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Abstract 
Unwanted vibrations in mechanical structures may gradually lead to failures of 

the components and consequently the operating system. Such oscillations could be 
induced by different external or internal excitation sources depending on the 
working condition. A particular form of excitation is generated due to the variation 
of physical characteristic parameter(s) of the operating system with time and is 
known as ‘Parametric Excitation’. Parametric excitation is observable in various 
mechanical structures such as a simple swinging pendulum, rotating machineries, 
offshore structures, etc. The main property of a parametrically excited system is the 
occurrence of unstable zones, containing diverging responses, which are separated 
from the stable zones by means of the so – called ‘Transition Curves’. Such 
instabilities arise due to pumping extra energy to the operating system when the 
frequency of the parametric excitation approaches the Twice of the natural 
frequency/ies or the Combination (summation or difference) of the two different 
natural frequencies. The regions of instability formed around the twice and 
combination of the natural frequencies are respectively known as ‘Primary’ and 

‘Combination’ parametric resonances.  
In this research work, the state-of-the-art stability analysis approaches 

applicable to the study of parametrically excited systems i.e. Floquet Theory, Hill’s 

method, Harmonic Balance Method (HBM), Multiple Scales Method, and recently 
developed method named Jacobian Based Approach (JBA) are explained in detail. 
The implementation procedure and the applicability of each stability analysis tool 
have been explained in detail via an example of a Mass – Spring – Damper. In this 
chapter, the accuracy and efficiency of JBA have been evaluated by comparing the 
results and the computational time outputted from this method and the state-of-the-
art stability analysis approaches.  

A detailed study of the HBM for the stability analysis of a parametrically 
excited system is performed in the third chapter of the thesis. A Jeffcott rotor 
supported by Rolling Elements Bearing (REB) is adopted as a case study. Here, the 
REB due to its varying compliance has been modeled as a time – varying stiffness, 
introducing the parametric excitation in the system. In this study, an improved form 
of HBM named ‘Trained HBM (THBM)’ to obtain the stability plot has been 
proposed. However, it has been proven that THBM is not efficient to implement for 
bigger systems. In this chapter, a detailed study of the newly proposed method i.e. 
Jacobian Based Approach (JBA) is given and its efficiency and applicability have 
been further investigated. 

The study of the JBA’s applicability for stability analysis of a more complex 
system under parametric excitation and an experimental study of the instability 
triggered by the parametric excitation are performed in chapter 4. For this work, a 
cantilever beam model mounted on a spring with time – varying stiffness is adopted 
as a demonstrator. By comparing the stability plots obtained by JBA and Hill’s 

method, the performance of the JBA has been examined. A test rig consisting of a 



 
 

cantilever beam and an electromagnet unit is designed for the experimental activity.  
In this study, it has been demonstrated, experimentally and numerically, that the 
electromagnet generates a time –varying stiffness where by tuning the frequency of 
the electromagnet to the combination parametric resonance frequency a diverging 
response of the beam is observed. The validity of this study is justified by validating 
the numerical results by the results from the experiment at the combination 
parametric resonance frequency. 
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Chapter 1 

Introduction & Literature Review  

1.1 Introduction 

Unwanted vibrations are one of the indisputable occurrences in oscillating 
structures. Depending on the structure, the excitation imposed on the system can 
have different sources. For instance, in rotating machinery an unbalance disk, 
mistuning, flutter, varying compliance of the rolling bearings, defective bearings, 
cracks etc. can lead to undesirable oscillations of the system.  

In some oscillating structures, the extra energy fed into the system might be 
produced from a physical parameter of the system whose value is a function of time. 
Such an excitation generated by a time – varying physical parameter of the vibrating 
system is known as “Parametric Excitation”. As a simple illustration of a 
parametrically excited system, a pendulum with support motion is demonstrated in 
Figure 1. For small vibration amplitude, the governing equations of motion could be 
expressed as the following (Das and Wahi, 2017): 

 2 cos 0ML C MgL MLA t           (1.1) 

This is a typical example of a system under parametric excitation caused by a 
time – dependent stiffness.  

 
Figure 1: Parametrically excited pendulum 
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The characteristic of systems under parametric excitation is the emersion of 
unstable regions around specific exciting parametric frequencies different from 
simple resonances. Such frequencies are referred to as ‘Parametric Resonance 
Frequencies’.  The aforementioned unstable zones contain responses growing with 
time and periodic responses at their border. The curve passing through the periodic 
responses are called “Transition Curves” which highlight the boundaries of 

stability. Typically, the instability due to parametric excitation occurs when its 
frequency is either close to twice each natural frequency of the system or the 
combination (summation or subtraction) of the two natural frequencies. The 
unstable zones/instabilities formed around these frequencies are respectively 
known as ‘Primary Parametric Resonance’ and ‘Combination Parametric 
Resonance’ regions (Champneys, 2011):  

n

n n

Primary Parametric Resonance Frequency:   

Combination Parametric Resonance Frequency:  

2ω

ω ω

i

i j

l

l










  (1.2) 

Here ωn𝑖
 and ωn𝑗

 are the natural frequencies of the system and 𝜂 is the 
representative of the frequency of the parametric excitation. In Eq. (1.2) 𝑙 in the 
denominator is an integer number that determines the order of the resonance and 
𝑙 = 1 is the most significant case.  

Depending on the number of the Degrees of Freedom and Natural Frequencies 
of the system under parametric excitation, following scenarios may occur:  

 In the case of a single Dof system, the instability due to the Primary Parametric 
Resonance exists. This will be shown in chapter 2.  

 In the case of a 2-Dof system with two equal natural frequencies i.e. ωn𝑖
=

ωn𝑗
= ωn (like the first two bending modes of a Jeffcott Rotor which will be 

discussed in chapter 3), the instability due to the Combination Parametric 
Resonance is present.  

 In the case of  n-Dof (n ≥ 2) system with different natural frequencies ωn𝑖
 and 

ωn𝑗
, instabilities caused by both the Primary and Combination Parametric 

Resonances arise. This point will be investigated in chapter 4.  
The typical approach to study parametrically excited systems is via providing 

the so – called ‘Stability Plot’ as demonstrated in Figure 2. As shown in this figure, 
this plot is built by taking the physical parameters of the understudy system as 
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control parameters. Depending on the adopted stability analysis method, one would 
be able to present the stability plot either by determining the area containing the 
unbounded responses, highlighted by black, or by specifying the Transition Curves 
(Jazar, 2004) (Rand, 2014). This point will be discussed in detail in chapter 3.  

 
Figure 2: Sample stability plot demonstration  

1.2 Literature review 

In this section, some of the previous works, theoretical & experimental, regarding 
the parametric excitation phenomena are reviewed. Here, it has been tried to go 
over a variety of study contexts involving parametric excitation.  

