing the health states of the subsystems. Whether a token is 
transferred to the ‘DOWN’ state for any subsystem depends on the 
probability that the corresponding system may be damaged by the 
external event. This probability is dependent upon many factors, such as 
the type and magnitude of the external events, the locations of the 
systems, etc. Hence, the probability data adopted in the paper are 
deduced based on experts’ knowledge, assumptions, and reports of past 
accidents. 

If an SBLOCA or an LBLOCA occurs and is detected, the reactor will 
be shut down. A token produced in the place ‘Shut down the reactor’, 
whose predefined condition for this place will embed the PN modelling 
the shutdown process, i.e. IRPN, into the simulation. In the study, it is 
assumed that the leak can only be detected manually. If a leak occurs 
and it is not detected within 100 h, the leak will develop into an SBLOCA 
accident modelled via the transition ‘D9’ [49]. The transition ‘D8’ is the 
time for the operators to detect the leak, which is assumed to follow a 
Weibull distribution with the shape parameter (β) of 1.2 and the scale 
parameter (η) of 86400 s. 

Fig. 4. Example of an enabled transition.  

Fig. 5. Overview of the PNs [20].  
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Fig. 6. The RSPN developed.  
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If there is a token in the ‘Offsite power: DOWN’ place and no leak or 
LOCA has occurred a token will be placed in the condition place ‘Acti
vate onsite power’, which means the system will use onsite power to 
maintain the normal operation of the reactor. It should be noted that the 
transition ‘D2’ is associated with a very short time δ (say 0.0001 s in the 
research) to ensure that the shutdown process can have a higher priority 
than the activation of the onsite power to ensure the safety in emer
gencies where the reactor must be shut down for safety. 

5.2. Response modelling 

The responses of the reactor to an accident can be divided into two 
categories. The first category refers to immediate responses, such as 
shutting down the reactor, lowering the power output, activating 
backup systems, etc. The second category refers to those mitigation re
sponses taken to restore the health state of the reactor to a safe margin 
and maintain the long-term safety of the reactor system after the reactor 
shutdown. Both categories of responses are modelled as described 
below. 

5.2.1. Immediate Response Petri Net (IRPN) 
To demonstrate the methodology, the IRPN for simulating the 

reactor shutdown process is presented in the paper. Once a LOCA or a 
leak is detected manually or automatically, the reactor will be shut 
down. The IRPN shown in Fig. 7 will then be embedded into the model to 
simulate the shutdown process of the reactor. 

For a leak, if the operators detected it successfully within 100 h, a 
token will be placed in the place ‘Detected by operators’. Then, the 
manual safe shutdown process will be initiated after 60 s modelled via 
the transition ‘SD7’. If the normal control system (NCS) is available, the 
reactor will be shut down safely. The time required for the manual 
shutdown process is assumed to be 300 s as modelled via the transition 
‘SD8’. However, if it is not available, the emergency shutdown system 
must be activated immediately to trip the reactor. This process is 
modelled via the transition ‘SD9’ with an assumed time of 30 s. 

LOCA accidents causing the pressure change in the PHTS will be 

detected automatically by the reactor system itself so that the emergency 
shutdown systems will be activated. The shutoff rods (SDS1) will be 
activated first, if this fails, the poison injection system (SDS2) will then 
be activated. The time required for the pressure to reach the activation 
threshold of each shutdown system is simulated via the transitions ‘FD1’ 
and ‘FD2’ in Fig. 7. The times for these two transitions are assumed to be 
2 and 5 s for LBOCA, and 60 and 70 s for SBLOCA respectively. A reactor 
trip results in the loss of a large amount of electric-power generation, 
which can cause voltage instability directly in the offsite transmission- 
system grid. This instability can degrade voltage protection (relays) 
which then disconnects the Class 1E buses from the offsite grid [21,62]. 
This will lead to an SBO accident. As a result, the emergency power 
supplies (e.g. SDGs) must be activated to provide power for the electrical 
safety systems such as the LPSIS. 

