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Article

Physico-Chemical Modifications Affecting the Activity and
Stability of Cu-Based Hybrid Catalysts during the Direct
Hydrogenation of Carbon Dioxide into Dimethyl-Ether
Fabio Salomone 1,* , Giuseppe Bonura 2 , Francesco Frusteri 2, Micaela Castellino 1 , Marco Fontana 1,3 ,
Angelica Monica Chiodoni 3 , Nunzio Russo 1, Raffaele Pirone 1 and Samir Bensaid 1,*

1 Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Turin, Italy

2 Consiglio Nazionale delle Ricerche-Istituto di Tecnologie Avanzate per l’Energia “Nicola
Giordano” (CNR-ITAE), Via Santa Lucia Sopra Contesse 5, 98126 Messina, Italy

3 Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
* Correspondence: fabio.salomone@polito.it (F.S.); samir.bensaid@polito.it (S.B.)

Abstract: The direct hydrogenation of CO2 into dimethyl-ether (DME) has been studied in the
presence of ferrierite-based CuZnZr hybrid catalysts. The samples were synthetized with three
different techniques and two oxides/zeolite mass ratios. All the samples (calcined and spent) were
properly characterized with different physico-chemical techniques for determining the textural and
morphological nature of the catalytic surface. The experimental campaign was carried out in a
fixed bed reactor at 2.5 MPa and stoichiometric H2/CO2 molar ratio, by varying both the reaction
temperature (200–300 ◦C) and the spatial velocity (6.7–20.0 NL·gcat

−1·h−1). Activity tests evidenced
a superior activity of catalysts at a higher oxides/zeolite weight ratio, with a maximum DME yield as
high as 4.5% (58.9 mgDME·gcat

−1·h−1) exhibited by the sample prepared by gel-oxalate coprecipitation.
At lower oxide/zeolite mass ratios, the catalysts prepared by impregnation and coprecipitation
exhibited comparable DME productivity, whereas the physically mixed sample showed a high
activity in CO2 hydrogenation but a low selectivity toward methanol and DME, ascribed to a minor
synergy between the metal-oxide sites and the acid sites of the zeolite. Durability tests highlighted a
progressive loss in activity with time on stream, mainly associated to the detrimental modifications
under the adopted experimental conditions.

Keywords: CO2 hydrogenation; hybrid catalysts; zeolites; ferrierite; DME; methanol

1. Introduction

Nowadays, the increase in global warming is a crucial issue which has to be coped
with. The development of catalysts and processes for producing synthetic fuels as an
alternative to traditional fossil resources has indeed recently received particular attention in
the power-to-fuels research field [1–8]. Among several technologies, power-to-fuel seems
to be one of the most promising to produce a range of synthetic fuels and chemicals (e.g.,
methane, methanol, dimethyl-ether, light and heavy hydrocarbons, etc.) for the purpose
of decarbonizing society and carbon footprint reduction [4,9–14]. The great advantage of
this technology is the exploitation of waste CO2 that could be captured and recovered by
means of carbon capture and utilization (CCU) systems [4,7–9,15]. On the other hand, the
CO2 could be converted in useful value-added carbon-based products by using renewable
H2 that could be produced with many technologies (e.g., electrolysis, biomass valorization,
aqueous phase reforming, etc.) [16–21] by exploiting different sources of renewable energy
(e.g., photovoltaic, wind power, geothermal, hydroelectric, etc.). Among those power-to-
fuel processes, the synthesis of dimethyl-ether (DME) via CO2 hydrogenation seems to be a
promising process to obtain a useful, valuable and environmentally friendly product. DME
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is indeed an added-value product with a high cetane rating and low pollutant emissions
during the combustion; thus, it could be used as a substitute of diesel fuel. Moreover, DME
is a key intermediate for producing chemicals or petrochemicals [1,13,22–26].

Industrially, DME is generally produced from syngas through the most mature path-
way, which involves a two-step process: the synthesis of methanol (MeOH) on a Cu-based
catalyst, which is economically cheaper than noble metals, and a subsequent dehydration
of MeOH to DME on an acid catalyst [22,24,25,27]. This process is strongly limited by
thermodynamics and the common operating condition ranges between 260–280 ◦C and
5–10 MPa because at a low temperature the CO2 conversion is kinetically limited and at
high temperatures prevails the reverse water gas shift reaction [10,24,27–29]. Considering
the attention paid to CCU technologies, many researchers have recently shown a growth of
interest in CO2 hydrogenation. In more detail, there are several technologies to convert CO2
and H2 into methanol: thermo-catalysis, electro-catalysis, photo-catalysis, plasma-assisted
catalysis and even biological processes [10,30–33]. This work focuses on the thermocat-
alytic route and to overcome the thermodynamic issues of the methanol synthesis via CO2
hydrogenation, a single-step process has been investigated. There are two ways that could
be investigated: (i) the reactor configuration and (ii) the catalyst design. On the one hand,
membrane reactors could be used to selectively remove the products favoring a shift of
the reaction toward methanol and DME [34,35]. On the other hand, a bifunctional catalyst
that could couple the CO2 conversion into methanol and its subsequent dehydration into
dimethyl-ether could be another solution to overcome the thermodynamic limitations of the
methanol synthesis [22,36–44]. Therefore, the design of novel hybrid catalysts has been in-
vestigated for the purpose of directly producing DME in a single-step process [24,25,45–48].
The net reaction of DME synthesis is reported in Equation (1); however, the overall process
includes a series of reactions: the CO2 hydrogenation to methanol (2), the reverse water gas
shift (RWGS) reaction (3), the CO hydrogenation to methanol (4) and the methanol dehy-
dration to DME (5). Interestingly, in the single step process the thermodynamic limitations
of the methanol synthesis could be overcome due to its consecutive dehydration into DME;
hence, the CO2 per pass conversion could be increased even at low temperatures [9,24,27].

2 CO2(g)+6 H2(g) � CH3OCH3(g)+3 H2O(g) ∆
∼
H

0

298.15 = −122.2 kJ/mol (1)

CO2(g)+3 H2(g) � CH3OH(g)+H2O(g) ∆
∼
H

0

298.15 = −49.4 kJ/mol (2)

CO2(g)+H2(g) � CO(g)+H2O(g) ∆
∼
H

0

298.15 = +41.2 kJ/mol (3)

CO(g)+2 H2(g) � CH3OH(g) ∆
∼
H

0

298.15 = −90.4 kJ/mol (4)

2 CH3OH(g) � CH3OCH3(g)+H2O(g) ∆
∼
H

0

298.15 = −23.4 kJ/mol (5)

For methanol synthesis, the most common Cu/ZnO-based formulations are typi-
cally completed by a ceramic material, for instance alumina (Al2O3), zirconia (ZrO2) or
silica (SiO2) in order to increase the surface area and to prevent sintering of Cu parti-
cles [9,24,33,49–52]. These catalysts are remarkably selective toward methanol, while
the main by-product is CO due to the endothermic RWGS reaction [9,27]. Existing re-
search has demonstrated that CO2 hydrogenation to methanol is favored over Cu/ZnO-
based catalysts, which reduces the activation energy of the reaction, whereas the activa-
tion energy of CO hydrogenation over Cu/ZnO-based catalysts is greater than over a
Cu-based catalyst [33,53–55]. Concerning the acid catalyst, the performance of many mate-
rials has been explored in the open literature. Zeolites (for instance MFI, Theta-1, mordenite
and ferrierite) and γ-alumina are the most investigated catalysts for dehydrating methanol
to DME [9,40,45–48,56,57]. Frusteri et al. (2017) have recently revealed that ferrierite is one
of the most promising acid catalysts for this purpose, compared to mordenite and MFI [40].
The number, the distribution and the strength of the acid sites are the most important
features of these catalysts [56,58]. Generally, an increase in acid sites, uniformly distributed
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on the surface of the material, causes an increase in DME yield. Furthermore, some authors
have shown that weak and medium strong acid sites are active in methanol dehydration;
however, some correlation between the increase in DME yield and the higher concentration
of strong acid sites have been also reported [22,25,40,56,58]. Recently, Catizzone et al.
(2021) demonstrated that nano-sized zeolites are more performant than the micro-sized in
methanol dehydration to DME by increasing the DME selectivity and reducing the carbon
deposition [59]; and this effect of the crystallinity has also been observed in a previous
work of Bonura et al. (2018) [56].