Mathieu equation is considered as the characteristic equation representing 
parametric excitation. This ordinary differential equation, containing a periodic 
parameter, has been first proposed by Emile Mathieu (Mathieu, 1868): 

  cos2 0 ,    x t x  (1.3) 

where the real constants 𝛿 and 𝜀 are respectively named characteristic number and 
parameter. The presence of time – dependent parameter in Eq. (1.3) is quite 



4 Introduction & Literature Review 
 
advantageous in studying systems under parametric excitation. Numerous, 
engineering systems under parametric excitations have been modeled by such an 
equation and their dynamic behavior has been studied. A comprehensive study of 
the Mathieu equation has been done in (Kovacic, Rand, and Sah, 2018). This paper 
starts with the analysis of the simple form of the Mathieu equation where the 
stability plots are demonstrated. Then, different complementary parts are added 
such as damping and nonlinearity, and their effect on the primary stability plots are 
investigated in detail. El-Dib in (El-Dib, 2001) has focused on nonlinear Mathieu 
equation. In this study, the author utilized the Multiple Scales Method to investigate 
different sub and super harmonics responses and also their stability. Here, in the 
stability plots, it has been observed that nonlinearity would result in the generation 
of stable responses within the unstable responses, distinguished by transition 
curves. This peculiar phenomenon is called ‘coupled resonance regions’. The 
inhomogeneous, weakly nonlinear, and weakly damped form of the Mathieu 
equation has been studied in (Ramakrishnan and Brian F Feeny, 2012). In this 
study, adopting the multiple scales method different resonances of the system due 
to parametric excitation and nonlinearity have been identified. Rand et. al. in (Rand, 
Sah, and Suchorsky, 2010) researched a Fractional Mathieu equation. Such an 
equation according to the authors is applicable in different fields of study such as 
viscoelasticity, heat conduction etc. In this paper, the authors utilized the harmonic 
balance method to obtain the transition curves for different orders of the fractional 
part.  

One of the main contributions of the Mathieu equation is characterizing the 
dynamics of a pendulum under support motion. Nonlinear dynamic analysis of a 
parametrically excited pendulum has been done in (Garira and Bishop, 2003). Here, 
the authors performed a detailed analysis to investigate different phenomena due to 
nonlinearity such as period – doubling, bifurcation etc. A planar pendulum under 
elliptic force was studied by (Sah and Mann, 2012). Such force which is exerted by 
moving support is a ’cosine Jacobi elliptic function’. In this paper, the authors 

investigated the stability plot of the system using Floquet theory and HBM and 
compared the results. In addition, the effect of the amplitude of the elliptical force 
on the transition curves has been investigated. The stability analysis of a planar 
pendulum with butterfly – like motion was performed in (Younesian, Esmailzadeh, 
and Sedaghati, 2007). Such motion resulted in a governing equation of 
inhomogeneous Mathieu – type equation. In this study, the authors obtained the 
stability plot adopting the multiple scales method. An investigation of an 
asymmetric Mathieu equation which is a special case of the Mathieu equation has 
been conducted by (Marathe and Chatterjee, 2006). The Mathieu equation here was 
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adopted to characterize the motion of a pendulum with asymmetric elastic restrains 
and periodic oscillation of the support. Utilizing the Lyapunov – like exponent 
method, the authors found the stable and unstable responses of the system. An 
energy harvesting application attributed to an inverted pendulum floated in water is 
proposed in (Hasnain et al., 2020). In this paper, the authors followed the purpose 
of stabilizing the pendulum at its unstable upright equilibrium using parametric 
excitation. Here, the parametric excitation is simulated by the vertical motion of the 
pendulum’s support and, a generator is attached to the tip of the pendulum to 
generate the energy.  

In addition to the pendulum which is an example of a system with lumped mass 
(discrete system), numerous studies of continuous systems under parametric 
excitation have been carried out. A rotating beam under parametric excitation is 
studied (Arvin, Arena, and Lacarbonara, 2020). In this paper, the parametric 
excitation is induced by angular velocity modulation, time – dependency of angular 
velocity, and the stability of the system has been studied. Here the method of 
multiple scales was adopted and the instability of the first kind, primary parametric 
resonance, has been investigated. Another study on a parametrically excited beam 
model is performed by (Zhang et al., 2021). The considered model in this paper is 
an axially moving beam with time – varying transporting speed. Here, the stability 
of the system has been studied utilizing the multiple scales method at the primary 
parametric resonance frequencies. A nonlinear model of a rotating shaft under 
parametric excitation is considered by (Qaderi, Hosseini, and Zamanian, 2018). In 
this work, the parametric excitation has been provided by a periodic axial load. 
Here, it has been concluded that at the combination parametric resonance, the 
forward whirling mode could be suppressed and its energy transferred to the 
backward mode. The dynamic behavior of a simply supported beam under 
parametric excitation is studied by (Xu, Wang, and Li, 2021). Due to the diversity 
of parametric excitation in frequency, the authors considered the system under multi 
– frequency parametric excitation. Adopting the Floquet theory, the effect of single 
and multiple harmonic parametric excitations on the domain of instabilities has 
been compared and discussed.   

From the practical point of view, parametric excitation can be readily observed 
in a rotor system supported by Rolling Bearing Elements (REB) (Cao et al., 2018). 
This is due to the time – varying contact forces (equivalent to time – varying 
stiffness) generated by REB during their angular displacement. Even a healthy REB 
induces a parametric excitation and it is due to the ‘Varying Compliance’ (Sharma 
et al., 2018). As a result of the varying compliance of a loaded bearing, a loading 
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zone is formed within the bearing where the number of balls alters via rotation and 
correspondingly the stiffness of the bearing  [(Harris, 2001), (Gupta, Gupta, and 
Sehgal, 2011)]. A detailed study of varying compliance of the REB is performed 
by (Zhang, Chen, and Cao, 2015a) and (Zhang et al., 2020). After modeling the 
dynamics of the REB based on the Hertz Contact Theory, the method of harmonic 
balance and alternating frequency/time domain (HB – AFT) was adopted to seek 
different types of resonance/instability caused by the varying compliance. 
Numerous researches on the dynamic behavior of rotor systems mounted on REB 
have been conducted by scholars. Stability analysis of rotor system induced by the 
varying compliance of REB has been carried out by (Zhang et al., 2013) and (Zhang 
et al., 2016). In these papers, the parametric excitation is realized due to time – 
dependent stiffnesses generated by the supporting bearings. In addition, the 
instability has been investigated at the primary and combination parametric 
resonances via Floquet theory. A comprehensive investigation of the influence of 
varying compliance on the dynamics of a rotor system is performed by (Yang et al., 
2018). Here, the authors conducted numerical and experimental analyses to first 
observe the vibrations induced by varying compliance and also study the effect of 
different parameters such as the number of the balls and eccentricity on such 
vibrations. A Jeffcott rotor model supported by REB, considering the varying 
compliance and centrifugal forces of the REB, is studied by (Haslam, 
Schwingshackl, and Rix, 2020). In the work, by utilizing the HBM, the nonlinear 
vibration analysis of the system has been carried out. Furthermore, the stability 
analysis of the system using the Hill’s method has been investigated. The dynamic 
behavior of a rotor system mounted on REBs in investigated by (Villa, Sinou and 
Thouverez, 2008) and (Sinou, 2009). In these research works, the nonlinearity due 
to the varying compliance has been taken into account and a nonlinear vibration 
analysis using HBM has been accomplished.   