In the worst scenario, if both shutdown systems fail, then the reactor 
cannot be shut down successfully, which will cause rapid melt of the 
core. In this case, the operators need to activate the emergency plan to 
manage the crisis before the core melt. The time of the transition ‘SD6’ 
represents the time that the reactor core melts after the moderator is 
exhausted. Since it is assumed that the melted reactor core is not 
recoverable, the simulation will be ended immediately once a token is 
produced in the red terminate place ‘core melt’. This event is not pur
sued further since it is assumed that there are no additional mitigating 
systems available to limit its consequences in the study. 

If the reactor is shut down successfully, i.e. a token is produced in the 
‘Successful shutdown’ place, the MPPN will be embedded into the model 
to simulate the responses for maintaining the long-term cooling to 
remove the decay heat. 

5.2.2. Mitigation Process Petri Net (MPPN) for LOCA only 
If the offsite power is available and the SHTS is able to maintain its 

cooling loop, the only thing to consider is the ECIS that provides the 
cooling capacity needed to restore the PHTS. As described in Section 3, 
the reactor will be cooled under manual control if the reactor was shut 
down due to a leak. The PN for modelling this process is given in Fig. 8. 
With the aid of offsite power, the break can be isolated by the use of 
valves. The time assumed for initiating the action is set to be 300 s, 
which is modelled via the transition ‘CR1’. Then the isolation process 
modelled via the transition ‘CR3’ will take 30 s. However, if the offsite 
power has failed, the operators will start to isolate the break using valves 
manually after 1800 s, which is modelled via the transition ‘CR2’. This 
process, modelled via the transition ‘CR4’, is assumed to take 300 s. The 
time taken for identifying and replacing the leaking tube is assumed to 
be 1 h and this process is modelled via the transition ‘CR5’. The heavy 
water in the PHTS will be restored to its original level by bringing in 
reserve heavy water. The process is modelled via the transition ‘CR6’ 
and the time required for it is assumed to be 300 s. 

If the reactor is shut down due to a LOCA event, the ECIS will be 
activated automatically to mitigate the damage to the reactor core and 
maintain long-term cooling of the PHTS by establishing an alternative 
cooling loop for the long-term heat sink. This cooling process is 
modelled via the PN illustrated in Fig. 9. The activation time of each 
emergency injection system for different sizes of LOCA is derived based 
on the past literature and given in Table 2 [63]. 

The firings of the transitions ‘PC2’, ‘PC3’, and ‘PC4’, indicate the 
corresponding injection systems are not available. The time delays of the 
transitions ‘PC2’, ‘PC3’, and ‘PC4’are set to be 120, 600, and 600 s 
longer than the transitions ‘PC5’, ‘PC6’, and ‘PC7’ respectively. In the 
study, it is assumed that the failure of either HPSIS or LPSIS, or both, will 
result in limited core damage even if the recovery system can be acti
vated to maintain long-term cooling afterwards. The transition ‘PC7’ 
represents the time for activating the recovery system, which is assumed 
to be 30 s. Once the recovery system is activated successfully, long-term 
cooling is then achieved. However, if the recovery system is not avail
able, then operators must use fire trucks to inject the water directly into 
the PHTS. The PN modelling of this process is given in the bottom part of 

Table 1 
Failure and repair data of the reactor subsystems and safety systems [56,58–61].  

System(s) Distribution Parameter(s) Average repair 
time (hour) 

Offsite power Exponential failure rate (λ) = 0.0621 
(failures per year) 

2 

Onsite power Exponential λ = 0.00227916 (failures 
per year) 

6 

GDCS Exponential λ = 0.000227916 (failures 
per year) 

48 (assumed) 

SDS1 Weibull β = 1.3000 
η = 656.89 (years) 

120 

SDS2 Weibull β = 1.5320 
η = 5.7 (years) 

200 

SCS Exponential λ = 0.140256 (failures per 
year) 

184 

Diesel 
generators 

Exponential λ = 0.059 (failures per 
year) 

11.5 

Normal 
control 
system 

Weibull β = 1.284 
η = 73.91 (years) 

120 (assumed) 

HPSIS Exponential λ = 0.0002279116 
(failures per year) 

200 (assumed) 

LPSIS Exponential λ = 0.0024 (failures per 
year) 

10.8 

Recovery 
system 

Exponential λ = 0.0024 (failures per 
year) 

10.8 

Fire trucks Exponential λ = 0.14438(failures per 
year) 