Really, many synthesis techniques have been explored in order to obtain hybrid cat-
alysts for direct CO2 hydrogenation to DME. The most common techniques are physical
mixtures, coprecipitation and wet impregnation [9,22,40]. Each technique has many is-
sues that must be considered, for instance, the control of synthesis conditions and their
repeatability, the composition and the distribution of the metallic loading on the surface
of the acid catalyst, the dimensions of the particles and their homogeneity. In more detail,
the gel-oxalate co-precipitation technique has been investigated in the literature and re-
searchers have observed that it led to the formation of ultra-fine oxides particles in which
the zinc is incorporated in the structure of the oxalic copper [60–62]. After calcination and
reduction in H2, the catalytic structure exhibited a high activity in CO2 hydrogenation and
a high methanol selectivity [60–62]. Many authors have also reported the need for a high
metal dispersion for facilitating CO2 activation, while many others reported as more crucial
the extent of metal-oxide interface for an effective CO2 activation [13,22,23,25,40,56,57].
However, few studies have investigated the deactivation phenomena that involve the
catalysts during on-stream operating conditions [13,45,51,57,63].

Therefore, this work aims to contribute to this growing area of research by explor-
ing the catalytic performance of ferrierite-based CuZnZr catalysts during the direct CO2
hydrogenation to DME, paying attention to the influence both of preparation and com-
position on activity, selectivity and stability at different on-stream reaction conditions.
On this account, several characterization techniques were used in order to individuate
peculiar structure–activity relationships and significant modifications between calcined
and spent catalysts.

2. Materials and Methods
2.1. Preparation of the Catalytic System

The procedure adopted for the preparation of the CuZnZr-based hybrid systems
consists of a combination of copper, zinc and zirconia, which are commonly used for
methanol synthesis, and a commercial ferrierite-type zeolite as described in our previous
works [22,40,64]. Four different CuZnZr-based catalysts for DME synthesis were prepared.
Two catalysts were synthesized via gel-oxalate coprecipitation following the procedure
elsewhere reported [22,40]: copper, zinc and zirconyl nitrates were solubilized in ethanol
(Cu/Zn/Zr atomic ratio 6:3:1) and then coprecipitated by oxalic acid at ambient conditions
under vigorous stirring in a solution containing finely dispersed ferrierite powder [22,40].
After filtration, drying (95 ◦C for 16 h) and calcination (350 ◦C for 4 h), the two samples
were designated as CZZ/FER OX 1:2 and CZZ/FER OX 2:1, being characterized by an
oxides/zeolite weight ratio of 1:2 and 2:1, respectively. The third catalyst was prepared by
the wet impregnation technique: the ferrierite powder was impregnated by the metal pre-
cursors solubilized in ethanol (Cu/Zn/Zr atomic ratio 6:3:1), dried and then calcined [22].
This sample was named CZZ/FER WI 1:2 (CZZ/FER weight ratio of 1:2). Lastly, the fourth
sample denoted as CZZ-FER MIX 1:2 was obtained as a physical mixture of coprecipitated
CuZnZr (gel-oxalate coprecipitation, Cu/Zn/Zr atomic ratio 6:3:1) and ferrierite powder
with a CuZnZr/FER weight ratio of 1:2.

Each catalyst powder was pelletized by applying 10.6 kN (=15 MPa), ground in an
agate mortar and sieved for obtaining small particles (particle size range: 250–500 µm).

As a reference, a ternary CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to methanol
was prepared by gel-oxalate co-precipitation with a Cu/Zn/Zr atomic ratio 6:3:1.
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2.2. Characterization of the Catalysts

The textural properties of both calcined and spent catalysts were determined by
N2 physisorption at −196 ◦C using a Micromeritics Tristar II ASAP 3020 analyzer. The
samples (~80 mg) were previously outgassed at 300 ◦C in inert (N2) gas for 2 h using
a Micromeritics FlowPrep 060 to remove water and other atmospheric contaminants
from the surface. The total surface area was calculated by means of Langmuir’s the-
ory (the 0.05 ≤ p/p◦ ≤ 0.35 relative pressure range was used) [65] because the Brunauer–
Emmett–Teller (BET) method [66] could not be applied due to the negative value of the
BET constant for the ferrierite-based catalysts. Moreover, the surface area and volume of
micropores were evaluated via the t-plot method using the Harkins and Jura equation for
the estimation of the statistical thickness [67–69], while the porosimetry analysis of meso-
and macropores was performed by applying the Barrett–Joyner–Halenda (BJH) algorithm
to the desorption branch of the isotherm [70,71].

The powders of both calcined and spent catalysts were investigated in a Philips X’Pert
PW3040 diffractometer operating at 40 kV and 40 mA, using a Ni β-filtered Cu-Kα radiation
characterized by a wavelength (λ) equal to 1.5406·10−10 m. X-ray diffraction (XRD) patterns
were collected at room temperature over the 2θ angle range of 5–90◦, with a scan step size
of 0.013◦ 2θ and a time per step equal to 0.3 s, while the average crystallite size (dc, nm)
was estimated according to Scherrer’s equation [72].

Both calcined and spent catalysts were observed with a field emission scanning elec-
tron microscope (FE-SEM) Zeiss Merlin equipped with a Gemini-II column for the purpose
of analyzing their morphology. Moreover, energy dispersive X-ray spectroscopy (EDS) was
employed to determine the elemental composition of portions of the catalysts. Furthermore,
both morphology and crystalline structure of the samples were investigated by a transmis-
sion electron microscopy (TEM) with FEI Tecnai F20 ST microscope operating at 200 kV
acceleration voltage. Concerning sample preparation, each sample powder was dispersed
in ethanol (purity > 99.8%) through sonication for 2 min and subsequently drop-casted on
a Cu holey-carbon TEM grid.

For the elemental composition of the catalysts, an inductively coupled plasma mass
spectrometer (iCAP Q ICP-MS, Thermo Fisher Scientific, Waltham, MA, USA) was em-
ployed. Approximately 100 mg of each catalyst was digested in 10 mL of acid solution
(6 mL of HCl 37 vol.%, 2 mL of HNO3 65 vol.% and 2 mL of HF 48 vol.%) by using a Mile-
stone ETHOS EASY SK15. The solution was heated at 10 ◦C/min from room temperature
to 220 ◦C and held for 15 min at the maximum temperature, then it was cooled at room
temperature in approximately 30 min. Each concentrated solution was diluted using milli-q
water to have the concentration of all elements within the calibration range (100–2000 ppb),
then these samples were analyzed using ICP-MS.