Similar behavior to varying compliance which results in the variation of the 
effective stiffness in time is observed in gearbox systems. In such structures at 
different time instances, different number(s) of teeth would be in contact; as a result, 
the effective mesh stiffness changes through time which results in parametric 
excitation occurrence (Bruzzone and Rosso, 2020). Stability analysis of planetary 
gear system considering the time – varying mesh stiffness is carried out by (Lin and 
Parker, 2002). In this paper, the stability plot where the domain of unbounded 
responses resulted from different parametric resonance frequencies is obtained 
analytically by the Multiple Scales Method. Approving the aforementioned results 
numerically, it has been shown that some of the instability regions could be 
suppressed under specific mesh phasing conditions. A very simple model of one 
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pair of in – contact gears is given by (Khang, Cau, and Dien, 2004). In this study, 
the effect of static transmission error in presence of the time – varying mesh 
stiffness has been investigated numerically and experimentally. An investigation of 
time - varying mesh stiffness is performed by (Hedlund and Lehtovaara, 2008). In 
this paper, the authors developed a test rig where the effect of the time – dependent 
mesh stiffness has been assessed by calculating the natural frequency of the rig. 
This procedure has been verified numerically by the FE model. The effect of speed 
fluctuations on instability regions of a planetary gear system is studied by (Qiu, 
Han, and Chu, 2017). Here, it has been indicated that the presence of speed 
fluctuations which result in frequency – modulated time – varying mesh stiffness, 
causes the emergence of more instability regions. In this paper, the exploitation of 
speed fluctuations to reduce the instabilities is also studied by the authors.  

Experimental investigations of instability occurrence due to parametric 
excitation and also exploitation of parametric excitation have been done in 
numerous researches. A theoretical and experimental study of a parametrically 
excited one DOF system has been done by (Yatawara, Neilson, and Barr, 2006). In 
the experimental part, the authors proposed a pendulum with base excitation and 
neglected the nonlinearity in the theoretical model. The stability plot obtained for 
the theoretical model applying Floquet theory well matched the experimental 
results for low – amplitude of vibrations. Parametric resonances of a double coupled 
pendulum are investigated by (Hocquet and Devaud, 2020). In this study, the 
parametric excitation, generated by length modulation, has been tuned around the 
primary and combination parametric resonances where the boundaries of stability 
– instability are obtained. In other studies, an electromagnet is used to generate the 
time – varying spring. The stability of a parametrically excited cantilever beam 
theoretically and experimentally is studied by (Han, Wang and Li, 2011). In this 
paper, to tune the numerical model to the experimental one the amplitude of the 
time – varying stiffness has been computed in terms of the flowing current for the 
constant gap between the beam and the electromagnet. Another numerical – 
experimental study of a parametrically excited system has been done by (Han, 
Wang, and Li, 2011). In this paper, the stability of a cantilever beam excited by two 
electromagnets has been taken into consideration. In the numerical part, the authors 
adopted Bolotin’s method for the stability analysis. In this paper, the instability 
investigation was performed for a single value of damping based on different gaps, 
location of the magnets, and excitation phase. Theoretical and experimental 
observations of reduction of vibration amplitude at the parametric combination 
resonance of difference type, are carried out by (Dohnal and Mace, 2008). In this 
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work, a cantilever beam under an electromagnetic field is used to demonstrate the 
experimental results. The exploitation of the parametric combination resonance of 
difference type or so – called “parametric combination anti – resonance” to reduce 
the vibration amplitudes is studied by (Dohnal, 2012). By adopting three 
experimental rigs Uniaxial electromagnetic actuator, Cantilever beam under 
electromagnetic field, and Rotor system with multiple disks mounted on magnetic 
bearings the author evidenced the occurrence of vibration suppression via 
augmentation of the damping resulted from the parametric combination anti – 
resonance. A detailed demonstration of vibration reduction employing the 
parametric combination anti – resonance is carried out in (Dohnal and Tondl, 2013). 
In this study, the authors investigated the influecen of parametric combination anti 
– resonance via modal interactions. Herein, it has been shown that at parametric 
combination anti – resonance frequency the energy could be transferred between 
any two modes of interest which results in the suppression of the level of oscillating 
energy. The application of energy harvesting of a cantilever beam model driven by 
parametric excitation is proposed in (Zaghari, Rustighi, and Ghandchi Tehrani, 
2018). In this paper, the authors performed a complete identification of the 
experimental model parameters (electrical parameters) to tune the numerical model. 
It has been demonstrated theoretically and experimentally that at the parametric 
resonances of the first and second kind, the piezo-electric maximizes energy 
production.  

Other sources of vibration which could give rise to parametric excitation are 
base (foundation) motions and cracks. Such incidents are observable in engineering 
structures specifically in rotary machinery. A rotor system model with an angular 
motion in three orthogonal directions, resulting in time – dependent mass, stiffness, 
and gyroscopic matrices, is studied by (Han and Chu, 2015). The authors performed 
the stability analysis via the discrete state transition matrix (DSTM) method. In this 
paper, the stability plots have been obtained and demonstrated by tuning the 
parametric frequency around the system’s forward, backward, and their summation 
frequencies. The same model of a rotor as in (Han and Chu, 2015) with a 3D base 
angular motions and asymmetric disk and shaft is studied by (Yi, Qiu, and Han, 
2018). In this research work, stability analysis using DSTM and investigations of 
different resonances due to the base motions are carried out. The stability of a rotor 
system, supported by magnetic bearings, under base periodic motions is studied by 
(Soni, Dutt, and Das, 2020). In this paper, it has been shown that due to the presence 
of time – varying parameters within the governing equations of motion, the 
emergence of unbounded/unstable responses is probable. To reduce the instabilities 
due to parametric excitation, two control laws i.e. PID and Four – element 
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(proposed by the authors) are considered for the magnetic bearings. The results 
show that the magnetic bearing operating under the suggested control law leads to 
a safer operation of the system under parametric excitation. Stability investigation 
of a rotor system with transverse breathing crack and an initial bending has been 
accomplished by (Wang, Xiong, and Hu, 2021). By formulating the crack, it has 
been shown that the stiffness matrix of the system becomes time – dependent which 
is representative of parametric excitation. In this paper, Hill’s method is adopted 
for the stability analysis. The stability of a rotor system with a cracked shaft is 
analyzed by (Sawicki and Kulesza, 2015). In this paper, the parametric excitation 
has been realized as a result of transverse breathing crack simulation. Here, the 
stability plots are obtained by the averaging method and Floquet theory. Comparing 
the results, the unstable regions due to primary and combination parametric 
resonances found by the averaging method are shown to be in good agreement with 
the ones obtained by Floquet theory.  

Stability analysis of offshore structures due to the wave motion is another field 
of study of vibrations induced by parametric excitation (Chang, 2008). In such 
structures, the wave of the water flow is introduced as a time – varying parameter 
in the governing equations of motion. The stability analysis of a top – tensioned 
riser (TTR) that connects a floating platform to the seabed is investigated by (Lei 
et al., 2017). In this paper, the parametric excitation has been exerted on the TTR 
caused by the heave motion of the platform, due to the sea wave, which is 
formulated by a time – varying tension. The unstable regions of the TTR, modeled 
by the Bernoulli – Euler beam, have been investigated by the extended precise 
integration method (EIPM) proposed by the authors. In this study, since at the onset 
of instability the displacement is small, the linear equation of motion was studied 
using EIPM. The stability analysis of the US navy’s Mobile Offshore Base (MOB) 

has performed by (Falzarano, Cheng, and Das, 2003). Due to the head seas 
consideration, only the roll motion, the main motion leading to the instability of the 
structure, has been taken into account. In this paper, by modeling the roll motion 
by the well – known Mathieu equation, the stability was obtained numerically using 
standard offshore analysis software. The dynamic behavior of a container ship 
during its rolling motion is studied by (Moideen, Falzarano, and Sharma, 2012). In 
this paper, first, the rolling motion of the ship with mono frequency has been 
formulated by the Mathieu equation and the possible unbounded response zones are 
demonstrated. second, it is proven that in the case of multi – frequency waves, the 
Mathieu equation is not valid anymore and must be substituted by Hill’s equation. 