7 

Road access   120 (assumed for 
moderate damage) 
1200 (assumed for 
major damage)  
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Fig. 9. 
In the figure, the health state of each fire truck is imported from the 

RSPN into the model. The transition ‘BC1’ is the time taken for the 
emergency response operators to get the fire trucks ready, which is 
assumed to be 600 s. It is assumed that two fire trucks can provide 
sufficient cooling for the reactor. Hence, the weight of the arc con
necting the ‘Number of FTs available’ place and the ‘BC1’ transition is 2. 
The transition time of ‘BC3’ is the time taken for the operators to drive 
the fire trucks to the water injection site, which is assumed to be 5 min, 
30 min, and 14 h, respectively under the road access condition of no 
damage, moderate damage, and major damage, respectively. Road 
accessibility is modelled in the RSPN. Once the fire trucks arrive at the 
site, the injection can be initiated after 60 s. This process is modelled via 

the transition ‘BC4’. In the study, it is assumed that the pressure in the 
system is low enough for the fire truck injection when the fire truck 
arrives. 

The time of the transition ‘BC7’ taken for reducing the core tem
perature to 55◦C is assumed to be 8 h because the actual injected volume 
to the reactor core region is difficult to predict [64]. The time can be 
easily modified or modelled as an appropriate distribution once more 
relevant data are available. If the transition ‘BC9’ is enabled, a token will 
be produced in the ‘Long-term core cooling’ place immediately because 
it is assumed that the long-term core cooling can be maintained by the 
fire trucks. The token in the ‘Long-term core cooling’ place will embed 
the RMPN into the model. However, if less than two fire trucks are 
available the transition ‘BC2’ will fire and, a token will be produced in 

Fig. 7. IRPN – Shutdown process.  

Fig. 8. MPPN for a leak scenario.  
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the ‘Not enough cooling’ place, which means that there is not enough 
cooling capability to remove decay heat. Based on the past literature 
[65], the time (tD) of the transition ‘BC10’ is assumed be 31,570 s for a 
SBLOCA and 28,850 s for a LBLOCA, respectively. The reactor damage 
can be deduced based on the time (tS) before a token is produced in a 
condition place or a terminate place. The details are given in Table 3. It 
should be noted that these values are currently only based on assump
tions for method demonstration purposes and can be easily updated 
once more accurate data become available. 

5.2.3. Mitigation Process Petri Net (MPPN) for LOCA with loss of offsite 
power 

If the offsite power is not available after the shutdown, the emer
gency power supply must be activated to provide essential power for 
some of the safety systems. In addition, the SHTS must be cooled to 
remove the heat from the PHTS. The activation sequence of different 
safety systems for cooling both loops is illustrated in Fig. 10. The left side 
of the figure illustrates the cooling of the SHTS and the right side is for 
establishing a new cooling loop for the PHTS. It also shows both the 
LPSIS and recovery system require power from diesel generators to 
work. The failure of some critical safety systems, e.g. HPSIS and LPSIS, 
will have a direct impact on the reactor’s state. 

The PN for modelling these processes is given in Fig. 11. The acti
vations of the emergency power supply and the ECIS will be initiated 
simultaneously. The HPSIS, which does not require electrical power, can 
start its operation automatically once the pressure in the PHTS falls to a 
certain threshold if it has not failed. Both the LPSIS and the recovery 
system require electric power to pump water to the PHTS. It is assumed 
that if either one of the SDGs or EDGs can be activated, the reactor core 
will not be damaged. Hence, the times of the transitions ‘PC3’ and ‘PC4’ 
are assumed to be 600 s longer than ‘PC6’ and ‘PC7’ respectively. The 
activation times of the SDGs and EDGs, i.e. Transitions ‘EP1’ and ‘EP2’, 
are assumed to be 120 s and 240 s, respectively. If both the recovery 
system and the emergency power supply are available, The PHTS will 
have a new cooling loop which will be represented by a token produced 
in the place ‘New cooling loop for the PHTS established’. More details 
about the PNs for activating the diesel generators can be found in [20]. 

Fig. 9. MPPN for a LOCA accident.  

Table 2 
The time required for different LOCAs.  

Injection activation Transition LBLOCA SBLOCA 

Reaching the HPSIS activation pressure PC1 30 s 300 s 
Reaching the LPSIS activation pressure PC5 180 s 600 s 
Recovery system activation time PC6 180 s 600 s  

Table 3 
Reactor damage estimation.  