TPR measurements were performed in a Thermoquest TPD/R/O 1100 analyzer,
equipped with a thermal conductivity detector (TCD). A mass of 20 mg of calcined catalyst
was placed in a quartz tube reactor between two layers of quartz wool. To ensure the
complete oxidation of metals, each sample was pre-treated in pure O2 flow (40 mL/min),
heating the oven from room temperature to the calcination temperature (350 ◦C) [22] with a
constant heating rate of 10 ◦C/min and holding it for 30 min. Subsequently the sample was
cleaned in He flow (40 mL/min) at 350 ◦C for 30 min and then it was cooled to 40 ◦C. The
H2-TPR was carried out under a constant flow (20 mL/min) of 5.000 vol.% H2/Ar, heating
the sample from 40 ◦C to 900 ◦C with a heating rate of 10 ◦C/min.

The surface of the catalysts was investigated via X-ray photoelectron spectroscopy
(XPS) employing a PHI 5000 Versa Probe equipment, using a band-pass energy of 187.85 eV,
a take-off angle of 45◦ and an X-ray spot diameter of 100 µm; high resolution spectra were
collected using a band-pass energy of 23.50 eV.

Surface concentration of acid sites was evaluated by means of ammonia (NH3) pulse
chemisorption in the Thermoquest TPD/R/O 1100 analyzer. The analyses were performed
placing 90 mg of catalyst in a quartz tube reactor. Each sample was pre-treated flowing
He (25 mL/min) from room temperature to 120 ◦C, then it was reduced using 5 vol.%
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H2/Ar (25 mL/min), heating the sample up to 350 ◦C with a heating rate of 10 ◦C/min
and holding it for 60 min at the maximum temperature. After that, the sample was cleaned
with He (25 mL/min) for 30 min at 350 ◦C and then cooled down to 100 ◦C in inert flow.
The NH3 pulse chemisorption analysis was carried out in isothermal conditions (100 ◦C)
using 9.99 vol.% NH3/He and He as carrier gas (25 mL/min).

2.3. Catalytic Tests

The catalytic activity of each sample (catalyst load = 1.5 g) was investigated in a fixed
bed stainless steel reactor. The catalytic bed had an annular section (i.d., 3 mm; o.d., 8 mm)
due to the presence of an innertube in which a thermocouple was inserted for the mea-
surement of the reaction temperature within the catalytic bed. The catalytic bed volume
varied depending on the apparent density of each catalyst (as shown in Table S1); there-
fore, to compare the results, all the catalytic tests were carried out keeping constant the
catalyst load while varying the weight hourly space velocity (WHSV, NL·gcat

−1·h−1). Each
sample was pre-treated by using 30 NL/h (10 vol.% H2/N2) at 0.2 MPa and 350 ◦C for 3 h.
Afterwards, a stability test was performed on each sample (20 h at 275 ◦C, 2.5 MPa and
13.3 NL·gcat

−1·h−1; inlet composition: 60 vol.% H2, 20 vol.% CO2 and 20 vol.% N2). Activ-
ity tests were carried out on the hybrid catalysts at 2.5 MPa (inlet composition: 60 vol.% H2,
20 vol.% CO2 and 20 vol.% N2) both varying the reaction temperature between 200 ◦C and
300 ◦C with the WHSV between 6.7 NL·gcat

−1·h−1 and 20 NL·gcat
−1·h−1.

The gases at the reactor outlet were split into two streams. On the one side, a portion
of the gases was directly analyzed using a gas chromatograph (7890B GC System, Agilent
Technologies, Santa Clara, CA, USA) equipped with a heated transfer line (120 ◦C, atmo-
spheric pressure), a two-column separation system (HP-PLOT/Q and HP-PLOT Molesieve)
connected to a thermal conductivity detector (TCD) and a flame ionization detector (FID).
On the other side, water and methanol were condensed in a tank (room temperature and
2.5 MPa), then the gaseous stream was completely dehydrated using a silica gel trap (room
temperature and atmospheric pressure) and analyzed with an in-line X-STREAM EMER-
SON gas analyzer equipped with two nondispersive infrared (NDIR) sensors and a thermal
conductivity detector (TCD) for monitoring CO, CO2 and H2 concentrations, respectively.

3. Results and Discussion
3.1. Physico-Chemical Characterization of the Catalysts
3.1.1. Analytical Composition, Texture, Structure and Morphology

In Table S2 of the Supplementary Materials, the relative atomic concentration of each
investigated sample is reported, as determined by ICP-MS characterization. Despite a
slight discrepancy between the actual and nominal composition, the data reported suggest
the effectiveness of the adopted preparation procedures and its suitability to achieve a very
good control of the metal loading on all the samples.

The textural properties were investigated on both calcined and spent catalysts for
the purpose of examining variations in terms of surface area, porosimetry and catalytic
performance. As presented in Table S3, the bare ferrierite exhibits a high specific surface area
that matches the nominal value (400 m2/gcat), while the porosimetry analysis confirms the
presence of a microporous structure and a broadened distribution of macropores, as can be
seen in Figure S1 [58,73]. Concerning the hybrid catalysts, their textural properties appear
to be directly linked to the CuZnZr/ferrierite weight ratio. Nevertheless, the specific surface
area of both calcined CZZ/FER OX 1:2 (311 m2/gcat) and CZZ/FER WI 1:2 (302 m2/gcat) is
lower than the surface exposure of the CZZ-FER MIX 1:2 sample (337 m2/gcat), as a direct
consequence of the different preparation method. In fact, the methanol synthesis phase
which is deposited on the surface of the bare ferrierite (by coprecipitation or impregnation)
reduces the sample microporosity. However, this loss in surface area is partially balanced
by the mesoporosity of the oxides, as can be seen in Figures S2–S5. More specifically, the
coprecipitated catalysts show a sharpened mesopore size distribution at approximately
15 nm, whereas the spent catalysts exhibit a decrease in both the total specific surface area
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and the total pore volume. In addition, as illustrated in Figure 1, there is a direct correlation
between the specific surface area and the micropore volume. Indeed, the slope of the
straight line of the spent catalysts is greater than that of the calcined samples, suggesting
a possible agglomeration of metal-oxides which leads to the occlusion of the ferrierite
micropores and accordingly to a considerable decrease of the surface area [74,75].
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spent catalysts (• CuZnZr; � CZZ/FER OX 2:1; � CZZ/FER OX 1:2; N CZZ/FER WI 1:2; H CZZ-FER
MIX 1:2; ×Ferrierite).

X-ray diffractograms were collected for both calcined (see Figure S6a) and spent
(see Figure S6b) catalysts to evidence the influence of the experimental conditions on the
samples. The XRD pattern of calcined bare ferrierite (FER) is characterized by several
intense and narrow peaks between 7◦ and 30◦ (PDF 00-044-0104 and PDF 01-088-1796),
as also reported in the literature [22,76–78]. Its crystalline structure was not observable
by TEM due to its instability under the beam and its instantaneous transformation from
crystalline to amorphous structure [79]. The calcined CuZnZr-based hybrid catalysts (see
Figure S6a) show various reflections between 30◦ and 40◦, corresponding to at least seven
convoluted peaks belonging to two main crystalline phases: (i) the monoclinic phase of CuO
(PDF 00-045-0937) at 32.5◦, 35.5◦, 38.7◦ and 38.9◦; and (ii) the hexagonal structure of ZnO
(PDF 00-036-1451) at 31.8◦, 34.4◦ and 36.3◦. The broadening of these peaks is principally
caused by the small crystallite size of those phases (see Table S4). Zirconia (ZrO2) was not
detected due to its small amount; in addition, it is probably present as an amorphous phase.
Data in Table S4 point out that CuO crystallite size is lower than 10 nm; the only exception is
related to CZZ/FER WI 1:2 in which CuO crystallite size is approximately 18 nm. This fact
is certainly linked to the synthesis technique in which the precursors form large clusters of
precipitate during the evaporation of the solvent. As for the XRD patterns of spent catalysts
(see Figure S6b), three main reflection peaks of the cubic structure of metallic copper are
clearly visible at 43.3◦, 50.4◦ and 74.1◦ (PDF 00-004-0836). Those patterns reveal that CuO
is not completely reduced to metallic Cu either in the ferrierite-free CuZnZr sample or in
CZZ/FER OX 1:2 and CZZ-FER MIX 1:2 catalysts. Regarding the formation of Cu2O, its
main characteristic peak at 36.4◦ overlaps with the most intense peak of ZnO located at
36.3◦. It is noteworthy that the Cu crystallite size is larger than the CuO crystallite size for
all the spent catalysts. Nevertheless, the coprecipitated hybrid catalysts have revealed a
smaller increase in Cu crystallite size compared with the other spent catalysts. Differently,
zinc oxide has a more stable structure and its crystallite size did not expand dramatically.
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Furthermore, considering a reduction temperature as high as 600 ◦C [80], ZnO is expected
to remain in its oxidized form during the catalytic runs.