In addition, the effect of parameters such as nonlinear damping provided by roll 
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tanks, bilge keels, and the ship’s forward speed have been investigated via the 
stability plot.  

Furthermore, in onshore structures such as wind turbines, the vibrations 
induced by parametric excitation are quite probable. In such structures, variation of 
the gravity force during the rotations of the blades and the aerodynamics effect of 
the wind stream introduce time – dependent parameters associated with the 
coordinate of the system which result in parametric excitation. A forced and 
nonlinear Mathieu equation representing the transverse vibration of a blade of a 
turbine, considering the change of the gravity and aerodynamic loads, is proposed 
by (Ramakrishnan and Brian F. Feeny, 2012). The investigation of superharmonic 
subharmonic and simple resonances has been done via the Multiple Scales method 
and the effect of parametric excitation on the amplitude of such resonances has been 
carried out. The stability analysis of a three – bladed wind turbine modeled as a 5-
DOF system has been performed by (Ikeda, Harata, and Ishida, 2018). In this study, 
the stability plots containing the regions of stable and unstable responses, have been 
obtained by using Floquet Theory. A simple model of a wind turbine system has 
been proposed by (Acar, Acar, and Feeny, 2020). In this paper, parametric 
excitation due to the stiffness variation of the blade caused y the change of gravity 
force is taken into account. Adopting the multiple scales method, the stability plots 
are obtained where the regions of instability are highlighted.  

In this thesis, an extensive study of all the state-of-the-art stability analysis 
approaches i.e. Floquet theory, Hill’s method, Harmonic Balance Method, and 

Multiple Scales Method, adopted for analyzing the stability of parametrically 
excited systems, is carried out. A substantial portion of the thesis is dedicated to a 
comprehensive and detailed study of the Harmonic Balance Method (HBM) used 
for the stability analysis of systems under parametric excitation.  

The main and core new contributions of this thesis can be summarized as 
follows. 
 Developing a new method named “Jacobian Based Approach (JBA)” to obtain 

the stability plots 
 Proposing an improved procedure of HBM denoted as “Trained HBM 

(THBM)” to locate accurately the unstable regions  

 Design of a simple test rig to prove experimentally the presence of instabilities 
due to parametric excitation.   
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1.4 Research objectives & Organization of the thesis  

This study has been dedicated to the investigation of the following objectives:  
 Examining and Comparing different stability analysis approaches implemented 

to a system under parametric excitation, with special attention to Harmonic 
Balance Method (HBM) 

 Broadening the application of HBM for stability analysis of a parametrically 
excited system 

 Experimental exploration of the instability caused by the combination 
parametric resonance frequency   

The structure of the thesis is as follows: 
 In chapter 2, the state-of-the-art stability analysis approaches i.e. Floquet 

Theory, Hill’s method, HBM, and the newly proposed method in this thesis 
named Jacobian Based Approach (JBA) are explained in detail through 
academic examples.  

 In chapter 3, stability analysis of a Jeffcott rotor induced by the varying 
compliance of supporting Rolling Bearing Elements, source of Parametric 
Excitation, is performed. In this chapter, all the stability analysis approaches 
introduced in chapter 2 are employed.  

 In chapter 4, a supplementary study of JBA for a more complicated model as 
well as an experimental – numerical investigation of parametric instability due 
to combination parametric resonance have been carried out.  

 The significant outcomes of the thesis and the potential future research topics 
are given in Chapter 5. 

 At the end of the thesis, the references and the appendices are presented. 
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Chapter 2 

Stability Analysis Techniques to 
Study Systems Under Parametric 
Excitation: Explanation & 
Implementation 

2.1 Introduction  

Due to the probability of instability occurrence in parametrically excited systems, 
this chapter has been dedicated to the explanation of the employed stability analysis 
approaches in this work.  

In this chapter, the state-of-the-art stability analysis approaches i.e. Floquet 
Theory, Hill’s method, Harmonic Balance Method (HBM), and a recently proposed 
method named “Jacobian Based Approach“ are introduced and explained in detail.  

Furthermore, an example of a simple mass – spring – damper is adopted to 
demonstrate the detailed implementation procedure of each stability analysis 
approach.  

2.2 Floquet Theory 

Floquet theory is mainly used to study the linear dynamical systems with 
periodic coefficients with the following general form: 
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In which could be expressed in a compact form as follows: 

         ,  ,   ,x t h t x t   (2.2) 

where {𝑥(𝑡)} is a 𝑁 – dimensional state vector and 𝜍 is a control parameter such as 
‘Exciting Frequency’ in dynamical systems. It must be noted that for a 𝑛-DOf 
system 𝑁 = 2𝑛. The vector symbol {} will be dropped for simplicity. Considering 
a solution of Eq. (2.2) denoted by 𝑥𝑝(𝑡), the stability of this solution could be 
examined by perturbing it with a small disturbance (Lazarus and Thomas, 2010):  

       ,px t x t p t   (2.3) 

where 𝑝(𝑡) is a perturbing term. Substituting Eq. (2.3) in Eq. (2.2) (Lazarus and 
Thomas, 2010): 

  , ,p px p h t x p    (2.4) 

Since 𝑥𝑝 is a solution of Eq. (2.2), hence, ℎ(𝑡, 𝜍, 𝑥𝑝) = 𝑥̇𝑝. By expanding Eq. 
(2.4) using the Taylor series around 𝑥𝑝: 
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and, reminding that ℎ(𝑡, 𝜍, 𝑥𝑝) = 𝑥̇𝑝 and neglecting higher order terms results in the 
following: 
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Where 𝐽(𝑡)is the Jacobian matrix and has the same periodic as 𝑥𝑝 which is 𝑇. 
The formula of 𝐽(𝑡) for a system of the form given by Eq. (2.1) is as follows: 
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To determine whether 𝑥𝑝(𝑡) is bounded or unbounded, one must investigate if 

𝑝(𝑡) diverges or converges through time. Eq. (2.6) is a linear homogenous 
differential equation and therefore it has 𝑁 linearly independent solutions such that 
any solution like 𝑝(𝑡) could be written in terms of their summation as follows 
(Thomas, O., Lazarus, A. and Touzé, 2010): 
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where 𝑐𝑛 are coefficients determined by the initial condition. Collecting all the 𝑝𝑖s 
in a matrix as 𝑃 = [𝑝1(𝑡) 𝑝2(𝑡)…𝑝𝑁(𝑡)], Eq. (2.8) could be expressed for each of 
the solutions as below:  

 

     

     

1 1

N N

p t J t p t

p t J t p t





 (2.9) 

Gathering all the differential equations in Eq. (2.9), they could be rewritten in 
the following matrix form: 

      P t J t P t  (2.10) 

Since 𝐽(𝑡) is periodic, the following is hold:  

              p t T J t T p t T p t T J t p t T         (2.11) 

According to Eq. (2.11), 𝑝(𝑡 + 𝑇) is a solution of the system where 𝑃(𝑡 + 𝑇) is a 
matrix of the form [𝑝1(𝑡 + 𝑇)…𝑝𝑁(𝑡 + 𝑇)]. Since the system can have just 𝑁 
linearly independent solutions, 𝑃(𝑡 + 𝑇) could be constructed by 𝑃(𝑡) as follows: 

      P t T P t    (2.12) 

It is observable that Eq. (2.12) builds the response at time 𝑡 + 𝑇 from time 𝑡. 
Such mapping enables to study the stability of the response [(Lazarus and Thomas, 
2010), (Nayfeh A. H., 1993)]. To compute Υ, one could study Eq. (2.12) at the 
initial condition 𝑡 = 0: 
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    0P T P   (2.13) 