Health state of the reactor Time before core melt (seconds) 

No core damage 21,500 < tD − tS 

Limited core damage 7,800 ≤ tD − tS < 21,550 
Significant core damage 0 ≤ tD − tS < 7,800 
Reactor core melt (i.e. nuclear fuel begins to melt) tD − tS < 0  
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The SHTS can maintain its long-term cooling by the SCS with the 
emergency power supply. The activation time of SCS is assumed to be 30 
s which is modelled by the transition ‘SC1’. If both the recovery system 
and the SCS can be activated successfully, the system can maintain its 
long-term cooling and a token will be produced in the place ‘Long-term 
core cooling’. The health state of the reactor core will then be assessed 
based on the path and time of the flow of tokens in the PN as stated in 
Table 3. If the reactor core does not melt, the RMPN will be embedded 
into the model to model the restoration of the reactor’s power 
generation. 

If either of these two safety systems cannot be activated, the opera
tors must use fire trucks to inject the water into the system. If no coolant 
water leaked out from the PHTS due to a break or the opening of the 
valves, the fire trucks will inject water into the SHTS. Otherwise, it will 
inject water into the PHTS to cool the reactor core directly. If only the 
SHTS cannot be cooled, the GDCS can be activated to provide the 
cooling for up to 2 h which is the total time of the transitions ‘EF1’, 
‘EF3’, and ‘EF4’. This aims to provide sufficient time for the deployment 
of the fire trucks. A detailed description of the PNs for the fire trucks is 
given in Section 5.2.2. However, it should be noted that if the recovery 
system can be activated successfully, the time (tD) of the transition 
‘BC10’ is assumed to be 56,770 s based on the past literature [65]. If the 
GDCS that can provide up to 2 h of cooling is available, the transition 
time is set to be 63,970 s. More details about the PNs for activating the 
GDCS and fire trucks can be found in [20]. Based on Table 3, the reactor 
damage can be deduced following the same logic as described in Section 
5.2.2. Once a token is produced in the place ‘Long-term core cooling’, 
the RMPN will be embedded into the simulation if the reactor core has 
not melted. The top part of the PN simulating the activation of ECIS can 
be replaced by the MPPN developed for a leak scenario if a SBO accident 

and a leak have occurred simultaneously. 

5.3. Recovery and Maintenance Petri Net (RMPN) 

Once the accident is under control or the reactor has been success
fully shut down and maintained long-term cooling, the recovery and 
maintenance activities will be initiated to restore its normal operation as 
soon as possible to minimise the loss of power generation. Hence, the 
RMPN shown in Fig. 12 will be embedded into the model following the 
IRPN or MPPN. Before the RMPN is embedded into the model, it will be 
initiated by gathering information about the failed systems from the 
RSPN and the health status of the reactor core. In contrast to the RMPN 
developed in [20], the RMPN in this paper also takes into account the 
accident assessment and the approval phase of the maintenance plan. 

In the study, it is assumed that there are enough maintenance re
sources to maintain all systems simultaneously. In the figure, the time of 
the transition ‘IN1’ is assigned for inspecting all the systems, investi
gating any areas of concern identified, and a root cause analysis, which 
is assumed to be 3 days. The transition ‘IN2’ represents the time for 
preparing a repair plan following standards and requesting and 
obtaining approval, which is assumed to be 3 days in the research. The 
time of the transition ‘CM1’ is the mean time required to repair the 
offsite power supply. The PNs for simulating the maintenance of other 
systems are similar to the PN used for offsite power and these are rep
resented by the dotted boxes in the figure. The overhaul can only be 
regarded as completed after all systems are maintained, i.e. there is no 
token left in any ‘DOWN’ places in the figure. After all the maintenance 
activities are completed, the necessary clean-up such as removing the 
shutoff rods from the core, purifying the moderator, or even removing 
the radioactive materials from the containment, must be undertaken. 