FESEM and EDS measurements were carried out on the samples to better understand
their morphology and the metallic distribution on the zeolite. As shown in Figure 2,
commercial FER, CZZ/FER OX 1:2 and CZZ/FER WI 1:2 were characterized by particles of
ferrierite ranging approximately from 30 nm to 500 nm with different shapes.
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Moreover, CZZ/FER OX 2:1 (see Figure 2d,e) revealed a completely different structure
of the ferrierite-type zeolite in some portion of the catalyst; in fact, exposed a lamellar struc-
ture on which metals are deposited. Considering the relative oxides/zeolite weight ratio,
CZZ/FER OX 1:2 has a low amount of metals dispersed on the surface of the zeolite. These
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metals do not completely cover the surface but form some sponge-like structures, which
are characterized by small nanometric monocrystalline grains. However, the backscat-
tered image and the EDS mapping of this catalyst (see Figure S7a) illustrate a macroscopic
uniformity of the metal load on the surface without evident inhomogeneities. Under the
same preparation method, on CZZ/FER OX 2:1 a completely different disposition of the
metals can be observed in FESEM images, evidenced by small aggregates of nanoparticles
and a uniform coating on the zeolite surface. Similarly, CZZ/FER WI 1:2 exhibited an
inhomogeneous deposition of the metallic elements on the external surface of the ferrierite
with a typical layered structure (Figure 2g,h) [22], also confirmed by the backscattered
FESEM image and the EDS mapping (see Figure S7c) of the surface of this catalyst. A
completely different macrostructure was observed for CZZ-FER MIX 1:2 catalyst, some
portions of the sample being constituted by ferrierite and other parts by metals, as shown
both in the backscattered FESEM image and in Figure S7d. In general, all the samples
exhibited a small size of metallic nanoparticles, accounting for a high metal dispersion
which favors a synergistic effect among the active sites [40,55]. FESEM images do not have
high resolution due to the low conductivity of the samples; hence, no macroscopic changes
were observed between calcined and spent catalysts.

Bright-field TEM imaging provides an efficient way to visualize the distribution of the
metal oxide nanoparticles with respect to the ferrierite structure due to difference in mor-
phology and average atomic number. Figure 3 shows a comparison between representative
low-magnification images of CuZnZr-based samples obtained with different preparation
methods (gel-oxalate co-precipitation, wet impregnation, physical mixing). It is interesting
to notice that a higher oxide loading (such as in the CZZ/FER OX 2:1 sample) results in a
more homogenous distribution of the metal oxide nanoparticles on ferrierite. Regardless of
the loading, the co-precipitation approach leads to a better inter-dispersion between metal
oxide nanoparticles and ferrierite, if compared to wet impregnation (CZZ/FER WI) and
physical mixing (CZZ/FER MIX).
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Figure 3. Bright-field TEM images of spent hybrid catalysts.

On the whole, based on TEM characterization, CZZ/FER samples obtained by co-
precipitation show the most promising structure of the catalyst in terms of inter-dispersion
among the different phases (especially for the 2:1 loading): these findings are in accordance
with results obtained from the characterization of the catalytic performance, as discussed
in the other sections.



Materials 2022, 15, 7774 9 of 22

3.1.2. Redox Properties and Acidity

Previous studies have proved that CuO and ZnO show a synergistic effect on the
reducibility of both phases [81–83]. Really, a high dispersion of CuO and the presence of
ZnO favors the reducibility of CuO at lower temperatures than “pure” CuO [83]. More
specifically, the reduction peak of CuO has been usually deconvoluted in three peaks
(see Figure S8) at increasing reduction temperature, corresponding respectively to highly
dispersed CuO particles, and CuO particles in contact with ZnO and bulky CuO species
without ZnO contact [55,84]. Nevertheless, other authors have related them to subsequent
reduction steps of CuO to metallic Cu [55]. It is worth noting that the amount of H2
consumed during the reduction of the hybrid catalysts is proportional to the metallic
loading; furthermore, the main reduction peak of CuO of each catalyst is located between
180 ◦C and 350 ◦C, thus a beneficial effect of ZnO on the reducibility of CuO is evident
with respect to the reference CuO. Quantitative data reported in Table 1 point out that the
specific H2 consumption of the main reduction peak (Tred < 350 ◦C) is directly proportional
to the oxides/zeolite weight ratio. However, more interestingly is the extremely high
experimental H2/CuO molar ratio (between 1.42 and 1.60) with respect to the theoretical
stoichiometric H2/CuO ratio equal to 1.

Table 1. Quantitative analysis of the H2-TPR measurements.

Sample
H2 Consumption

(mmolH2/gcat) H2/CuO 1
Reduced

CuO 2

(%)

Reduced
ZnO 3

(%)

Reduction Peaks 4

(%)

Tred ≤ 350◦C δ Peak α β γ

CuZnZr 0.94 0.28 0.13 13 8 10 46 44

CZZ/FER OX 2:1 6.83 2.32 1.442 95 98 19 81 -

CZZ/FER OX 1:2 3.67 1.18 1.42 ~100 ~100 24 62 14

CZZ/FER WI 1:2 3.80 1.18 1.60 94 ~100 8 81 11

CZZ-FER MIX 1:2 1.95 0.51 0.82 82 7 12 13 57
1 The H2/CuO molar ratio was evaluated considering the area of the reduction peaks at T ≤ 350 ◦C and the
nominal composition of the catalyst. 2 The fraction of reduced CuO to metallic Cu at T ≤ 350 ◦C was evaluated
subtracting the desorbed amount of H2 at T > 350 ◦C to the area of the reduction peak at T ≤ 350 ◦C considering
the nominal composition of the catalyst. 3 The fraction of reduced ZnO to metallic Zn at T > 350 ◦C was evaluated
using the nominal composition of the catalysts. 4 The fractions of α, β and γ peaks were evaluated as the ratio
between the area of a deconvoluted peak and their total area.

The fraction of CuO reduced by H2 to metallic Cu was evaluated considering the
H2 absorbed within the structure of ZnO. More specifically, H2-TPR profiles were fitted
considering three peaks at low temperature (<350 ◦C) and a less resolved contribution
(δ-peak) at high temperature (350–800 ◦C), which corresponds to the reduction of ZnO to
metallic Zn. Some authors have reported that a synergistic effect between CuO and ZnO
results in a reduction of CuO and a partial reduction of ZnO at a low temperature [81,83,85].
Nevertheless, this interpretation is in contrast with previous findings from XRD. Thus, it is
more likely that nanoparticles of ZnO can store a huge amount of hydrogen within their
crystalline structure [86–89] so that atomic hydrogen can occupy interstitial position on the
surface and in the subsurface regions (<10 atomic layers) [86,87]. In addition, H2 adsorbs
and dissociates on the surface of metallic Cu, and then atomic H migrates toward the oxide
structure of ZnO [86]. Therefore, an intimate contact of Cu and ZnO particles emphasizes
this phenomenon [87].

