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Alzheimer’s disease (AD) is a progressive neurodegenerative disease with insidious and
irreversible onset. The recognition of the disease stage of AD and the administration of
effective interventional treatment are important to slow down and control the progression
of the disease. However, due to the unbalanced distribution of the acquired data volume,
the problem that the features change inconspicuously in different disease stages of
AD, and the scattered and narrow areas of the feature areas (hippocampal region,
medial temporal lobe, etc.), the effective recognition of AD remains a critical unmet
need. Therefore, we first employ class-balancing operation using data expansion and
Synthetic Minority Oversampling Technique (SMOTE) to avoid the AD MRI dataset
being affected by classification imbalance in the training. Subsequently, a recognition
network based on Multi-Phantom Convolution (MPC) and Space Conversion Attention
Mechanism (MPC-STANet) with ResNet50 as the backbone network is proposed for
the recognition of the disease stages of AD. In this study, we propose a Multi-Phantom
Convolution in the way of convolution according to the channel direction and integrate
it with the average pooling layer into two basic blocks of ResNet50: Conv Block and
Identity Block to propose the Multi-Phantom Residual Block (MPRB) including Multi-
Conv Block and Multi-Identity Block to better recognize the scattered and tiny disease
features of Alzheimer’s disease. Meanwhile, the weight coefficients are extracted from
both vertical and horizontal directions using the Space Conversion Attention Mechanism
(SCAM) to better recognize subtle structural changes in the AD MRI images. The
experimental results show that our proposed method achieves an average recognition
accuracy of 96.25%, F1 score of 95%, and mAP of 93%, and the number of parameters
is only 1.69 M more than ResNet50.

Keywords: MPC-STANet, Multi-Phantom Convolution, Space Conversion Attention Mechanism, Synthetic
Minority Over-sampling Technique, Alzheimer’s disease recognition
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INTRODUCTION

Alzheimer’s disease (AD) is an insidious and slowly progressive
neurodegenerative disease, which is mainly found in the elderly
population over 60 years of age and is clinically manifested
as amnesia, loss of mobility, language ability, etc. (Beitz,
2014; Andrieu et al., 2015). Alzheimer’s disease has a long
developmental cycle and is divided into five disease stages: Non-
Demented, Very Mild Demented, Mild Demented, Moderate
Demented, Severe Dementia. Very Mild Demented, where
people with Mild Demented often have memory loss, and in
severe cases, dementia; Mild Dementia, where people show
a lack of memory, personality changes, disorientation, and
difficulty performing daily tasks; Moderate Dementia, where
patients experience significant personality changes and sleep
disturbances, and already require additional care and support,
which can be easily recognized by health care professionals.
Severe Dementia, where patients with this condition already lack
the ability to communicate, have difficulty completing the small
tasks of life and require full-time treatment. Due to the long
stage of Alzheimer’s disease and the lack of obvious changes
in the features of the early disease, it is difficult for patients
themselves to realize this and it is difficult for doctors to make a
correct judgment in time based on some of the small pathological
features of patients in the early stages of the disease (the first
four disease stages of Alzheimer’s disease) (Wu and Swaab, 2005).
When the symptoms of patients are obvious before they are
diagnosed, Alzheimer’s disease has already reached the late stage
(the fifth disease stage: Severe Dementia). At this time, the patient
has the problems of being unable to eat and incontinence and
needs others to take care of their daily life, including eating or
going to the toilet. A large number of nerves in patients have
experienced irreversible death, and the reflex becomes abnormal,
resulting in irreversible cognitive degeneration and dementia,
which cannot achieve good therapeutic effects (Nelson et al.,
2012). The use of deep learning research has little significance
in recognizing severe dementia. Therefore, in this study, we only
carry out diagnosis and recognition for the first four stages of
Alzheimer’s disease, which is of great significance for slowing and
controlling the progress of the disease (Dubois et al., 2016).

The pathogenesis of Alzheimer’s disease is complex, among
which age is an important factor in the cause of this disease, and
genetic factors, external trauma, education level, trace elements,
etc., are also important reasons for the occurrence of this disease
(De la Torre, 1999). The biological features of Alzheimer’s disease
include the formation of senile plaques due to the accumulation
of β-amyloid (Aβ) in the cerebral cortex and the hippocampal
region, neuronal cell reduction, and neurofibrillary tangles within
neuronal cells, etc. (Zhao and Zhao, 2013). The brain structure
of Alzheimer’s disease patients is mainly characterized by brain
atrophy, narrowing of the gyrus, enlargement of the sulcal
gaps, and the degree of atrophy in the hippocampus region
and medial temporal lobe atrophy compared to normal people.
The observation of the brain structure of Alzheimer’s patients
is mainly through the Alzheimer’s MRI medical images, which
capture information about the relevant disease pattern of the
patients through neuroimaging of the white matter area of

the brain and assist doctors in judging the disease stage of
Alzheimer’s disease, while the Alzheimer’s MRI medical images
have the problems of difficulty in acquiring and the extremely
unbalanced distribution of the acquired data volume (Chen and
Glover, 2015). The manual recognition process of Alzheimer’s
disease is very complex. First, doctors need to ask the patient
about recent living environment through psychological scales to
assess whether his/her cognitive functions have deteriorated, then
employ nuclear magnetic imaging to check whether the imaging
structures of the brain of the patient have started to atrophy
and change, and finally use electroencephalogram and long-term
monitoring of the heartbeat to determine whether the patient is
showing changes in cognitive functions and brain signals. Such
a testing process relies on the professional knowledge of the
physicians and clinical experience, but manual analysis of the
medical image is time-consuming and laborious, and there is a
risk of misdiagnosis. Therefore, if we can employ a computer
to assist in diagnosis, we can improve the efficiency of doctors
to a certain extent and also reduce the misdiagnosis and leakage
caused by humans (Frisoni et al., 2010; Royce et al., 2019; Lu et al.,
2020).