Fig. 10. Flowchart of emergency cooling processes for LOCA and SBO.  
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Fig. 11. MPPN for LOCA and SBO.  
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The clean-up and reactor repair times in different scenarios are listed in 
Table 4. They will be imported into the transitions ‘IN3’ and ‘IN4’ 
respectively. The time of the transition ‘IN5’ is assigned for the final 
inspection before restarting the reactor, which is assumed to be 3 days. 
The transition ‘IN6’ represents the time needed for the restart process of 
the reactor. Its associated time is 5464 s, which is deduced based on the 
fact that the maximum allowable rate of temperature change of the 
primary coolant is 2.8◦C/min in a CANDU 6 reactor, a Canadian pres
surized heavy-water reactor design [66]. Finally, a token will be pro
duced in the ‘Performance restored’ place, which means the reactor has 
been restarted and resumed its normal operation successfully. Then, the 
health states of all the systems will be fed back to the RSPN. 

6. Resilience assessment 

In the following, the PN models developed in Section 5 will be 
employed to assess the resilience of the single-unit NPP. The PN models 
developed are analysed using Monte Carlo simulation. During the sim
ulations, critical information, such as the duration of any token’s resi
dence in a place, the number of transitions fired, etc. is logged. The 
failure rates and average repair times of all reactor subsystems and 
safety systems listed in Tables 1 to 4 are used as inputs of the model. The 
simulation is based on the following assumptions.  

• The systems are as good as new after maintenance.  
• The safety systems do not fail when in operation. 

The simulation is implemented by the following steps: 
Step 1: Initialise the simulation.  

(1) Identify and characterise the external event.  

(2) Define the time of its first occurrence and the frequency of its 
occurrence.  

(3) For each system considered, define the probability of the external 
event causing damage.  

(4) Initialise the simulation time, i.e. set t = 0. 

Step 2: Define the PN model.  

(1) Define the places, transitions, the arcs connecting them, and the 
conditions for every condition place and terminate place.  

(2) Define the time for the transitions with a fixed duration. Generate 
time for the transitions such as time to failure by using random 
sampling methods from the appropriate distributions as 
described in [57].  

(3) Define the conditional probability of each conditional arc based 
on the probability of causing damage. 

Step 3: Identify and fire the enabled transition with the minimum 
switching time in the whole model. 

Step 4: Check all immediate transitions. If enabled, fire them. 
Step 5: Repeat Step 4 until no more immediate transitions are 

enabled. 
Step 6: Repeat Steps 3 to 5 until a token is produced in one of the 

condition places or terminate places. 
Step 7: Define the current health state of the nuclear reactor. Activate 

the conditions predefined for the condition place or terminate place that 
contains a token. 

Step 8: Check the following two conditions  

(1) Has the time reached the lifetime of the nuclear reactor?  
(2) Has the nuclear reactor core melted? 

If either condition is ‘Yes’, start the next iteration. Otherwise, repeat 
Steps 2 to 8. 

Step 9: Iterate the above simulation until the defined iteration time is 
reached. 

6.1. Simulation results analysis 

The impact of external events on the resilience of the reactor system 
is investigated using the simulation steps outlined above. The associated 
mitigation and recovery strategies for the external events are analysed. 
In the paper, three external events that cause different levels of damage 
to the reactor systems are considered. These events are defined in 
Table 5 where the probabilities of the events causing damage to each 
system are listed. The data in the table is based on past accident reports 

Fig. 12. The PN for simulating the overhaul.  

Table 4 
The cleanup and core repair time required for different scenarios.  

Health state of the reactor Repair time (‘IN3’ 
transition) 

Cleanup (‘IN4’ 
transition) 

No core damage, no LOCA, SDS1 
activated 

0 30 min [63] 

No core damage, no LOCA, SDS2 
activated 

0 1 day (24 h) [63] 