What stands out from Figure S8 and Table 1 is that hybrid catalysts are more reducible
than the physical mixed catalyst, the incomplete reduction of the last sample being in
accordance with findings from XRD characterization (see Figure S6), where only diffraction
peaks of metallic copper at low intensity were observed. Gel-oxalate coprecipitation appears
as the best technique for producing high reducible copper particles with intimate contact
with ZnO. Furthermore, the area of the α-peak of the H2-TPR profile decreases, while the
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peak temperature of the γ-peak rises as the average crystallite size of CuO increases; hence,
α-peak is diagnostic of highly dispersed CuO particles, whereas the γ-peak accounts for
the reduction of bulky CuO species.

As reported in Table 1, ZnO was completely reduced by H2 to metallic Zn at high
temperatures (approximately 670 ◦C). Contrary to expectations, the peak temperature
of ZnO reduction (δ-peak) decreases as both the ZnO and CuO average crystallite sizes
increase. Yet, a signal drift below the baseline level suggests the release of interstitial
hydrogen from the ZnO structure, which is no longer not stored within the oxide structure
after the reduction of ZnO to metallic Zn.

XPS analyses was performed on calcined and spent samples to get information regard-
ing the oxidation state of all the elements present. In Table S5 the relative atomic concentra-
tion (at. %) determined by high resolution spectra for all the calcined samples is reported.

As reported in Figure 4, the Cu2p doublet has been acquired for all the samples
together with a metal reference, which has been previously Ar+ sputtered to remove oxide
surface layer.
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Figure 4. Cu2p high-resolution spectra for all the XPS tested samples and metallic Cu reference for
comparison. For clearness, each spectrum was normalized with respect to the maximum height of
the Cu2p3/2 peak.

A clear feature due to Cu(II) oxidation state is the presence of a shake-up satellite,
located between Cu2p3/2 and Cu2p1/2 peaks (and another paired satellite at higher binding
energy after Cu2p1/2). This satellite peak, due to outgoing photoelectrons that interact with
a valence electron and excite it to a higher-energy level, is not present either in Cu(0) (see
metallic Cu reference curve in Figure 4 or in Cu(I)). An intensity decrease of this secondary
signal is clear evidence that the reduction process has occurred [90]. Differently, after the
catalytic run, a certain re-oxidation takes place, this evidence being in accordance with
the XRD patterns. On the spent samples, a decrease in the Cu2p3/2 peak FWHM and a
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shift toward a lower binding energy with respect to the contribution of metallic copper
(932.7 eV) are also observable.

In Figure S9, Zn2p, Zr3d, Si2p and O1s high resolution spectra were also compared, in
order to check for other clear changes in the oxidation state of the selected elements. All the
samples showed a main peak located at ~1022 eV, which is due to ZnO species [91]. Zr3d
doublet also appear to be mostly identical for all the samples, and the peaks position has
been ascribed to stoichiometric zirconia [92,93] without any contribution due to sub-oxide
states. Additionally, Si2p peak has shown a main peak centered at 103.7 eV due to SiO2
chemical shift. At 101.6 eV the SiO contribution can also be recognized, while at 100.7 eV
the Si2O signal is diagnostic of the Si2p peak position shifted at lower binding energy,
as a typical feature of the CuZnZr-ferrierite based catalysts prompted by the synthesis
environment [94]. For the O1s peak, all samples show three main signals (denoted as
A, B, and C), which are attributed to the lattice oxygen (metal oxide), surface-adsorbed
oxygen (organic compound) and surface hydroxyl species (metal carbonate or hydroxide),
respectively [93]. It is not easy to separate the specific contribution of each species since
there is an overlap among all of them. However, the spent catalysts exhibited a decrease in
the signal intensity of the O1s contribution located at ~529.5 eV (peak A), as the result of a
clear loss of lattice oxygen (oxides) caused by the Cu reduction from (II) to (0) during the
catalyst activation or under the reducing atmosphere of the catalytic run.

Quantitative results of NH3-pulse chemisorption, summarized in Table 2, revealed a small
variation in total number of acid sites between fresh and spent catalysts. Commercial bare FER is
characterized by a concentration of acid sites of approximately 500 µmolNH3/gcat [22,56], while
fresh reduced hybrid catalysts obtained by gel oxalate coprecipitation and wet impregnation
exhibit a greater concentration of acid sites with respect to the bare ferrierite. These results are
in accordance with findings from other authors, considering that the metal deposition masks
some acid sites of the zeolite [76,95]. Furthermore, the fraction of strong acid sites in the hybrid
catalysts increased with respect to the bare ferrierite. According to FT-IR studies, this feature has
been ascribed to an ion exchange phenomenon that occurs during the deposition of the metal
load by forming Lewis sites [56,57,75,76,82].

Table 2. Quantitative data of NH3-pulse chemisorption.

Catalysts State
NH3 Uptake Weak Acid Sites 1 Strong Acid Sites 2

µmolNH3/gcat µmolNH3/gFER % %

Commercial FER
Fresh reduced 494 ± 50 494 ± 50 80 20

Spent - - - -

CZZ/FER OX 1:2
Fresh reduced 540 ± 37 810 ± 56 35 65

Spent 465 ± 12 698 ± 18 41 59

CZZ/FER WI 1:2
Fresh reduced 511 ± 24 767 ± 36 35 65

Spent 466 ± 17 699 ± 26 35 65

CZZ-FER MIX 1:2
Fresh reduced 270 ± 31 405 ± 47 60 40

Spent 248 ± 25 372 ± 38 64 36

CZZ/FER OX 2:1
Fresh reduced 271 ± 15 813 ± 45 42 58

Spent 269 ± 34 807 ± 102 28 72
1 It represents the fraction of NH3 desorbed below 300 ◦C. 2 It represents the fraction of NH3 desorbed
above 300 ◦C.

On the other hand, the spent CZZ/FER OX 1:2 and CZZ/FER WI 1:2 catalysts exhibit
a loss of acidity, so the blockage or the exchange of acid sites is likely to occur during
activity tests [22,83]. Furthermore, the CZZ/FER MIX 1:2 sample displays an acid capacity
(405 µmolNH3/gFER) comparable to the bare FER, evidently due to its preparation proce-
dure. In fact, CuZnZr and FER powders were physically mixed to obtain the bifunctional
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catalyst, without any contribution to the total NH3 uptake brought by the metal-oxides at
level of solid-state interaction.