The stage recognition of Alzheimer’s disease has been a
popular research direction in the field of computer vision-
aided diagnosis, and numerous studies have combined traditional
machine learning methods to recognize this disease and
achieved good recognition results (Negin et al., 2018; Wang
et al., 2019). For example, Magnin et al. (2009). proposed
and evaluated a novel automated method of whole-brain
anatomical MRI based on support vector machine (SVM)
classification to distinguish Alzheimer’s disease (AD) patients
from elderly control subjects, with a mean correct classification
of 94.5% (mean specificity 96.6%; mean sensitivity 91.5%)
for AD and control subjects. Lebedev et al. (2014) used a
random forest classifier trained based on MRI measures of
different structures for the diagnosis of Alzheimer’s disease and
achieve the best AD/HC sensitivity/specificity (88.6%/92.0%)
results after combining with cortical thickness and volume
measurements. However, although the above research methods
were successfully applied to Alzheimer’s disease classification
and diagnosis, the extraction of effective features in Alzheimer’s
disease diagnosis often plays a more important role than the
construction of classifiers, which requires manual selection
of regions of interest before classification and a series of
manual feature extraction steps with a priori knowledge,
which is a tedious extraction process and has human factors
interfering (Li et al., 2012; Sabuncu and Konukoglu, 2015).
With the development of computer platforms, convolutional
neural networks (CNNs) have been widely recognized for their
good image recognition, and a large number of CNN-based
Alzheimer’s classification models have emerged. For example,
Sarraf and Tofighi (2016) used convolutional neural networks
to successfully classify functional MRI data from Alzheimer’s
brains with normal healthy brains, where the accuracy of the
test data reach 96.85%. Ieracitano et al., 2019 proposed a data-
driven approach to distinguish subjects with AD, MCI, and HC
by acquiring electroencephalogram recordings and transforming
the correlation spectra of 19 channels of electroencephalogram
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traces into 2D grayscale images, and then classifying binary and
multiple classes in 2D images using CNN models with 89.8 and
83.3% accuracy, respectively.

The above examples all show the application results of
the field of deep learning in Alzheimer’s disease well while
demonstrating the better adaptability and data discrimination
of the convolutional neural networks (CNN) within the field of
Alzheimer’s disease recognition. However, due to the complex
structure of the human brain during Alzheimer’s disease and
the difficulty of detecting subtle structural changes in the brain
during mild disease, and the fact that the aging process of
normal people is accompanied by shrinkage of brain structures,
Alzheimer’s patients also suffer from shrinkage of brain areas,
which poses many difficulties for research (Young et al., 2013;
Lockhart and DeCarli, 2014). Only the correct determination
of the changes in brain structure can effectively diagnose the
different stages of Alzheimer’s disease. Therefore, the main
problems of this study are as follows: (1) the Alzheimer’s MRI
medical images acquired during the first four disease stages of
Alzheimer’s disease have the problem of unbalanced distribution
in terms of data volume, which can affect the training effect of
the model and make the classification results biased toward the
class with more MRI images. (2) The brain structures in different
disease stages of Alzheimer’s disease produce subtle changes
on MRI images, and the regions of interest (e.g., sulcal gaps,
gyrus, hippocampal region, medial temporal lobe) account for a
small proportion of the whole MRI image, complicating feature
extraction. (3) The lack of distinctive features of Alzheimer’s
disease makes convolutional neural networks often accompanied
by an increase in the number of convolutional layers to improve
the ability of the neural network for feature extraction. However,
when the number of layers of the neural network exceeds a certain
threshold, there will be problems such as gradient disappearance
and gradient explosion, making the neural network difficult
to be trained, and the long-time training is not conducive to
Alzheimer’s disease prediction (Guo et al., 2017; Wu et al., 2018;
Hu et al., 2021).

To deal with the problem of classification imbalance in the
dataset, the most basic approach is either to directly copy the
minority classes and add them to the sample set or to employ a
certain percentage of the majority classes as the training set to
obtain a relatively balanced dataset (López et al., 2013; Maxwell
et al., 2018). However, this approach tends to lead to the problem
of model overfitting, which makes the information learned by the
model not generalized enough. To address this problem, Chawla
et al. (2002) proposed the Synthetic Minority Oversampling
Technique (SMOTE), which uses the similarity between the
classes with fewer samples in the feature space to build synthetic
new samples and add them to the minority classes. The SMOTE is
a good solution to the problem that the information obtained by
random oversampling is too special and not generalized enough.
Therefore, we combine SMOTE with data expansion (flipping,
adding random Gaussian noise, and contrast adjustment) for
Alzheimer’s disease to perform class-balancing preprocessing for
better training results.

Given the little variation in the Alzheimer’s MRI images in
different disease stages and the small proportion of regions of