Since 𝑃(0) is a matrix whose columns are linearly independent, it is acceptable 
to consider it as simple as possible. To this end, 𝑃(0) = 𝐼𝑁×𝑁 where 𝐼𝑁×𝑁 is the 
identity matrix (Rand, 2014). And, it results in:  

  P T   (2.14) 

In Eq. (2.14) Υ is called ‘Monodromy matrix’ and has a key role in determining 

the stability condition. To compute the Monodromy matrix Υ whose dimension is 
𝑁 × 𝑁, Eq. (2.10) must be solved numerically over one period 𝑇 for 𝑁 times 
(Lazarus and Thomas, 2010). For the ith time of the numerical computation, take 
the ith column of 𝑃(0) = 𝐼𝑁×𝑁 as the initial condition; for example for the 1st time 
of numerical computation adopt the 1st column of 𝑃(0) as the initial condition, for 
the 2nd time of numerical computation take the 2nd column of 𝑃(0) as the initial 
condition and so on. At the end of each ith time of the numerical computation, the 
obtained responses must be placed in the ith column of the matrix Υ.  

To investigate the role of the monodromy matrix Υ, the following 
transformation is considered (Rand, 2014):  

    Κ , Y t P t  (2.15) 

where 𝑌(𝑡) is another solution of the system and Κ is a non – singular matrix. 
Computing 𝑌(𝑡) after one period 𝑇 results in (using Eq. (2.12) and (2.14)):  
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Assuming that the eigenvalues of Υ, known as ‘Floquet Multipliers’, are distinct 
(Rand, 2014), then Κ−1ΥΚ would be a diagonal matrix with the eigenvalues of Υ on 
its diagonal elements. In this case, Eq. (2.16) turns into 𝑁 equations of the following 
form:   
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where 𝜆𝑖 represents the ith eigenvalue of Υ. Eq. (2.17) shows a mapping of 𝑦𝑛(𝑡) at 
time 𝑡 into its value at time 𝑡 + 𝑇. From Eq. (2.17), it is evident that: 
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According to Eq. (2.18), for an infinite time (𝑚 → ∞):  
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Eq. (2.19) shows that the perturbing term decays (bounded/stable 𝑥𝑝(𝑡)) if all 
Floquet multipliers are smaller than one in modulus; while the existence of one 
single Floquet multiplier greater than one in modulus results in the growth of the 
perturbation term through time and correspondingly unbounded/unstable 𝑥𝑝(𝑡).  

When |𝜆𝑛| ≈ 1, Depending on the value of 𝜆𝑛, the following conditions are 
held:  
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In this case, the response is said to be on the borders of stability which was 
previously referred to as Transition Curves’. Eq. (2.20) is explained more in detail 
in APPENDIX A.  
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It must be mentioned that the Floquet theory is capable of detecting all of the 

instabilities mentioned earlier in this chapter (Primary and Combination parametric 
resonances) by computing and examining the absolute value of the eigenvalues 
corresponding to the Monodromy matrix. This will be investigated and 
demonstrated later in this chapter.   

2.2.1 Case study: 1-Dof mass – spring – damper model  

In this section, the implementation procedure of the Floquet Theory for stability 
analysis of a simple system under parametric excitation is taken into account. For 
this study, a single Dof mass – spring – damper illustrated in Figure 3 is adopted as 
an example. The governing equation of the model is as follows: 

  1 1 1 1 11 0vm x C x K t x    (2.21) 

Where 𝐾𝑣1(𝑡) = 𝐾1 + 𝑘1 cos 𝜂𝑡 is the time – varying stiffness generating the 
parametric excitation whose frequency is denoted by 𝜂. The parametric excitation 
is a periodic function with period 𝑇 = 2𝜋/𝜂. The parameters 𝐾1 and 𝑘1 represent 
respectively the mean(static) value and amplitude of the harmonic part of the time 
– varying stiffness. The values of the parameters are given in  

Table 1. The damping is proportional and computed by 𝛼𝑚1 + 𝛽𝐾𝑣1.  

 
Figure 3: 1DOF Mass – Damper – Spring system with time – varying stiffness  
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Table 1: Values of the parameters of the model in Figure 3  

Parameters Values 

𝑚1(kg) 10 

𝐾1(N/m) 105 

𝜔𝑛(rad/s) √𝐾1/𝑚1 = 100 

𝜁 0.001 

For the stability analysis, a solution of Eq. (2.21) 𝑥1𝑝 is adopted. According to 
the previous studies e.g. (Champneys, 2011), the employed solution to investigate 
its stability is the trivial solution of the system which is simply the equilibrium. For 
the current model, the equilibrium is 𝑥1𝑝 = 0 and stability of the system around its 
equilibrium under parametric excitation would be studied. By perturbing the trivial 
solution: 

 1 0  ,  x p  (2.22) 

and substituting Eq. (2.22) in Eq. (2.21), the subsequent is obtained: 

  1 1 1 0vp pm C K t p    (2.23) 

To compute the Monodromy matrix, it is required to transform Eq. (2.23) to 
state – space form. To do so, the two – dimensional state vector {𝑦} is defined as 
follows: 

   1

2

y p
y

y p
   

    
  

 (2.24) 

Then, using Eq. (2.23) and Eq. (2.24): 

  
2

1
1 1

2 1 2
1 1

 v

y
y

K t Cy y y
m m

 
   

   
    
 

 (2.25) 

Where 𝐾𝑣1(𝑡) = 𝐾1 + 𝑘1 cos 𝜂𝑡. Using Eq. (2.1) and choosing the control 
parameters 𝜁 to be equal to the frequency of the parametric excitation 𝜂, then: 
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To compute the Jacobian matrix in 𝐽(𝑡), the derivatives given by Eq. (2.7) must 
be computed. Here the states are 𝑦1 and 𝑦2, hence: 

   1 1

1 1

(
0 1

  )vJ t K C
m m

t
 
 
  
  

 (2.27) 

Where 𝐽(𝑡) is periodic with 𝑇. Then by using Eq. (2.27), Eq. (2.25) would be 
rewritten as follows: 

  1 1

2 2

y y
J t

y y
   

   
   

 (2.28) 

As it was mentioned earlier, to study the stability of the system first the 
Monodromy matrix given by Eq. (2.14) must be computed. For this study, the 
parameters 𝑘1 and 𝜂 are taken as control parameters. To obtain the monodromy 
matrix, based on the procedure explained after Eq. (2.14), Eq. (2.28) is solved, using 
time – integration solver, two times (number of states) where each time the 
computational time lasts for one periodic 𝑇 = 2𝜋/𝜂 of the parametric excitation. 
For each computational round e.g. 1st or 2nd, the column of the identity matrix 

I2×2 = [
1 0
0 1

] corresponding to each round of the computation is adopted as the 

initial condition. By collecting the solutions obtained at the end of each round of 

the computation i.e. {
𝑦1
𝑦2
}, in each column of the Υ, the monodromy would be built. 