3.2. Catalytic Screening in the Direct Hydrogenation of CO2 to DME
3.2.1. Activity Tests

The catalytic screening for the direct CO2 hydrogenation to DME were conducted at
2.5 MPa, inlet H2/CO2/N2 molar ratio equal to 3:1:1, varying the reaction temperature in
the range of 200–300 ◦C and the WHSV between 6.7 NLgcat

−1·h−1 and 20 NL·gcat
−1·h−1

(catalyst load = 1.5 g).
As illustrated in Figure 5, irrespective of the preparation method, the activity of cat-

alysts at an oxides/ferrierite weight ratio equal to 1:2 follows a similar trend, according
to which the conversion of CO2 increases with the reaction temperature. In particular,
CZZ/FER OX 1:2 appears to be the least active synthesized catalyst under the adopted op-
erating conditions, exhibiting CO2 conversion values ranging from ~1% at 200 ◦C to ~14%
at 300 ◦C. As expected, the performance of all the samples is very sensitive to the WHSV; in
fact, the CO2 conversion at 275 ◦C doubles by tripling the residence time. On the contrary, the
CZZ/FER WI 1:2 catalyst is less affected by a change of the WHSV, also attaining the same
performances of the CZZ/FER OX 1:2 at a high temperature. In our previous work [22], a
completely different result was obtained at 5.0 MPa and 8.8 NL·gcat

−1·h−1, wherein CZZ/FER
WI 1:2 revealed an extremely poor activity (from ~5% at 200 ◦C to ~14% at 260 ◦C) compared
to CZZ/FER OX 1:2 (from ~9% at 200 ◦C to ~21% at 260 ◦C). Evidently, a reduction in partial
pressure of the reactants mainly affects the activity of the CZZ/FER OX 1:2. Moreover, the
CO2 conversion of the CZZ-FER MIX 1:2 catalyst is extremely low at 200 ◦C, while it rapidly
increases by increasing the temperature to 18.5% at 300 ◦C and 6.7 NL·gcat

−1·h−1.
CZZ/FER OX 1:2 and CZZ/FER WI 1:2 catalysts were less active than the mixed

system, but their DME yield was extremely higher as the result of a lower activity in CO2
hydrogenation to CO through RWGS. In particular, the maximum DME yield was obtained
at 275 ◦C when operating at 6.7 NL·gcat

−1·h−1, reaching 2.1% (26.7 mgDME·gcat
−1·h−1),

2.06% (26.4 mgDME·gcat
−1·h−1) and 1.18% (15.3 mgDME·gcat

−1·h−1) for CZZ/FER OX 1:2,
CZZ/FER WI 1:2 and CZZ-FER MIX 1:2, respectively. As expected, the DME yield decreases
at a higher WHSV, but the specific productivity of DME (mgDME·gcat

−1·h−1) approximately
doubles. By looking at the DME selectivity, a typical trend decreasing with the reaction
temperature was recorded, with the maximum values of 53%, 47% and 33% obtained at
225 ◦C and 13.3 NL·gcat

−1·h−1 for the CZZ/FER WI 1:2, CZZ/FER OX 1:2 and CZZ-FER
MIX 1:2 samples, respectively. Furthermore, it is worth noting that the DME selectivity
does not change sensibly by varying the residence time. As far as the CO yield is concerned,
RWGS reaction starts to prevail at 250 ◦C since it becomes thermodynamically favored
by increasing the reaction temperature. On this account, CZZ-FER MIX 1:2 was the most
selective system toward CO, while CZZ/FER WI 1:2 exhibits the lowest CO selectivity in
any experimental conditions. For the sake of completeness, it is worth mentioning that the
uncertainty on the experimental data is generally greater at lower temperatures due to the
low CO2 conversion and the smaller quantity of products at the outlet of the reactor.

Undergoing a fast dehydration rate, MeOH yield appears extremely low. However, it
slightly increases as the temperature rises when the process approaches thermodynamic
equilibrium, and the DME yield remains almost unchanged above 275 ◦C. On the whole,
at an oxides/zeolite ratio of 1:2, the catalyst prepared by impregnation is less affected
by an increase in WHSV, maintaining its highest DME yield even at a space velocity as
high as 13.3 NL·gcat

−1·h−1.
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(b) CO, (e) CH3OH and (h) DME selectivity at 13.3 NL·gcat
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By increasing the oxides/zeolite weight ratio up to 2:1, what is striking is the com-
pletely different behavior observed in respect of the catalysts with a ratio of 1:2 (see Figure 6).
CZZ/FER OX 2:1 is indeed extremely more active in CO2 hydrogenation, as the result
of a double amount of metals. More specifically, the CO2 conversion of this sample is
significantly affected by a variation in WHSV especially below 275 ◦C, approaching to the
thermodynamic equilibrium at 300 ◦C. This aspect is easily explained by considering that
CO2 is converted both to MeOH and CO on the metal-oxide sites of the CuZnZr phase, while
the dehydration of MeOH into DME occurs on the acid sites of the ferrierite [22,40,42,96].
From a quantitative point of view, the overall specific surface area of CZZ/FER OX 2:1 is
roughly halved with respect to the bare ferrierite, because oxides typically account for a
lower surface area than zeolites. For these reasons, a larger amount of metal-oxide phase
increases the site exposure for converting CO2 to MeOH and/or CO, while remaining
adequate the accessible surface of the ferrierite to dehydrate MeOH to DME.
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Figure 6. (a) CO2 conversion and (b) CO, CH3OH and DME selectivity of CZZ/FER OX 2:1. Reaction
conditions: 2.5 MPa, inlet molar ratio H2/CO2/N2, 3/1/1.

Really, taking advantage of its higher oxides/ferrierite weight ratio, the CZZ/FER OX 2:1
sample exhibited the best performance during direct hydrogenation of CO2 to DME. More
specifically, coprecipitated CZZ/FER OX 2:1 exhibited a DME yield that peaked close to
5.0% (58.9 mgDME·gcat

−1·h−1) at 250 ◦C and 6.7 NL·gcat
−1·h−1, while remaining below 4%

(138.3 mgDME·gcat
−1·h−1) at 275 ◦C and 20.0 NL·gcat

−1·h−1. In terms of MeOH yield, the high-
est value was obtained at 275 ◦C, roughly attaining 1.4%, whereas due to a larger number of
metallic sites on this hybrid catalyst, the CO yield approximately follows the thermodynamic
profile because of a large contribution of RWGS driven by a metal-based phase. For the sake
of clarity, in Figures 5b and 6b, the experimental CO selectivity is greater than the thermody-
namic at low temperatures because the average reaction rate of CO production at the reaction
conditions is relatively higher than the reaction rate of CO production at the equilibrium.

3.2.2. Structure–Activity Relationships

The results obtained from the experimental tests of catalytic activity are certainly
to be related to the physico-chemical properties of the catalytic materials. It is worth
pointing out that the behavior and characteristics of the metal oxides and of the zeolite are
completely different from each other; therefore, catalytic performances are the result of a set
of distinctive characteristics led by the different preparation procedures and interactions
between metal-oxides and zeolite phase.
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As seen in Table S3, the total specific surface area and the specific micropores area
decrease as the metallic load in the catalyst increases, while the average pore diameter
increases. Considering that, as shown in Figure 7a, the specific CO2 conversion rate
decreases as the total specific surface area rises, it is evident that increasing the metallic sites
by increasing the mass of CZZ, reduces the total surface area of the catalyst. The oxides
have indeed a lower specific surface area than the ferrierite; moreover, the deposition
(impregnation or co-precipitation), may occlude pores of the zeolite. Hence, an increase of
the metal oxide/zeolite mass ratio favors the methanol synthesis, but the mass of zeolite
decreases (by keeping constant the overall mass of catalyst) and the limiting reaction
step from the methanol synthesis becomes the methanol dehydration and so the overall
CO2 conversion becomes independent of the increase of the oxide/zeolite mass ratio.
Furthermore, this effect appears more pronounced at a higher temperature, wherein the
formation of CO becomes preferential, hindering the consecutive dehydration path of
methanol to DME, in turn limiting the driving force for CO2 conversion. According to
the literature, the oxide/zeolite mass ratio exhibits a maximum that represents the best
compromise between the methanol synthesis that occurs on the metallic phase and the
methanol dehydration that occurs on the acid sites of the zeolite [25]. In this work, the
catalyst with an oxide/zeolite ratio equal to 2 (i.e., CZZ/FER OX 2:1) seems to exhibit the
best performances.
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Figure 7. Relationships between the CO2 conversion rate and (a) the specific surface area and (b)
the average crystallite size of the metallic Cu of the spent samples. Reaction conditions: 2.5 MPa;
inlet H2/CO2/N2, 3/1/1 mol/mol; WHSV, 20 NL·gCuZnZr

−1·h−1 (• CuZnZr; � CZZ/FER OX 2:1;
� CZZ/FER OX 1:2; N CZZ/FER WI 1:2; H CZZ-FER MIX 1:2).