interest, Toğaçar et al. (2021) used DeepDream, fuzzy color image
enhancement, and super columnar techniques to process the
Alzheimer’s MRI dataset, input the processed MRI dataset into
VGG-16 for feature extraction, and finally used Support Vector
Machine (SVM) as a classifier. The recognition accuracy of using
this method was 100% for MD and ND as well as 99.94% for
VMD and MOD. Using the data enhancement algorithm on the
Alzheimer’s MRI dataset can enhance the features of each MRI
image and suppress useless background information so that the
deep learning model can better extract these features and achieve
a high recognition rate. However, the use of data enhancement
algorithms often has the problems of a cumbersome operation
process and poor generalization ability, and the input of the deep
learning model often requires a large amount of image data,
which takes a long time to complete the feature enhancement
operation. Thus, we improve the ability of the network to
extract features by redesigning the structure of the deep neural
network to avoid using more feature enhancement algorithms
for the dataset. Therefore, we propose a recognition network
of Alzheimer’s disease based on Multi-Phantom Convolution
and Space Conversion Attention Mechanism (MPC-STANet)
with the residual network ResNet50 as the backbone network
(He et al., 2016). Compared with VGG-16, ResNet50 has lower
complexity and required parameters, and faster convergence
speed. It has 50 training layers, which can extract more subtle
features from Alzheimer’s MRI images, with better classification
accuracy. Moreover, the unique residual connection of ResNet50
breaks the symmetry of the neural network, improves the
utilization of neurons in each layer, and multiple branches
ensure that even if some layers degenerate, it will not affect
the overall performance, which makes it widely used in the
field of image recognition. Since the feature performance of the
Alzheimer’s MRI medical image is very different from that of
an ordinary image, we structurally designed the convolutional
layer of ResNet50 to better suit Alzheimer’s disease: (1) To
increase the feature extraction of small and scattered regions in
the Alzheimer’s MRI images, we employ dilated convolution (Yu
and Koltun, 2015) instead of the original 7 × 7 convolution
layer in STAGE1 to obtain a larger perceptual field without
changing the number of parameters. (2) To extract more subtle
pathological features of structures, we employ Multi-Phantom
Convolution and the Space Conversion Attention Mechanism in
the residual blocks to extract richer characterization information
from patients’ MRI images. Meanwhile, to avoid the redundancy
of useless information, we add an average pooling layer to
integrate space information in the shortcut branch of the residual
block to improve the detection speed along with reducing
the computation.

The contributions of this study are as follows.

(1) To solve the problem of classification imbalance in the
Alzheimer’s disease dataset, we increased the data volume in
the minority classes using data expansion methods such as
flipping, adding noise, and contrast adjustment (as depicted
in Figure 1), and performed class-balancing operation
using SMOTE (the results are displayed in Table 1).
SMOTE performs a class-balancing operation by artificially
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FIGURE 1 | Principles of Alzheimer’s disease recognition.

TABLE 1 | The number of the four disease stages and their proportions.

Disease type Original
number

Percentage Expanded
number

Percentage

Non-Demented 3200 50% 3200 25%

Very Mild Demented 2240 35% 3200 25%

Mild Demented 896 14% 3200 25%

Moderate Demented 64 1% 3200 25%

TABLE 2 | The recognition accuracy of the original dataset and the preprocessed
dataset in the three models.

Network model Original data set Preprocessed data set

ResNet50 76.9% 84.6%

ResNet50-SPAM 81.2% 89.4%

MPC-STANet 85.5% 96.2%

TABLE 3 | Comparison of accuracy and number of parameters of four networks.

Network model Parameters Accuracy

ResNet50 25.56M 84.6%

ResNet50-DC 25.56M 86.7%

MPC-STANet 27.25M 96.2%

TABLE 4 | Comparison of accuracy and number of parameters of three networks.

Network model Parameters Accuracy

ResNet50 25.56M 84.6%

ResNet50-MPRB 21.10M 89.5%

MPC-STANet 27.25M 96.2%

synthesizing new samples from the minority classes and
adding them to the dataset for classification balance, which
well solves the problem of model overfitting, as displayed

TABLE 5 | The influence of attention mechanisms on network accuracy.

Network model Accuracy

ResNet50 84.6%

ResNet50-SE 85.9%

ResNet50-CMBA 87.8%

ResNet50- SCAM 90.1%

MPC-STANet 96.2%

TABLE 6 | Performance evaluations of each disease stages.

Network model Recall F1-score Precision

Non-Demented 97% 96% 97%

Very Mild Demented 95% 94% 95%

Mild Demented 97% 97% 98%

Moderate Demented 95% 93% 94%

in Table 2. In the MPC-STANet model, the recognition
accuracy of the class-balancing processed dataset is
improved by 10.7% compared to the unprocessed dataset.

(2) To extract the scattered and subtle pathological features
of Alzheimer’s disease, the MPC-STANet is proposed
in this study. (a) We employ Dilated Convolution in
STAGE 1 of the network to extract features from scattered
pathological regions of Alzheimer’s disease to obtain a
larger range of feature information. As displayed in
Table 3, the recognition accuracy of ResNet50 after using
Dilated Convolution is improved by 2.1% compared with
ResNet50. (b) To extract more subtle pathological features,
we proposed Multi-Phantom Residual Block (including
Multi-Conv Block and Multi-Identity Block) based on
Multi-Phantom Convolution, average pooling layer, and
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FIGURE 2 | Confusion matrix of the MPC-STANet.

Conv Block and Identity Block of ResNet50 to extract
richer characterization information in the Alzheimer’s MRI
images, and the recognition accuracy is improved by
4.9% compared to ResNet50 and the model parameters
decreased by 4.46M compared to ResNet50 (as displayed
in Table 4). (c) Space Conversion Attention Mechanism is
inserted between Multi-Phantom Convolution and 1 × 1
convolution, aiming to solve the problem of difficult
recognition due to small differences between disease stages.
Space Conversion Attention Mechanism preserves more
important feature information (e.g., hippocampal region,
brain gyrus, sulcal gaps, etc.) and discards redundant
information (e.g., background) by assigning different
weights in vertical and horizontal directions to enhance the
extraction of tiny features, and the recognition accuracy is
improved by 5.5% compared to ResNet50 (as displayed in
Table 5).

(3) The recognition accuracy of the recognition methods
proposed in this study for the first four stages of Alzheimer’s
disease in non-demented, very mild demented, Mild
Demented and Moderate Demented are 97, 95, 98, and 94%,
respectively. Other performance evaluations are shown in
Table 6 and the confusion matrix of the MPC-STANet is
shown in Figure 2. In experiment 3.5, we tested the MPC-
STANet and other networks in the same environment.
The experimental results show that the Recall, F1-score,
Precision, and mAP of the MPC-STANet proposed are 96,
95, 96, and 93%, respectively, which are higher than the
other networks. The overall performance of the model is
good, and the performance evaluations of other networks
are shown in Table 7.