No core damage, Leak 1 day (assumed) 5 days (assumed) 
No core damage, SBLOCA 3 days (assumed) 60 days (assumed) 
No core damage, LBLOCA 14 days (assumed) 60 days (assumed) 
Limited core damage 30 days [67] 60 days [67] 
Significant core damage 365 days [68] 548 days [68] 
Core melting Not repairable [69] 15 years [69]  
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and expert knowledge. Due to the uncertainty of the occurrence of these 
extreme external events and the probabilistic nature of the problem 
considered, the research aims to anticipate the worst possible realisation 
of the uncertainty of component failures in the reactor system under 
external disruptive events. In other words, the settings of all the input 
parameters (i.e. the damage probability values) in the PN models are 
assumed to be the highest possible values that may occur. The data for 
External Event 3 is based on the data recorded from Reactor Unit 1 in the 
Fukushima Daiichi nuclear power plant when it was hit by the tsunami 
in 2011 [5,70]. However, some modifications have also been made to 
adapt to the PHWR considered. It is worth noting that although it has 
previously been considered that LOCAs, especially LBLOCAs, are highly 
unlikely to be caused by external events. It is still possible for them to 
occur as a result of failure of supports of the large components in reactor 
systems (e.g. reactor pressure vessel) due to a severe event, such as an 
earthquake. The data of the other 2 events are based on the lower 
magnitude and severity accidents than that modelled as Event 3 in order 
to examine their impact on the resilience of the NPP. 

The resilience to these external events consists of two parts, miti
gation and recovery. The mitigation part is focused on absorbing the 
different levels of the impact caused by the external events on the 
reactor system. These impacts are classified into 6 levels, as listed in 
Table 6. The recovery part is focused on completely restoring the 
damaged reactor system from varying health states. The recovery state 
of the damaged reactor system is also divided into 6 levels, as shown in 

Table 7. 
The recovery level 4 in Table 7 is different from the operation & 

health state level 4 in Table 6 as the reactor must be restarted with offsite 
power for the recovery part. Once an important event (e.g. the shutdown 
of the reactor, the activation of the HPSIS, etc.) takes place, the relevant 
time and information can be recorded during the simulation. Then, the 
corresponding operation & health level or recovery level of the reactor is 
categorised. The categorised results can then be plotted in a figure 
against their occurrence time. A typical resilience level line of the 
reactor following an accident is given in Fig. 13 as an example. The left 
and right y-axes of the figure represent the operation & health level and 
the recovery level, respectively. In this figure, it is assumed that the 
accident happens at t = 1s. Then, the line changes from Level 5 to Level 
3 within 2 s, indicating that the reactor has been successfully shut down 
by the SDS1. Subsequently, the line remains at Level 3 until around 
520,000 s after which it rises, which means that the long-term cooling 
has been successfully implemented attributed to the successful activa
tion of the ECISs. As long as the long-term cooling can be maintained, 
recovery and maintenance activities can be carried out. From the figure, 
it is found that it then takes around 74 days to fully recovery and clean 
the reactor system. In the figure, this is represented by the line even
tually rising to Level 4. Finally, it took about 3 days for the line to rise to 
Level 5, which means the final inspection is completed, the reactor was 
restarted, and the normal operation of the reactor was resumed. It 
should be noted that the level line may be different for each simulation 
iteration. This is because the failure time of each system is computed 
using a random sampling method in the simulation. 

To ensure the reliability of the simulation results, a convergence 
study of the simulation is conducted. The results are shown in Fig. 14, in 
which the calculated probability of core melt due to External Event 1 
without stochastic deterioration of the subsystems considered converges 
to a stable value after running the simulation iterations 300,000 times. 
Therefore, in the subsequent calculations, the number of iterations is set 
to 500,000 to ensure reliable results. 

The health state levels and the recovery levels of the reactor and their 
occurrence probabilities, the probabilities of the final states of the 
reactor in different scenarios, and the overall resilience of the reactor 
system are calculated and are given in Table 8. The overall resilience 
(Reo) is calculated as the sum of the probability that normal operation 
will continue (PN) and the probability that the reactor system will be 
able to recover its performance within 12 days (Pshort). It should be noted 

Table 5 
Probabilities that the systems are damaged by the three external events.  

System(s) The probability of damage 
External 
Event 1 

External 
Event 2 

External Event 3 

Offsite power 40% 90% 100% (earthquake, tsunami, 
and flood) 

Onsite power 20% 70% 100% (reactor has to be shut 
down due to safety issues after a 
great earthquake) 

GDCS 5% 5% 40% 
SDS1 0.1% 1% 5% 
SDS2 1% 2% 20% 
SCS 20% 40% 70% 
SDGs 30% 80% 100% 
EDGs 5% 40% 92.3% 
Normal 

control 
system 

0.1% 1% 5% 

Leak 1% 2% 20% 
SBLOCA 0.5% 1% 10% 
LBLOCA 0.05% 0.1% 1% 
HPSIS 1% 2% 20% 
LPSIS 20% 40% 70% 
Recovery 

system 
20% 40% 70% 

Fire trucks 10% 20% 20% 
Road access 40% no 

damage; 
50% 
moderate 
damage; 
10% major 
damage 

20% no 
damage; 
40% 
moderate 
damage; 
40% major 
damage 

10% no damage; 
10% moderate damage; 
80% major damage  

Table 6 
Definition of operation and health state level.  