In addition, as shown in Figure 7b, not only the metal loading but also the size of
the metallic copper crystallites significantly affects the specific CO2 conversion rate. In
particular, a volcano-shaped trend is observed at any temperature, according to which
the CO2 conversion rate goes through a maximum for intermediate sizes of metallic Cu
crystallites (i.e., ~17 nm). Since the dispersion of the metals decreases as the size of the
Cu crystallites increases, consequently the number of active sites for the conversion of
CO2 also diminishes. Although a smaller size of the metallic Cu crystallites accounts for
a higher dispersion of metals and number of active sites, the small crystallites tend to
aggregate thus forming metal clusters at a low extent of metal-oxide interface, basically
representing the surface region where CO2 is more likely activated [22,25,56,62]. Likewise,
very large crystallites (>20 nm) also depress the catalytic activity, as the result of a poor
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metal–oxide interaction exhibited by the mixed CZZ-FER MIX 1:2 sample or macroscopic
segregation of oxides during impregnation of ferrierite in CZZ/FER WI 1:2, well evidenced
in FESEM images and EDS mapping. Obviously, the extent of the metal–oxide interaction
also depends on the dispersion of ZnO, which is thermally more stable with smaller
crystallite sizes (~8 nm), enhancing the conversion of CO2 [86].

A higher initial crystallite size of CuO is also put in relation both with a reduction of
the α-peak of the H2-TPR profile and an increase in the area of the γ-peak of the H2-TPR,
being that the bulk CuO of crystallites and nanoparticles is more difficult to be reduced.
Similarly, the H2 consumption of the low temperature peak (i.e., α + β + γ) decreases as
the size of the ZnO crystallites increases since the crystallites are larger and the atomic
H can also diffuse within the ZnO structure [86,88,89]. At the same time, the fraction of
copper and zinc on the surface of the material measured by using XPS increases with the
average size of the copper and ZnO crystallites. A greater quantity of ZnO exposed on
the catalyst surface seems to improve the rate of CO2 conversion, with a direct effect on
DME selectivity at expenses of CO. On the other side, at an oxides/weight ratio as high as
2:1, a decrease in the surface atomic concentration of SiO2 leads to a decrease in the total
surface acidity of the samples, directly affecting the methanol dehydration step to DME
and conversely favoring an increase in CO selectivity.

3.2.3. Stability Tests

In Figure 8, the results of the stability tests on the CuZnZr ferrierite-based hybrid
catalysts are reported. They were carried out at 13.3 NL·gcat

−1·h−1 and 275 ◦C for ~20 h in
order to stress the catalysts in a comparable range of performances.
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Figure 8. CO2 conversion during stability tests (~20 h). Reaction conditions: 2.5 MPa; 275 ◦C; inlet
H2/CO2/N2, 3/1/1 mol/mol; WHSV, 13.3 NL·gcat

−1·h−1. The solid lines represent the interpolated
exponential function of the catalyst deactivation.

The CO2 conversion profile of each durability test was then fitted by using an ex-
ponential function, as reported in Equation (6) [56]; where ζCO2,0 and ζCO2(t) represent,
respectively, the initial CO2 conversion and the CO2 conversion at the t-th time, kd (h−1) is
the deactivation constant and t (h) is the time.

ζCO2(t) = ζCO2,0 · exp(−kd · t) (6)

As shown in Figure 8, irrespective of the oxides/ferrierite weight ratio, the CO2
conversion trend is quite similar for the samples prepared by gel-oxalate coprecipitation
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and impregnation, showing a comparable deactivation trend, despite the difference in
the initial activity. Instead, the mixed CZZ-FER MIX 1:2 system exhibits a flatter pattern
without any visible loss of activity after 20 h with respect to the fresh catalyst. As previously
discussed, such an almost constant stability pattern of the CZZ/FER MIX 1:2 sample is
mainly to be related to a low mutual interaction among sites of different nature, prompted
by the mixing of the two preformed catalysts (i.e., CuZnZr and FER) which, on one hand,
brings to low activity but, on the other hand, to high stability. Whereas, on the other
samples a higher synergy among metal-oxide-acid sites during the synthesis procedure, as
highlighted by microscope investigations, negatively affects the evolution of the activity
during time-on-stream.

Table S6 summarizes the deactivation parameters of the exponential deactivation
function of all hybrid catalysts; in more detail, CZZ/FER WI 1:2 exhibited the highest
loss in activity (9.36·10−3 h−1), whereas the physically mixed catalyst was the most stable
(1.17·10−3 h−1). The loss in activity and the change in selectivity can really be associated
to several phenomena. According to the open literature, the water produced during the
process could inhibit active sites of the catalyst and mainly affect the acid sites of the
zeolite [40,56,97]. The catalytic performance during a duration test is indeed sensible to the
variation of spatial velocity, which can determine important physico-chemical modifications
depending on its extent [56]. As reported by Bonura et al. [56], the transitional behavior of
the selectivity profiles of DME, MeOH and CO lasts ~3 h at 13.3 NL·gcat

−1·h−1, so that after
the initial modifications, the selectivity profiles of each catalyst are roughly constant. In this
initial loss in activity a certain role is also exerted by metal sintering, favored by reaction
conditions as well as by location and availability of the acid sites more or less prone to
adsorb water formed during run [56,81,86]. As illustrated in Figure 9, the deactivation rate
increases with the acidity of the samples; this trend being more evident when an intimate
contact between the metal-oxide phase and the zeolite is realized [56].

Materials 2022, 15, x FOR PEER REVIEW 19 of 24 
 

 

 

 

Figure 9. Relationship between the deactivation constant and the total specific surface acidity of the 

CuZnZr ferrierite-based hybrid catalysts (♦ CZZ/FER OX 2:1, ■ CZZ/FER OX 1:2, ▲ CZZ/FER WI 

1:2 and ▼ CZZ-FER MIX 1:2). 

Furthermore, such a close synergy among sites can also cause a fast deactivation of 

the hybrid catalysts, due to a possible migration of metal clusters induced by water 

formed during reaction and promoting an exchange with the acid sites of the zeolite 

[81,85]. Another deactivation phenomenon may be coking; however, Miletto et al. [75] and 

Bonura et al. [56] have demonstrated the absence of carbon deposition on the surface of 

spent CuZnZr-ferrierite catalysts. Therefore, this deactivation mechanism was excluded. 

Other studies have reported a progressive deactivation of hybrid catalysts, following a 

significant loss in CO2 conversion and DME selectivity at expense of an increase in CO 

selectivity during stability tests at high residence time [40,56]. Nonetheless, as shown in 

Figure S10, despite a progressive loss in activity, the stability tests displayed only slight 

changes at the level of selectivity patterns. Further investigations should be carried out to 

better investigate the long-term modifications that occur in the catalysts by performing 

durability tests of at least 100 h. 