Therefore, we propose a method in this study for
recognizing disease stages of Alzheimer’s disease that combine
class-balancing preprocessing and the MPC-STANet. The
recognition principle is depicted in Figure 3. First, the
minority classes are enhanced by flipping, adding noise
and contrast adjustment, and then the class-balancing
operation is achieved by SMOTE. Finally, the processed
MRI dataset is input into the MPC-STANet for training

TABLE 7 | Evaluation indexes of the networks.

Network model Recall F1-score Precision mAP

ResNet50, He et al., 2016 83% 82% 85% 81%

VGG16, Toğaçar et al., 2021 80% 76% 77% 75%

U-Net, Hazarika et al., 2022 79% 75% 77% 73%

LeNet-5, Li et al., 2015 83% 82% 80% 75%

ADVIAN, Wang et al., 2019 84% 82% 85% 81%

MobileNet-SVM, Fei et al., 2022 90% 89% 89% 84%

DFNN, Huang et al., 2020 85% 82% 84% 81%

ResNet-STN, Sun et al., 2021 88% 89% 86% 83%

TReC, Xiao et al., 2021 91% 90% 92% 88%

Inception-v4, Bae et al., 2020 87% 90% 88% 85%

EfficientNetB0, Savaş, 2022 92% 94% 94% 92%

AlexNet, Hanmugam et al., 2022 77% 73% 75% 70%

GoogleNet, Hanmugam et al., 2022 84% 87% 86% 81%

MPC-STANet 96% 95% 96% 93%

and testing. To better extract the pathological features of
Alzheimer’s disease, Dilated Convolution, Multi-Phantom
Residual Block (including Multi-Conv Block and Multi-
Identity Block), and Space Conversion Attention Mechanism
are incorporated in the MPC-STANet to achieve better
recognition accuracy.

MATERIALS AND METHODS

Data Acquisition
Dataset is an important part of the field of pattern recognition
and data mining. Since the main motivation of this study is
to design a deep learning framework for Alzheimer’s disease
classification, the adopted Alzheimer’s MRI dataset was created
by researcher Sarvesh Dubey (Kaggle) and was collected
from multiple websites, hospitals, and public repositories.
The dataset consists of 896 MRI Mild Dementia images, 64
MRI Moderate Dementia images, 3,200 MRI Non-Dementia
images, and 2,240 MRI Very Mild Dementia images, and
the distribution of the number of MRI images in different
stages of Alzheimer’s diseases is displayed in Table 8. All MRI
images were preprocessed and resized to 128 × 128 pixels and
saved in JPG format, and some of the images are depicted in
Figure 1.

Class-Balancing Preprocessing Based
on Data Expansion and SMOTE
As displayed in Table 8, the Alzheimer’s MRI dataset acquired
has the problem of unbalanced distribution in terms of data
volume, which will lead to the imbalanced learning effect of
the neural network model, and the problems of overfitting
and under-fitting exist simultaneously. To address this problem,
we can expand the dataset with the help of data expansion
methods and Synthetic Minority Oversampling Technique
(SMOTE) technique to balance the data volume of the first
four disease stages to improve the accuracy of the neural
network model.
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FIGURE 3 | Principles of Alzheimer’s disease recognition.

TABLE 8 | Number distribution of Alzheimer’s disease dataset.

Disease type Original number Percentage

Non-Demented (ND) 3200 50%

Very Mild Demented (VMD) 2240 35%

Mild Demented (MD) 896 14%

Moderate Demented (MOD) 64 1%

Data Expansion
Training the neural network model with more datasets allows
it to learn more effective feature points to improve the
recognition accuracy of the model, prevent overfitting, etc.
We use MATLAB 2020b to flip the image, add random
Gaussian noise, contrast adjustment, and other data expansion
methods to expand the minority classes to improve the
training effect of the neural network model. Also, the data
expansion method is an important way to balance the data
volume of different classes and the result images are shown in
Figure 4.

Synthetic Minority Oversampling Technique
Table 8 displays the number of images in the dataset for
the first four disease stages of Alzheimer’s disease, which
indicates that the classes of the dataset are unbalanced.
If a class-unbalanced dataset is used for prediction, the
predictions tend to yield conclusions that are also biased,
that is, the classification results will be biased toward the
majority class. To address this problem, we apply synthetic
minority oversampling technique (SMOTE) to this dataset,
which addresses the classification imbalance in the dataset
by randomly replicating the classes with fewer samples in
the dataset to match the classes with more samples. We
oversample the classes with fewer samples using the seeds
of 42 random number generators, and Table 1 displays the
distribution of the Alzheimer’s disease dataset after using the data
expansion and SMOTE.

Suppose the number of the minority classes samples are Tand
set a sampling ratio to determine the magnification N according
to the sample imbalance ratio so that the sample can be expanded
by N times after sampling. The algorithm steps of the SMOTE are
as follows:

Step1: Consider a sample x ∈ {1, ..., T} in the minority
class, calculate its distance to all samples in the minority
classes based on the Euclidean distance, and select K the
nearest neighbors.

|x| =
√

x2
1 + x2

2 + x2
3 + ...+ x2

n (1)

Step2: Randomly select a sample B from the K nearest
neighbors and combine it with the original sample to
synthesize a new sample according to the following
formula.

xnew = a+ rand(0, 1)×
∣∣a− b

∣∣ (2)

Step3: Repeat Step 2 and Step 3 N times.

Step4: Repeat the above steps for T samples of the minority
classes.