For example, solving Eq. (2.28)when 𝑘1 = 103 (
𝑁

𝑚
) and 𝜂 = 50 (

𝑟𝑎𝑑

𝑠
) resutls in the 

following Monodromy matrix Υ = [0.9875 −8.8793 × 10−7

0.0089 0.9875
]. Then, by 

computing the eigenvalues of the Monodromy matrix and examining their modulus 
according to Eq. (2.19). For this specific example the vector of the eigenvalues is 

equal to {𝜆1
𝜆2
} = {

0.9875
0.9875

} and since the modulus of both of the eigenvalues are 

lower than one, hence the system is stable.  
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Repeating the above procedure for different (𝜂, 𝑘1) values results in the 

stability plot shown in Figure 4. According to this figure, there are two unstable 
zones for this model shown by the black areas. The first unstable region is generated 
due to the simple resonance of the system. As shown here, the line of 𝜂 = 𝜔𝑛 passes 
through this area which proves the formation of this region as a result of simple 
resonance. The second unstable instead appears due to the parametric resonance. 
According to Figure 4, the second unstable area is formed around the line of 𝜂 =
2𝜔𝑛, in which according to Eq. (1.2) for 𝑙 = 1 are frequencies which cause 
instabilies due to the Primary Parametric resonance. In addition, since the system 
has just one natural frequency, the parametric instability is due only to the Primary 
parametric resonance. It is observable from this figure that instability due to the 
parametric excitation is quite significant and systems under such excitations must 
be analyzed carefully. It must be noted that the results from Floquet theory would 
be considered as the reference in the subsequent sections where other stability 
analysis approaches are explained.  

 
Figure 4: Stability plot of a parametrically excited 1-Dof mass – spring – damper 

model by implementing Floquet Theory  

Instability due to 
Simple resonance

Instability due to 
Primary Parametric resonance
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2.3 Harmonic Balance Method (HBM)  

Harmonic balance is an analytical approach that converts the governing equations 
of motion from the time domain to the frequency domain. By this transformation, 
one would be easily able to investigate resonance frequencies, study the effect of 
the nonlinearities [(Gastaldi and Berruti, 2017), (Krack and Gross, 2019)] etc, 
which are quite a time – consuming procedures in the time domain. 

Another application of HBM which has not been investigated adequately in the 
literature is to obtain the stability plot of a system under parametric excitation. 
According to Eq. (2.20), on the borders of stability there exist periodic responses; 
hence, it is quite convenient to implement HBM and find the corresponding 
transition curves (already explained in chapter 1). To proceed, consider a linear 
homogenous dynamical system including a 𝑇 – periodic coefficient 𝐾(𝑡) by the 
following general form: 

           0M r C r K K t r       (2.29) 

Here 𝐾(𝑡) is a time – varying stiffness which represents the parametric 
excitation and has a sinusoidal form as 𝐾0 + 𝐾𝑝 cos 𝜂𝑡. According to Eq. (2.20), 
there are periodic solutions of linear dynamic systems which are 𝑇 or 2𝑇 periodic. 
Considering these periodic solutions and applying Fourier series, each coordinate 
of the system in Eq. (2.29) could be written as follows (Rand, 2014): 

 
0, 1,2, 

sin cos  , 
2 2
 

 

 
  

 


hN

i iz iz
z

z t z tr a b  (2.30) 

where the 𝑇 and 2𝑇 periodic responses are the main components associated with 
the even and odd indices 𝑧 in Eq. (2.30). In detail 𝑧 = 1 and 𝑧 = 2 correspond to 

periodic responses of periods 2𝑇 and 𝑇 respectively. Here, 𝑁ℎ designates the 
number harmonics on which the Fourier series is truncated. By stacking all the 𝑟𝑖 in 
a column vector, substituting it in Eq. (2.29), and balancing the resultant equations 
according to each frequency content (harmonic), the following algebraic equation 
would be derived: 

    0  , J A   (2.31) 
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where [𝐽] is the Jacobian matrix given and {𝐴} is the vector of the sinusoidal 
amplitudes {𝑎𝑧} and {𝑏𝑧}. A detailed expression of [𝐽] is given in Appendix B. It 
must be pointed out that to obtain the transition curve using HBM, the Jacobian 
matrix [𝐽] must contain unknown parameter(s). This parameter could be chosen 
optionally and here it is considered as a function of 𝜂. For a non – trivial solution 
of Eq. (2.31) the determinant of [𝐽] must be equated to zero (Rand, 2014). Doing 
so, the Transition Curves corresponding to the 𝑇 and 2𝑇 periodic responses would 
be acquired.  

Expressing the coordinates as Eq. (2.30) results in transition curves that 
encompass unstable/unbounded responses due to Primary parametric and Simple 
resonances. However, these frequency components are inadequate to predict the 
unstable zones due to Combination Parametric resonances. To be able to find the 
transition curves corresponding to such instabilities, the frequency contents of Eq. 
(2.30) must be modified. According to what has already been pointed out in chapter 
1, the instabilities caused by Combination Parametric resonance contain responses 
with two incommensurable frequency components like 𝜔1 and 𝜔2 which have the 
following characteristic:   

 1 2       (2.32) 

Expanding each coordinate by: 

 
1 2

1 2
0, 1,2,  0, 1,2, 

sin cos sin cos ,
2 2
 

 
   

 
    

 
 

h hN N

i iz iz is is
z s

z t z tr a b c s t d s t  (2.33) 

and following the same procedure as before, an algebraic equation similar to Eq. 
(2.31) would be obtained. The difference here is that the Jacobian matrix is a 
function of 𝜔1 or 𝜔2 in addition to 𝜂. Since the number of unknowns has increased 
to two, it is necessary to have another equation as well as |𝐽| = 0. According to (W. 
szemplii~iska-stupnicka, 1978), the additional equation could be provided by 
equating the determinant of the highest minor of [𝐽], denoted by [𝐽]𝑚, to zero. 
Therefore, the following equations must be solved simultaneously to find the 
corresponding transition curves: 

 
0

0
m

J

J




 (2.34) 
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2.3.1 Case study: 1-Dof mass – spring – damper model 

In this section, the computation of the Transition Curves using HBM is taken 
into account. The simple mass – spring – damper depicted in Figure 3 whose 
governing equations of motion given by Eq. (2.21) is adopted as the case study.  

To proceed with HBM, first the response of the system 𝑥1 must be expressed 
in terms of the desired harmonics. As mentioned in section 2.3, the responses on 
the border of stability or transition curves are periodic with 𝑇 or 2𝑇. For the current 
system the 𝑇 = 2𝜋/𝜂. To obtain the transition curves, the response of the system 
must be expressed by the 𝑇 and 2𝑇 periodic responses and their harmonics using 
the Fourier series. Using Eq. (2.30), the 𝑇 and 2𝑇 periodic responses and their 
harmonics are expressed respectively by the 𝑥1𝑇 and 𝑥1𝑇𝑇 as follows: 
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 (2.36) 

The reason behind distinguishing the 𝑇 and 2𝑇 periodic responses is to specify 
and indicate their contributions to the computed transition curves. Then Eq. (2.35) 
and Eq. (2.36) must be substituted in the equations of motion given in Eq. (2.21). 
For example, the substitution of Eq. (2.35) in Eq. (2.21) results in the following: 
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Then, by balancing the resultant equations based on the frequency components 
used in Eq. (2.35) and Eq. (2.36), a set of algebraic equations would be obtained. 
Using the matrix – vector compact form, the resultant equation could be expressed 
as follows: 
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And, the Jacobian matrix corresponding to the 𝑇 and 2𝑇 periodic are 
respectively as follows: 
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As explained below Eq. (2.31), for non – trivial solutions, the determinant of 
the Jacobian matrix must be equated to zero. This results in the computation of the 
transition curves. For this study, the frequency of the parametric excitation 𝜂 is 
considered to be unknown. Hence, by solving the determinants of the Jacobian 
matrices give in Eq. (2.40) and Eq. (2.41), the values of 𝜂 at which non-trivial 
solutions of Eq. (2.38) and Eq. (2.39) exist would be computed.  