Operation & health state level Definition 

5 Normal operation – Offsite power 
4 Normal operation – Onsite power 
3 Safe shutdown & no damage to the reactor core 
2 Limited damage to the reactor core 
1 Significant damage to the reactor core 
0 Reactor core melt  

Table 7 
Definition of recovery level.  

Recovery level Definition 

5 Normal operation 
4 All systems are repaired and the reactor system is cleaned 
3 Safe shutdown & no damage to the reactor core 
2 Limited damage to the reactor core 
1 Significant damage to the reactor core 
0 Reactor core melt  

Fig. 13. An example of the resilience line due to an LBLOCA.  
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that in these results, stochastic deterioration is neglected. 
The resilience capability of an NPP to external disruptive events is 

characterised by how much the reactor is affected by the external events 
and how soon the reactor can resume normal operation. However, 
quantifying that resilience is a complex task in practice. It cannot be 
simply defined using one criterion. From the results in Table 8, it is 
shown that the NPP displays different resilience capabilities dependent 
upon external events. The resistant capability, i.e. the probability that it 
can continue normal operation, is 90.59%, 35.88%, and 0 for the three 
external events considered. It is 0 for External Event 3 as the reactor has 
to be shut down for safety reasons and hence cannot maintain its normal 
operation after an event of such magnitude. For External Event 2, the 
reactor is most likely to be recovered between 12 days and 116 days if 
the reactor is shut down. From the results shown in the table, it is also 
found that there is a possibility of core melt for all scenarios. 

In Events 1 and 2, the fire trucks are more likely to arrive in time to 
provide cooling if fire trucks are required. This will increase the safety of 
the reactor core to a large extent. Hence, the probability of significant 
core damage due to the late arrival of fire trucks is much lower than that 
of limited core damage. On the other hand, it is found that the proba
bility of core melt is higher than the probability of significant core 
damage. This is because, in the current research, it is assumed that at 
least two fire trucks are required to provide sufficient cooling capacity. 
However, we only considered three fire trucks in the modelling. This 
means that sufficient cooling capacity cannot be always guaranteed 
because two of the three fire trucks may not arrive due to any reason 
after external events happened. This is why in Events 1 and 2, the 
probability values shown for core melt are even greater than the prob
ability values for significant core damage. In practice, this can be 

avoided by increasing the number of fire trucks and using offsite fire 
trucks to ensure the required cooling capacity to prevent core melt. This 
will make core melt rarer than significant core damage. The overall 
resilience of the reactor system is calculated to be 96.06%, 55.39%, and 
1.77% respectively. This means that there are probabilities of 0.9606, 
0.5539, and 0.0177 to keep the total economic losses and social and 
environmental impacts of these three external disruptive events within 
acceptable limits, respectively. 

The impact of stochastic deterioration on the resilience capacity of 
the reactor system has been investigated by assuming External Event 3 
happens after 0, 0.5, 1, 1.5 and 2 years of operation of the reactor. It is 
assumed that no periodic inspection or maintenance has been conducted 
during these times. The absorption capability and the recoverability of 
the reactor system as a function of the external event occurrence time 
are plotted in Figs. 15 and 16 respectively. From Fig. 15, it is found that 
the probability of core melt increases linearly with the time of the 
external event occurrence. The probability of core melt increases from 
16.11% to 38.77%, which is more than doubled. It suggests that the 
unavailability of the safety system especially the fire trucks increased 
drastically. From this, it can be inferred that setting the interval of pe
riodic maintenance of fire trucks to 2 years is too long to ensure the 
availability of the fire trucks when required. In addition, the probabil
ities of no damage, limited core damage, and significant core damage 
decrease linearly with time as the probability of core melt increases. 
From Fig. 16, it is also found that the recoverability of the reactor system 
decreases linearly. In addition, the recovery time (tr) is more likely to be 
within 116 days. However, it is noticed that is unlikely to recover its 
performance within 12 days after the disruptive event. 