ResNet50 Backbone
ResNet50 constructs the deep network model as a shallow
network model and an additional layer of self-mapping connects
the trained shallow structure with the additional layer of self-
mapping through residual units, transmits the input across layers
through a shortcut, and then adds the output after convolution
to achieve the effect of fully training the underlying network.
ResNet50 has 6 STAGE (STAGE1∼ STAGE6), containing 49
convolutional layers and 1 fully connected layer. Among them,
the 49 convolutional layers consist of two basic blocks. As shown
in Figure 5, one is Identity Block, which has the same dimension
of input and output, so it can be concatenated with more than
one for deepening the network layers; the other basic block is
Conv Block, which has an inconsistent dimension of input and
output, so it cannot be concatenated consecutively and its role is
to change the dimension of the feature vector.

The actual Alzheimer’s disease needs to be judged by looking at
the pathological features such as the degree of enlargement of the
sulcal gaps, and the degree of atrophy in the hippocampus region
and medial temporal lobe. However, due to the small variation in
MRI image features during the four disease stages: mild dementia
(MID), moderate dementia (MOD), non-dementia (ND), and
very mild dementia (VMD), more subtle pathological features
need to be extracted to better discriminate. To extract more subtle
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FIGURE 4 | MRI image processed by augmentation methods.

FIGURE 5 | ResNet residual block.

pathological features, this study employs ResNet50, the winner of
the ImageNet large-scale visual recognition competition in 2015,
as the basic network. However, the properties of the Alzheimer’s
MRI images are very different from those of ordinary images,
and designing according to the pathological characteristics of
Alzheimer’s disease can effectively improve the accuracy of the
model. Therefore, we propose a recognition network of
Alzheimer’s disease based on Multi-Phantom Convolution and
Space Conversion Attention Mechanism (MPC-STANet), which
is improved based on ResNet50.

Recognition Network of Alzheimer’s
Disease Based on Multi-Phantom
Convolution and Space Conversion
Attention Mechanism
The MPC-STANet is upgraded based on ResNet50, and the
network structure is depicted in Figure 6.

The feature extraction network of ResNet50 consists of 7 ×7
convolution and 3 ×3 maximum pooling layer (STAGE1),
convolutional residual extraction network composed of Conv

Block and Identity Block (STAGE2˜STAGE5), average pooling
layer, and fully connected layer (STAGE6). The MPC-STANet
proposed in this study is based on ResNet50, using the Dilated
Convolution (DC) instead of 7 ×7 convolution of STAGE1;
changing the two basic blocks of Conv Block and Identity
Block using Multi-Parallel Convolution (MPC) and averaging
pooling layer, proposing Multi-Conv Block and Multi-Identity
Block; adding the Space Conversion Attention Mechanism
(SCAM) between the convolution blocks. This study improves
the network structure, and more details will be provided in the
following chapters.

Dilated Convolution
The pathological feature points of different disease stages
of Alzheimer’s disease are obscure and scattered. To classify
disease stages based on the Alzheimer’s MRI medical images
more accurately, more effective subtle pathological features
need to be extracted. ResNet50 uses a 7 × 7 convolution
with a large perceptual field in STAGE1, which is sufficient
for extracting features from common and ordinary images
in the ImageNet database, but it is difficult to adequately
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FIGURE 6 | The t overall architecture of the MPC-STANe.

consider the subtle pathological features of MRI. Therefore, to
reduce the information loss during the extraction process
and improve the recognition ability of the model, we
employ Dilated Convolution (DC) to replace the 7 × 7
convolution in STAGE1. Dilated Convolution increases the
perceptual field while maintaining the size of the feature
map unchanged and does not cause problems such as
information loss.

Dilated Convolution expands the perceptual field size of
ordinary convolution by setting different dilation rates (r).
Among them, r determines the interval size of the holes injected
in the convolution. If r is too small, the range of the perceptual
field is limited, and if r is too large, the features in the perceptual
field lose some relevance. Dilated Convolution can be regarded
as inserting a zero value of r-1 into the convolution kernel during
ordinary convolution. For ordinary convolution, the convolution
kernel of 3 × 3 is calculated on the feature map, and the
perceptual field of the new feature point is three, as depicted
in Figure 7A. For the dilation convolution with dilation rate
r = 2, one zero value is inserted between the 3 × 3 convolution
kernels to obtain its perceptual field of five, as depicted in
Figure 7B, which results in the equivalent of two ordinary 3 × 3
convolutions with only one computation.

Assuming that Dilated Convolution kernel is k×k, and the
dilated rate is r, then the actual convolution kernel is:

K = k+ (k− 1)× (r − 1) (3)

After Dilated Convolution process, the relationship between
the size of the input and output feature maps is as follows:

W2 =
W1 + 2p− r × (k− 1)− 1

s
+ 1 (4)

Among them, W1 and W2 represent the size of the input
and output feature maps, respectively, s and p represent the
step-size and the patch.

Multi-Conv Block and Multi-Identity Block Based on
Multi-Phantom Convolution
ResNet50 residual block mainly consists of a linear branch (one
1 × 1 convolution layer and two 3 × 3 convolution layers) and a
shortcut branch with 1 × 1 convolution, where the linear branch
is used to extract feature information in the feature map and
generate the output feature matrix; the shortcut branch uses 1× 1
convolution to increase the number of channels and match the
number of channels of the linear branch, which is used to avoid
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FIGURE 7 | Perceptual field of ordinary convolution and extended convolution.

the problems of gradient disappearance and gradient explosion
caused by network depth. Finally, the output feature matrixes
of the two branches are summed to obtain the feature map of
residual block output, and then the feature map is put into the
Relu activation function to enhance the non-linearization of the
model. However, due to the variety of structural changes in MRI
images in different stages of Alzheimer’s disease such as the
changes in the cerebral cortex, especially in the temporal and
parietal regions, the features that appear tend to show only subtle
differences; whereas the structure of the hippocampal region of
suffering from Alzheimer’s disease is significantly changed in
different stages.