Recalling that in section 2.2.1 𝑘1 was adopted as a control parameter, by solving 
the determinants of 𝐽𝑇 and 𝐽𝑇𝑇 for different values of 𝑘1 and collecting the computed 
values of 𝜂, a stability plot depicted in Figure 5 depicting the transition curves is 
acquired. According to this figure, the transition curves obtained using HBM, 
accurately locate the unstable regions computed by the Floquet theory designated 
by the black dots. As shown in Figure 5, solving the determinant of 𝐽𝑇  
corresponding to the 𝑇 periodic responses result in the transition curves highlighting 
the area of instability caused by simple resonance. On the other hand, the 
computation of the determinant of 𝐽𝑇𝑇 corresponding to the 2𝑇 periodic responses 
results in the transition curves, shown by purple dots, which encloses the unstable 
region due to the Primary Parametric resonances. It must be mentioned that in 
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Figure 5, ‘TCs’ stands for Transition Curves. It is worth mentioning unlike the 
results from Floquet Theory, HBM detects the instabilities via the transition curves 
where the responses are bounded and periodic. The reason is that HBM considers 
the response to be purely periodic therefore, it is unable to capture the unbounded 
responses inside the unstable regions. 

The procedure of computing the transition curve corresponding to the 
instability due to the combination parametric resonance is quite similar to the 
current case while an extra equation as indicated by Eq. (2.34) in section 2.3 must 
be taken into account. In addition, as mentioned in the previous chapter, to have 
instabilities due to the combination parametric resonance, the system must have at 
least two Dof or higher. This will be explained later in this chapter.  

 
Figure 5: Stability plot of a parametrically excited 1-Dof mass – spring – damper 

model containing the transition curves obtained by implementing HBM  

 

Instability due to 
Simple resonance

Instability due to 
Primary Parametric resonance
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2.4 Hill’s method  

In section 2.2 using Floquet theory, the mathematical formulation to perform 
the stability analysis of a linear homogenous dynamical system with periodic 
coefficients has been given in the time domain. It has been shown that the modulus 
of the Floquet multipliers determines whether the response of the system grows or 
decays over time. Since Floquet theory studies the stability in the time domain, 
analyzing systems with high numbers of Dof would be considerably time – 
consuming. Therefore, Hill’s method, as an alternative to Floquet theory, which 
investigates the stability problem in the frequency domain is recommended. This 
method is based on HBM and by considering a sufficient number of Fourier 
coefficients, the stability of the system could be well determined.  

To apply this method to a dynamical system with a periodic parameter 
presented by Eq. (2.29), first, the perturbing term in Eq. (2.3) in section 2.2 is 
expressed in the Floquet Form (Lazarus and Thomas, 2010) (Nayfeh A. H., 1993): 

      , X tp t t e  (2.42) 

where 𝛾 is called ‘Floquet exponent’ and X(t) is a periodic vector in which X(t) =
X(t + T). According to this equation, the value of the Floquet exponent determines 
whether the solution grows or decays via time. To implement Hill’s method, a linear 

homogeneous dynamical system with periodic coefficient as Eq. (2.29) in section 
2.3 is taken into account. For the stability analysis, a solution of Eq.(2.29), 𝑟(𝑡)𝑝, 
is perturbed using Eq. (2.42): 

      pr t r t p t   (2.43) 

Substituting Eq. (2.43) into Eq. (2.29):  

     0 , t
pE r E p e   (2.44) 

where 𝐸(𝑟𝑝) and 𝐸(𝑝) are defined as follows: 
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It must be reminded that 𝐾(𝑡) = 𝐾0 + 𝐾𝑝 cos 𝜂𝑡 Since 𝑟𝑝 is considered to be a 

solution of the Eq. (2.29), hence 𝐸(𝑟𝑝) = 0. As pointed out earlier, Χ is a periodic 
function and therefore could be expressed by Fourier series. For this system, Χ 
corresponds to periodic responses with 𝑇 and 2𝑇 periods (Eq. (2.20), section 2.2):   
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Collecting all Xi in a column vector, substituting it into Eq. (2.44), and 
balancing the resultant equations by the same harmonic components, the following 
compact form algebraic equation would be obtained (Detroux et al., 2015): 

    

2
2 1 J 0tu e       (2.47) 

The formation of Eq. (2.47) is given in APPENDIX C. In Eq. (2.47), the vector 
𝑢 is vector of the sinusoidal coefficients 𝑎⃗𝑧 and 𝑏⃗⃗𝑧, matrix J is Jacobian matrix and 
matrices Γ1 and Γ2 are defined as follows:  

 

 

   
   

   

    
   
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2

2 1 2 1

2 1 2 1

2Ω

2Ω

,   , 
h h

h h

z

z z

n N n N

n N n N

C

C M
M C

diag M M

  

  

 
 
 
    
  
  
 
 

  

 (2.48) 

In Eq. (2.48) 𝑁ℎ and 𝑛 indicate respectively the number of harmonics given in 
Eq. (2.46) and the number of Dof of the system. The vector 𝑢 and the matrices 𝐽, 
Χ1 and Χ2 are all presented in APPENDIX C. In Eq. (2.48) Ω𝑧 respresents the zth 
frequency of the Fourier series in Eq. (2.46); for instance Ω1 = 𝜂/2 or Ω2 = 𝜂. For 
non – trivial solution of Eq. (2.46) the determinant of the inner parentheses must be 
equated to zero:   

  

2
2 1 J 0      (2.49) 

Eq. (2.49) is the characteristic equation of the following eigenvalue problem 
(Detroux et al., 2015): 
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 Λv v  (2.50) 

where this equation shows that the Floquet exponents 𝛾 computed by solving Eq. 
(2.49) are the eigenvalues of matrix Λ which has the following form: 

 

   

1 1
2 1 2

2 2 1 2 2 1

Λ
0

h hn N n N

J 

  

   
  
 

 (2.51) 

Hence, instead of solving Eq. (2.49) to obtain the Floquet Exponents 𝛾, one can 
simpliy compute the eigenvalues of the matrix Λ: 

  Λeig   (2.52) 

According to (Detroux et al., 2015), among all the 2𝑛(2𝑁ℎ + 1) numbers of 𝛾, 
2𝑛 of them with the smallest imaginary part in modulus, determine the stability 
status of the perturbing term in Eq. (2.42). Doing so, the stability plot containing 
the unstable regions would be obtained. This will be further discussed and 
demonstrated later in this chapter.  

2.4.1 Case study: 1-Dof mass – spring – damper model 

In this section, the implementation of Hill’s method to obtain the stability plot of 
the model shown in Figure 3, is explained.  

By perturbing the trivial solution of Eq. (2.21) in section 2.2.1 i.e. 𝑥𝑝 = 0 by 
Floquet Form given in Eq. (2.42) and substituting it in Eq. (2.21), the following 
equation would be obtained: 

    0 0  t
pE x E X e  (2.53) 

Where: 

 0( 0) pE x  (2.54) 

       2
1 1 1 12vE X m X CX m K t X CX m X        (2.55) 
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Considering the 𝑇 and 2𝑇 periodic responses and their harmonics (please take 

a look at Eq. (2.35) & Eq. (2.36)), the periodic vector 𝑋(𝑡) can be expressed as the 
following: 
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1 1 2 2

3 3 4 4
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t ta b a t b t
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 
 
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    

 

   

  



 (2.56) 

Substituting Eq. (2.56) in Eq. (2.55) and following the procedure explained in 
APPENDIX C, results in the following compact form equation: 

   2
2 1Χ Χ J 0tu e     (2.57) 

To determine whether the perturbing term grows or decays with time, it is 
required to compute the values of the 𝛾 which are known as ‘Floquet Exponents’. 