4. Conclusions 

In this work, the behavior of differently prepared CuZnZr ferrierite-based hybrid 

catalysts was investigated in light of physico-chemical modifications occurring during the 

direct hydrogenation of carbon dioxide into dimethyl ether. The N2 physisorption and the 

porosimetry analyses highlighted a decrease in the surface area and a broadening of the 

mesopore size distribution in the spent catalysts, mainly related to the sintering of the 

metallic phase on the surface of the ferrierite, enhanced by a blockage of the active sites 

caused by wetting. Indeed, XRD analysis revealed a widening of the copper and zinc crys-

tallites, whereas Zr was present in an amorphous phase, and along with XPS and H2-TPR 

characterizations an incomplete reduction of the CuO below 350 °C was also evidenced. 

Regarding the morphological analysis performed by FESEM, EDS and TEM on the syn-

thesized catalysts, it was observed how the distribution of the oxide phase on the surface 

of the zeolite significantly affects the mass-transfer phenomena among neighboring sites 

within the catalyst. 

During the catalytic tests, the CZZ/FER OX 2:1 hybrid catalyst, prepared by gel-oxa-

late coprecipitation at an oxides/zeolite weight ratio as high as 2:1, reached a CO2 conver-

sion close to 5.0% (58.9 mgDME∙gcat−1∙h−1) at 250 °C and 6.7 NL∙gcat−1∙h−1. As for the samples 

Figure 9. Relationship between the deactivation constant and the total specific surface acid-
ity of the CuZnZr ferrierite-based hybrid catalysts (� CZZ/FER OX 2:1, � CZZ/FER OX 1:2,
N CZZ/FER WI 1:2 and H CZZ-FER MIX 1:2).

Furthermore, such a close synergy among sites can also cause a fast deactivation of
the hybrid catalysts, due to a possible migration of metal clusters induced by water formed
during reaction and promoting an exchange with the acid sites of the zeolite [81,85]. Another
deactivation phenomenon may be coking; however, Miletto et al. [75] and Bonura et al. [56]
have demonstrated the absence of carbon deposition on the surface of spent CuZnZr-ferrierite
catalysts. Therefore, this deactivation mechanism was excluded. Other studies have reported
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a progressive deactivation of hybrid catalysts, following a significant loss in CO2 conversion
and DME selectivity at expense of an increase in CO selectivity during stability tests at high
residence time [40,56]. Nonetheless, as shown in Figure S10, despite a progressive loss in
activity, the stability tests displayed only slight changes at the level of selectivity patterns.
Further investigations should be carried out to better investigate the long-term modifications
that occur in the catalysts by performing durability tests of at least 100 h.

4. Conclusions

In this work, the behavior of differently prepared CuZnZr ferrierite-based hybrid
catalysts was investigated in light of physico-chemical modifications occurring during the
direct hydrogenation of carbon dioxide into dimethyl ether. The N2 physisorption and
the porosimetry analyses highlighted a decrease in the surface area and a broadening of
the mesopore size distribution in the spent catalysts, mainly related to the sintering of
the metallic phase on the surface of the ferrierite, enhanced by a blockage of the active
sites caused by wetting. Indeed, XRD analysis revealed a widening of the copper and
zinc crystallites, whereas Zr was present in an amorphous phase, and along with XPS
and H2-TPR characterizations an incomplete reduction of the CuO below 350 ◦C was also
evidenced. Regarding the morphological analysis performed by FESEM, EDS and TEM on
the synthesized catalysts, it was observed how the distribution of the oxide phase on the
surface of the zeolite significantly affects the mass-transfer phenomena among neighboring
sites within the catalyst.

During the catalytic tests, the CZZ/FER OX 2:1 hybrid catalyst, prepared by gel-
oxalate coprecipitation at an oxides/zeolite weight ratio as high as 2:1, reached a CO2
conversion close to 5.0% (58.9 mgDME·gcat

−1·h−1) at 250 ◦C and 6.7 NL·gcat
−1·h−1. As for

the samples with an oxides/zeolite weight ratio of 1:2, the highest activity was obtained on
the CZZ/FER WI 1:2 and the CZZ/FER OX 1:2 hybrid catalysts, with a comparable DME
yield of ~2.0% (20–30 mgDME·gcat

−1·h−1) at 275 ◦C and 6.7 NL·gcat
−1·h−1. Furthermore,

their activity decreased as the WHSV increased and the CZZ/FER OX 1:2 seemed to be
more sensible to a variation in the residence time.

The stability tests showed a progressive decrease in the CO2 conversion, as the result
of a mix of phenomena prompted by water formation under the adopted experimental
conditions and ascribable to the metal sintering of the active phase, a change in the devel-
opment of the surface area and/or a loss of surface acidity for possible exchange of metal
atoms (or clusters) with acid sites of the zeolite. These phenomena appeared less marked
on the sample in which the preformed methanol synthesis catalyst was barely mixed with
the ferrierite, even if the random and limited synergy among the sites generated behind this
simple preparation procedure determined a poorer performance than the hybrid catalysts,
instead characterized by a mutual cooperation of sites suitable to drive the hydrogenation
of CO2 directly to DME.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma15217774/s1, Table S1: Apparent densities of each catalyst in the catalytic
bed (particle size range: 250–500 µm); Table S2: Relative atomic concentration calculated from ICP
measurements for all the calcined samples; Table S3: Textural properties of calcined and spent catalysts
estimated by means of N2 physisorption; Table S4: Average crystallite size of CuO, Cu and ZnO estimated
by means of Scherrer’s equation; Table S5: Relative atomic concentration (at.%), calculated from high-
resolution spectra, for calcined and spent samples measured by XPS; Table S6: Deactivation parameters of
the CuZnZr ferrierite-based hybrid catalysts; Figure S1: (a) N2-physisorption isotherms, (b) pore volume
and (c) pore area distributions of calcined commercial bare ferrierite; Figure S2: (a) N2-physisorption
isotherms, (b) pore volume and (c) pore area distributions of calcined and spent CZZ/FER OX 1:2;
Figure S3: (a) N2-physisorption isotherms, (b) pore volume and (c) pore area distributions of calcined
and spent CZZ/FER OX 2:1; Figure S4: (a) N2-physisorption isotherms, (b) pore volume and (c) pore area
distributions of calcined and spent CZZ/FER WI 1:2; Figure S5: (a) N2-physisorption isotherms, (b) pore
volume and (c) pore area distributions of calcined and spent CZZ/FER MIX 1:2; Figure S6: XRD patterns
of (a) calcined and (b)spent catalysts (• CuO, � Cu and ♣ ZnO); Figure S7: Backscattered FESEM

https://www.mdpi.com/article/10.3390/ma15217774/s1
https://www.mdpi.com/article/10.3390/ma15217774/s1
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images and EDS maps of calcined (a) CZZ/FER OX 1:2, (b) CZZ/FER OX 2:1, (c) CZZ/FER WI 1:2 and
(d) CZZ/FER MIX 1:2; Figure S8: H2-TPR profiles of the investigated catalysts; Figure S9: XPS HR
spectra for Zn2p3/2, Zr3d, Si2p and O1s peaks of CZZ/FER hybrid samples; Figure S10: DME, MeOH
and CO selectivity profiles of the hybrid catalysts during the stability test: (a) CZZ/FER OX 1:2,
(b) CZZ/FER OX 2:1, (c) CZZ/FER WI 1:2 and (d) CZZ-FER MIX 1:2. Reaction conditions: 2.5 MPa;
275 ◦C; 13.3 NL·gcat

−1·h−1; inlet H2/CO2/N2, 3/1/1 mol/mol.
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