To address this problem, we propose the Multi-Phantom
Convolution (MPC) by borrowing the convolution by channel
direction in the Inception network (Szegedy et al., 2016), and
incorporating MPC into the residual block to propose Multi-
Phantom Residual Block (MPRB), which has two blocks: Multi-
Conv Block and Multi-Identity Block, to extract the features of
more abundant characterization information in patients’ MRI.
MPRB divides the feature matrix map output from 1 × 1
convolution into 4 parts of feature maps equally according to the
channel direction, and then the feature maps of the different parts
are extracted by different convolution and pooling operations
for multi-scale feature extraction, and finally concatenated
according to the channel direction. MPRB can extract more
subtle pathological features; meanwhile, the MPRB reduces the
training parameters and speeds up the convergence of the model
when dividing the input feature maps and parallel convolution
operations. In addition, it should be noted that the pathological
features account for small regions of the whole MRI image and
the proportion of information to be acquired is small. o avoid
the redundancy of useless information, we add a 2 × 2 average
pooling layer to integrate spatial information in the shortcut
branch of MPRB, and the structure of MPRB is depicted in
Figure 8. The average pooling layer has no parameters and does

not change the global number of parameters while preventing
overfitting at this layer.

The specific implementation process of Multi-Phantom
Residual Block:

Step1: The input feature matrix is successively passed
through the 1 × 1 convolution layer, batch norm layer, and
Relu activation function, and takes the result as the input
of step 2; the input feature matrix is successively passed
through the average pool layer, 1× 1 convolution layer and
batch norm layer as the output of the shortcut branch.

Step2: The feature matrix of the linear branch is divided into
four parts according to the channel direction.

Step3: The feature map I: passing through the 1 × 1
convolution layer; the feature map II: passing through the
1 × 1 convolution layer and 3 × 3 convolution layer
successively; the feature map III: passing through the 1× 1
convolution layer and 5× 5 convolution layer successively;
the feature map IV: passing through the maximum pool
layer and 1× 1 convolution layer successively.

Step4: The four feature maps are concatenated according to
the channel direction and passed through the batch norm
layer and Relu activate function.

Step5: The feature map output from step 4 with the feature
map output through the Space Conversion Attention
Mechanism (SCAM) are summed by pixels, and the sum
result successively passes through the 1 × 1 convolution
layer and batch norm layer.

Step6: Sum the linear branch (the output of step 5) with
the shortcut branch, and pass through the Relu activate
function.
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FIGURE 8 | The structure of multi-phantom residual block.

Space Conversion Attention Mechanism
The visual attention mechanism is a brain signal processing
mechanism that is unique to human vision. By quickly scanning
the global image, human vision obtains the target region to be
focused on, which is generally called the focus of attention, and
then devotes more attention resources to this region to obtain
more detailed information about the target to be focused on,
while suppressing other useless information. The core goal of
adding an attention mechanism to the network is essentially
similar to the human selective visual attention mechanism,
which also selects the more critical information for the current
task goal from a multitude of information and ignores other
redundant information to successfully improve the expressive
power of the network.

The more popular attention mechanisms include SENet (Hu
et al., 2018), CBAM (Woo et al., 2018), and Non-local Neural
Networks (Wang et al., 2018), and many pieces of research
combined with the recognition of attention mechanisms have
achieved good recognition results, for example, Huang et al.
(2020). proposed a brain tumor diagnosis system based on
a differential feature neural network (DFNN), which mainly
consists of an innovative differential feature map (DFM) block
and a squeeze-and-excitation (SE) block. The experimental
results indicated that the average accuracy of DFNN in classifying
the brain as abnormal and normal on two databases was 99.2
and 98%, respectively. Xiao et al. (2021) proposed an early
diagnosis method for pathological brain called the TReC, which
imported the CBAM convolutional channel attention mechanism
into the pre-trained ResNet residual block and replaced the fully
connected layer with a new FC layer. The experimental results
indicated an accuracy of 100% in the two-class classification
task and an accuracy of 97.44% in the multi-class classification
task. Sun et al. (2021) proposed a recognition method of
the residual network (ResNet) combining space transformation
network (STN) and non-local attention mechanism (non-local
attention) to consider the long-range correlation in feature space,

and successfully applied the method to the early diagnosis of
Alzheimer’s disease, with the recognition accuracy of up to 97.1%,
macroscopic accuracy of up to 95.5%, macroscopic recall of up to
95.3%, and macroscopic F1 value of up to 95.4%.

The space dimension of the image refers to the height (H) and
width (W) of the image, and C represents the feature channel
of the image. The space attention mechanism pays attention
to the importance of the space location features of the image,
generating space attention coefficients for the output feature
maps, and enhancing or suppressing different space location
features according to the feature weights. The traditional space
attention mechanism tends to focus on weight assignment in only
one direction, which inevitably leads to the loss of important
information in the image. For the Alzheimer’s MRI images, it is
important to observe space changes in different disease stages,
such as small changes in the cerebral cortex and structural
changes in the hippocampal region, which are important for
determining the stage of Alzheimer’s disease. Therefore, we
propose a Space Conversion Attention Mechanism (SCAM) that
assigns weights based on both vertical and horizontal directions,
and the specific structure is depicted in Figure 9.

The Space Conversion Attention Mechanism is composed of
three parts:

(a) The horizontal spatial attention mechanism is used to
generate horizontally oriented weight coefficients for each
row of features; the vertical spatial attention mechanism is
used to generate vertically oriented weight coefficients for
each column of features.

ci =

n∑
j=1

exp(ei,j)∑n
k=1 exp(eik)

hj (5)

Among them, ei,j represents the weight coefficients assigned
by the horizontal or vertical attention mechanism, pixel j
represents the sequence feature, i represents the temporal features
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at a certain moment, and hj represents the hidden layer
information of the feature sequence j. cI = {c1, c2 ... ci−1, ci}

represents the weight coefficients of the vertical attention
mechanism in the feature sequence; c5 = {c1, c2 ... ci−1, ci}

represents the weight coefficients of the horizontal attention
mechanism in the feature sequence.