The resistant resilience and overall resilience of the reactor system 
over time by assuming the external event happens after 0, 0.5, 1, 1.5 and 
2 years of operation of the reactor, are plotted in Figs. 17 and 18, 
respectively. All three events are investigated and their impact on the 
resilience of the reactor system is compared. Fig. 17 shows that the 
resistant resilience of the reactor remains roughly constant over time for 
all three events. The reason is that if only an SBO accident occurs, the 
probability of the onsite power supply failure due to stochastic deteri
oration is very low within 2 years, and if a LOCA occurs, the reactor must 
be shut down. From Fig. 18, it is found that the overall resilience keeps 
relatively constant until the time of the external event occurring is set to 
be 2 years or higher for Event 1. It dropped by around 1.5% when the 
time increased from 1.5 years to 2 years. This is because the failure 
probability of the safety systems due to stochastic deterioration does not 
increase significantly within 1.5 years and starts to become relatively 
significant after 2 years. For Events 2 and 3, a linear downward trend 
can be observed. The reason is that the reactor is more likely to be shut 
down in these two events. After the shutdown, all the safety systems will 
be inspected and repaired, which usually takes longer than 12 days as 
some of the failed safety systems have long repair times (such as the 
SCS). These systems can fail due to stochastic deterioration. As the 

Fig. 14. Simulation convergence.  

Table 8 
Probabilities of the final status of the reactor in different scenarios.  

Resilience 
metrics 

Final health status of 
the reactor 

Probability 
External 
Event 1 

External 
Event 2 

External 
Event 3 

Resistant 
capability 

Normal operation 
continued (PN)

90.59% 35.88% 0.00% 

Recoverability Recovery within 12 
days (Pshort)

5.47% 19.51% 1.77% 

Recovery longer than 
12 days but shorter 
than 116 days (Pmid)

3.87% 41.16% 57.51% 

Recovery longer than 
116 days but shorter 
than 3.5 years (Plong)

0.01% 0.48% 24.62% 

Absorption 
capability 

Limited core damage 
(PLD)

0.26% 9.48% 38.56% 

Significant core 
damage (PSD)

0.01% 0.48% 24.62% 

Core melt (PCM) 0.06% 2.97% 16.11% 
Overall resilience (Reo) 96.06% 55.39% 1.77%  

Fig. 15. Probability of different core damage levels against time.  
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failure of most safety systems follows an exponential distribution in the 
study, these lines tend to be linear. 

7. Conclusion 

In the study, the PN models are developed for assessing the resilience 
of NPPs against HILP events. Four metrics, i.e. resistant capacity, ab
sorption capacity, recoverability, and overall resilience, are assessed 
quantitatively. From the work reported above, the following conclusions 
can be reached:  

• The resilience of the NPP to HILP events can be successfully assessed 
by using the PN models. The impact of possible simultaneous LOCAs 
and SBO accidents on the resilience of the NPP is evaluated 
successfully.  

• In comparison with traditional probabilistic safety assessment, the 
methodology developed in this paper can not only predict the 
probabilities of core damage in different scenarios, but also the 
probabilities of different core damage levels. In addition, it can be 
used to predict how soon the reactor system can be recovered from 
different kinds of accidents. 

• The stochastic deterioration that does not directly affect the opera
tion of nuclear reactors is critical to the resilience of NPPs. Both 
absorption capability and recoverability decrease linearly with time 
if no periodic inspection or maintenance is conducted, while the 
probability of core melt increases linearly. In addition, the overall 
resilience also decreases linearly over time, especially when the 
reactor is more likely to be shut down due to external events. On the 
other hand, the resistant resilience remains roughly constant when
ever an external disruptive event occurs. 

Despite these important findings from the study, the work can be 
further improved in the future. For example, the times of some transi
tions are either based on past literature or assumptions. It is expected to 
combine the PN models developed with mature thermo-hydraulic codes, 
such as RELAP or CATHENA [65,71], to further improve the reliability 
and accuracy of the simulation results. In addition, the control systems 
can also be modelled using PNs so that human-related events, such as 
cyber-attacks and human error, can be investigated. 
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