(b) To further expand the difference between the weight
coefficients, we add the horizontal and vertical weight
coefficients (addition strategy). for example, the small
weight coefficient maybe 0.1 + 0.3 and the large weight
coefficient maybe 0.8 + 0.9. In contrast, the difference
between the summed weight coefficients is more obvious.

add = cI + c5 (6)

(c) To select the more interesting regions, we match the
horizontal and vertical weight coefficients to find the
maximum value (maximum strategy), which is used to
complement the results of the second part of the weight
coefficients [e.g., max(0.3, 0.8)].

max = max(cI, c5) (7)

Finally, we concatenate the weight coefficients calculated by
the above strategy with cI and c5 through formula (6), and the
concatenated results are passed through 1 × 1 convolution and
sigmoid function to make the dimension of input and output
consistent.

SPA = concatenate([cI, c5, add, max]) (8)

Weight = σ(Fh(SPA)) (9)

Among them, SPA represents the Space Conversion Attention
Mechanism, Fh represents 1 × 1 convolution, σ represents the
sigmoid function, and Weight represents the feature weights.

RESULTS AND ANALYSIS

Experimental Environment and Settings
All of the trains and tests in this work are carried out on the same
hardware and software platform. The hardware environment is
Windows (64bit) operating system, Intel Core i7-9700U CPU,
and 2080Ti GPU. The software programming environment for
data expansion is MATLAB 2020b; The software programming
environment for the MPC-STANet is Python 3.8.12, Pytorch
1.8.2, and CUDA 10.2. Considering the memory size of the GPU
and the time of the experiment, we set the Batchsize to 32 for
training and 8 for testing. The learning rate Ir was set to 10−3,
and the epochs was set to 140. The Adam optimizer and Cross-
Entropy Loss were used during training, and the incremental
gradient descent was used as the training method. After class-
balancing preprocessing, there were 12,600 MRI images in
Alzheimer’s disease dataset. In this experiment, according to

the ratio of 7:2:1, we divided the dataset into a training set,
test set, and validation set for training and testing the MPC-
STANet.

Effectiveness Experiment of the Module
Effectiveness Experiment of Preprocessing
To verify whether the training with a class-balanced preprocessed
dataset can improve the performance of the model and improve
the recognition accuracy, we input the original dataset and the
preprocessed dataset into ResNet50, ResNet50-SPAM, and the
MPC-STANet, respectively, for experiments. Table 2 displays
the recognition accuracy of the original dataset and the
preprocessed dataset in the three networks. The results show
that the recognition accuracy of the three networks in the
preprocessed dataset is significantly higher than that of the
original dataset. This is because the dataset is expanded by
flipping, adding noise, and contrast adjustment, which increases
the diversity of the dataset and avoids network coverage.
The SMOTE algorithm is used to make the samples achieve
class balance, to avoid the information learned during training
to tend to the disease majority class. As a result, following
preprocessing, the accuracy of the dataset has increased in
all three models.

Effectiveness Experiment of Dilated Convolution
We used Dilated Convolution (DC) in STAGE 1 of the MPC-
STANet. To verify the effect of the DC on classification
performance, we conducted experiments on ResNet50,
ResNet50-DC, and the MPC-STANet under the same test
environment. Table 3 displays that using DC in ResNet50
can improve the recognition accuracy without changing the
model parameters.

Effectiveness Experiment of Multiple-Phantom
Residual Block Based on Multiple-Phantom
Convolution
To verify the effect of the Multiple-Phantom Residual Block
(MPRB) on model accuracy and parameter, we trained and tested
ResNet50, ResNet50-MPRB, and the MPC-STANet using the
same dataset. As displayed in Table 4, the experimental results
show that ResNet50-MPRB with multiple-phantom residual
blocks can greatly improve the accuracy of the network and
reduce the number of parameters of the model.

Effectiveness Experiment of Space Conversion
Attention Mechanism
To more intuitively understand the improvement of the
network accuracy by Space Conversion Attention Mechanism
(SCAM), we trained and tested ResNet50, ResNet50-SE,
ResNet50-CMBA, ResNet50-SCAM, and the MPC-STANet,
respectively, on the preprocessed dataset. Table 5 displays
the accuracy of the networks with different attentions
on the test set. The experimental results show that after
using the attention mechanism, ResNet50-SE, ResNet50-
CMBA, and ResNet50-SCAM improve 1.3, 3.2, and 5.5%,
respectively, in terms of accuracy compared to ResNet50.
The SCAM outperforms the other attention mechanisms
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FIGURE 9 | Space conversion attention mechanism structure.

TABLE 9 | Comparison of recognition accuracy and parameters of
different networks.

Network model Parameters Accuracy

ResNet50 25.56M 84.6%

ResNet50-DC 25.56M 86.7%

ResNet50-MPRB 21.10M 89.5%

ResNet50-SCAM 31.17M 90.1%

ResNet50-DC-MPRB 21.10M 93.3%

ResNet50-DC-SCAM 31.17M 93.8%

ResNet50-MPRB-SCAM 27.25M 94.6%

MPC-STANet 27.25M 96.2%

in improving accuracy by considering the weight feature
relationship in both horizontal and vertical directions.
The accuracy of the MPC-STANet proposed in this
study is 96.2%, which indicates that the Alzheimer’s MRI
images features are deeply extracted, and the network is
effective in recognizing.

Table Ablation Experiment
To fully validate the effectiveness of the method proposed in
this study, we employed the same dataset and experimental
environment, and only changed the parts that needed
to be compared in each experiment. In this experiment,
ResNet50 is selected as the backbone network, and one
or more of the three methods, Dilated Conv (DC), Multi-
Phantom Residual Block (MPRB), and Space Conversion

Attention Mechanism (SCAM), are added to compare
the effects of different schemes on model parameters and
recognizing accuracy. The comparing results are displayed in
Table 9.

Based on the accuracy of the network, the accuracy of
the MPC-STANet was higher than other networks, reaching
96.2%. When SCAM was applied to ResNet50, its accuracy
improved by 5.5% compared to the original ResNet50.
Similarly, ResNet50 using Dilated Conv or MPRB methods
improved by 2.1 and 4.9%, respectively, compared to the
original ResNet50. The preceding evidence indicates that
all three methods are effective for increasing accuracy.
And the solution of DC paired with MPRB or SCAM
has the largest improvement in accuracy with 8.7 and
9.2%, respectively.

Based on the number of parameters of the network,
the network with Dilated Conv is the same in terms
of the number of parameters as the network that
keeps a single variable, which is consistent with the
principle that Dilated Convolution does not change
the number of parameters. In terms of the number
of parameters, ResNet50-MPRB is 4.46M less than
ResNet50, demonstrating that the MPRB method aids in
network compression.

Overall Evaluation of the MPC-STANet
In the same environment, the MPC-STANet has a more stable
learning process and higher recognition accuracy than its
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backbone network ResNet50. The performance of the MPC-
STANet on the four disease stages are depicted in Figure 2.
In the confusion matrix, the numbers 0, 1, 2, and 3 represent
the four disease stages, Non-Demented, Very Mild Demented,
Mild Demented, and Moderate Demented, respectively. We
tested the MPC-STANet using a total of 2,560 MRI test
sets and displayed the test results in the confusion matrix.
The diagonal of the confusion matrix is the number of
correctly predicted images with a total of 2,462 MRI images.
The overall recognition rate of the MPC-STANet is 96.2%.
Table 6 displays the recognition rate of the four disease
stages in the MPC-STANet. It can be seen that the highest
precision of Mild Demented reached 98%, and that of Moderate
Demented was only 94%.

Comparison With Other Networks
We employ four indexes, Recall, F1-score, Precision,
and mAP to evaluate the performance of the MPC-
STANet. The results are displayed in Table 7, The
performance indexes of the MPC-STANet all surpass 90%,
higher than those of other networks, indicating that this
network is more advantageous in recognizing Alzheimer’s
disease than other networks, and is better for classifying
the disease stage.

DISCUSSION

In this study, we construct the MPC-STANet capable of
discriminating the first four disease stages of Alzheimer’s disease
and use the Alzheimer’s MRI images created by researcher
Sarvesh Dubey as the dataset. We employ data expansion
and SMOTE to perform class-balancing preprocessing of the
dataset, and then input the preprocessed dataset into the MPC-
STANet for recognition, and its average recognition accuracy
reaches 96.25%. The experiments show that the combination
of class-balancing preprocessing and MPC-STANet for the
recognition of the first four disease stages of Alzheimer’s
disease is effective and does not require operations such as
numerous feature enhancement preprocessing or manual feature
extraction, but the following explorations are needed: (1) The
researcher who provided the Alzheimer’s MRI dataset did not
provide any statistical information about patients and did not
account for this condition, which raises doubts about our
recommended approach. Therefore, Alzheimer’s disease datasets
with detailed statistics need to be further considered in future
explorations to be more convincing. (2) In the Space Conversion
Attention Mechanism, we employ the maximum strategy to
match the vertical and horizontal weight coefficients to select
the regions of interest. However, we tend to ignore the data
in the small value regions using the maximum value strategy,
resulting in data loss. Therefore, it is worth thinking about
considering both maximum and minimum values. (3) The
actual data volume of Alzheimer’s disease collected in this
study is not enough. In the future, the Alzheimer’s MRI image
data should be further enriched to improve the generalization
ability of the model.

CONCLUSION

To address the problems of classification imbalance of the
Alzheimer’s MRI datasets, small structural changes during
different disease stages, small proportion of feature regions
to the whole MRI image, and scattered features, we propose
a novel method for recognizing different disease stages of
Alzheimer’s disease based on class-balancing preprocessing and
Multi-Phantom Convolution and Space Conversion Attention
Mechanism recognition network (MPC-STANet). First, we
perform class-balancing preprocessing on the Alzheimer’s MRI
datasets using data expansion methods such as flipping,
adding noise and contrast adjustment, and SMOTE. Then,
we propose the MPC-STANet with ResNet50 as the backbone
network. In the MPC-STANet, Dilated Convolution is used
to increase the perceptual field of the network to recognize
scattered feature regions, and Space Conversion Attention
Mechanism is used to enhance feature extraction of subtle
changes in the MRI Alzheimer’s image. Based on Multi-Phantom
Convolution, Multi-Phantom Residual Block (including Multi-
Conv Block and Multi-Identity Block) is proposed to extract
subtle brain feature points. For the recognition of different
disease stages of Alzheimer’s disease, the proposed MPC-STANet
has higher recognition accuracy and a smaller number of
parameters compared with the ResNet50 backbone network. The
experimental results indicate that the recognition accuracy of the
MPC-STANet is 96.2% and the number of parameters is only
1.69M higher than that of ResNet50.

Based on the detection of the disease stages of Alzheimer’s
disease has been a hot research topic in the field of computer
vision-aided diagnosis, The MPC-STANet can be used for disease
stage recognition after acquiring the Alzheimer’s MRI dataset,
which is significant for doctors to distinguish the disease and take
corresponding treatment. Future research in this study will focus
on how the network can handle complex structural brain features,
how to enhance the extraction ability for subtle and scattered
features, and how to handle datasets that are not preprocessed.
In addition, we need to consider how to further optimize the
structure of the network model to facilitate a more effective
recognition of Alzheimer’s disease and delay the deterioration of
this disease promptly.
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