Here, 𝑁ℎ = 4 and the number of Dofs denoted by 𝑛 is equal to 1. Hence, the 
matrices in Eq. (2.57) have the dimension of 9 according to Eq. (2.48)). The 
matrices 𝑋1, 𝑋2 and 𝐽 for this specific system are as follows: 

X1 =

[
 
 
 
 
 
 
 
 
 
m1

m1

m1

m1

m1

m1

m1

m1

m1]
 
 
 
 
 
 
 
 
 

 

X2

=

[
 
 
 
 
 
 
 
 
 
K1β + αm1

K1β + αm1 −ηm1

ηm1 K1β + αm1

K1β + αm1 −2ηm1

2ηm1 K1β + αm1

K1β + αm1 −3ηm1

3ηm1 K1β + αm1

K1β + αm1 −4ηm1

4ηm1 K1β + αm1]
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J

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 K1

k1
2

K1 −
k1
2
−
m1η

2

4
−
K1βη + αηm1

2

k1
2

K1βη + αηm1

2
 K1 +

k1
2
−
η2m1

4

k1
2

− m1η
2 + K1 −K1βη− αηm1

k1
2

k1 K1βη + αηm1 −m1η
2 +K1

k1
2

k1
2

K1 −
9η2m1

4
−
3K1βη + 3αηm1

2
k1
2

3K1βη + 3αηm1

2
K1 −

9η2m1

4
k1
2

−4m1η
2 + K1 −2K1βη − 2αηm1

k1
2

2K1βη+ 2αηm1 −4m1η
2 +K1 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For non – trivial soltuions of Eq. (2.57), the determinant of the 
(𝛾2Χ2 + 𝛾Χ1 + J) must be equated to zero which resutls in the computation of the 
Floquet exponents 𝛾. However, as explained in section 2.4 (please refer to Eq. 
(2.50)), a much simpler way is to obtain the Floquet exponents 𝛾 is to compute the 
eigenvalues of the matrix Λ given by Eq. (2.51). In fact, the eigenvalues of the 
matrix Λ are the Floquet exponents. 

By examining the real parts of the 2𝑛 eigenvalues with the smallest imaginary 
parts (please read the criteria explained below Eq. (2.52)) for each pair of (𝑘1 , 𝜂), 
the stability plot shown in Figure 6 would be obtained. As mentioned before, 𝑛 is 
the number of Dofs in which for the current system is equal to 1.  

According to Figure 6, the results from Hill’s method highlight the 
unstable/unbounded responses shown by the blue area. To evaluate the accuracy of 
Hill’s method, the results from HBM i.e. Transition Curves, which are already 
approved by Floquet Theory in Figure 5, are adopted. As depicted in Figure 6, Hill’s 

method perfectly captures the unbounded responses inside the area of the Transition 
Curves computed by HBM.  

It is worth noting that the existence of the exponential part in the Floquet Form 
(Eq. (2.42)), allows Hill’s method to detect the diverging responses corresponding 
to the frequency components fed into. The similarity of the results from Hill’s 

method and Floquet theory is due to this point.  
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Figure 6: Stability plot of a parametrically excited 1-Dof mass – spring – damper 

model obtained by implementing Hill’s method  

To demonstrate the procedure of selecting the proper Floquet exponents to 
study the stability using Hill’s method, the eigenvalues of the matrix Λ when 𝑘1 =
6000(N/m) and 𝜂 = 2𝜔𝑛 = 200(rad/s) are computed:  
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 (2.58) 

To specify the stability whether the system is stable or unstable when 𝑘1 =
6000(N/m) and 𝜂 = 200(rad/s), first, the 2𝑛 eigenvalues with the smallest 
imaginary must be selected. According to Eq. (2.58), the last two values highlighted 
by red are adopted. Since one of them is positive, the perturbing will grow 
exponentially which results in an unstable/unbounded response of the system.  

2.5 Perturbation method  

The Perturbation method is an analytical method to solve the linear and weakly 
nonlinear and also weakly damped governing equations of motion approximately 
(Nayfeh, 2000). This method is built based on a small parameter known as 
‘Perturbation Parameter’, usually represented by 𝜖, in which the response of the 
system is approximated and expanded based on. In fact, an equation in the 
perturbation form has two independent parameters: Time and Perturbation 
Parameter. This method here is mainly adopted to make a comparison with HBM 
in terms of mathematical calculations and applicability to find the transition curves.  
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To apply this method, a single DOF homogenous equation of motion of a linear 

dynamical system with a periodic coefficient is taken into account:  

  0 cos 0 mx cx k k t x     (2.59) 

In this method, all the terms except the acceleration and displacement with 
constant coefficients are considered perturbing terms. Because of this, their 
coefficients are rescaled using the perturbation parameter 𝜖. By introducing the 
following parameters:  

 0 0  
 ,

ˆ

ˆ

k k
c c




 (2.60) 

and by substituting Eq. (2.60) into Eq. (2.59): 

  0 cos 0ˆˆmx cx k k t x     (2.61) 

To be able to obtain the transition curves, first, the Method of Straightforward 
expansion is utilized where the cause(s) of non-uniformity of the response 𝑥 
expanded in terms of the 𝜖 and 𝑡 will be clarified. This information would be used 
in applying the Method of Multiple Scales to obtain the transition curves.  

2.5.1 Straight Forward Expansion  

First, the response of Eq. (2.61) is expanded in terms of 𝜖 and 𝑡 (Nayfeh A. H., 
1993): 

        2
0 1;x t x t x t O    (2.62) 

Eq. (2.62) is a first – order expansion and terms of the order 𝜖2 are disregareded. 
Here, 𝑥0 is a linear solution of the equation of motion without perturbed terms 
(damping and periodic stiffness) while 𝑥1 is the correction added due to the 
presence of the perturbed terms (Nayfeh A. H., 1995). Substituting Eq. (2.62) in 
Eq. (2.61) and neglecting the higher – order terms, results in:  

    2
0 0 1 1 0 0 0 cˆ o 0ˆ smx kx x kx cx k x t O        (2.63) 
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By equating each power of 𝜖 to zero, the following differential equations are 
obtained: 

 0 0 0 1 10 cos sinnf nfmx kx x A t B t       (2.64) 

 1 1 0 0 0
ˆˆ cos ,mx kx cx k x t     (2.65) 

where the answer to Eq. (2.64) is given in front of it where 𝜔𝑛𝑓 = √𝑘/𝑚. Then 
inserting 𝑥0 from Eq. (2.64) in Eq. (2.65) yields the following:  

 

 

    

    

2
1 1 1 1

1
0

1

ˆ
sin cos

cos cosˆ

sin sin

nf
nf nf nf

nf nf

nf nf

c
x x A t B t

m
A t tk

m B t t


  

   

   

    

   
 
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 

 (2.66) 

and the solution of Eq. (2.66) would be as follows:     
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  

           (2.67) 

The expansion of the response given in Eq. (2.62) fails due to the presence of 
the subsequent terms in Eq. (2.67): 

a) A Secular Term: the term multiplied by 𝑡 and grows with time 
b) A Small devisor: the term (2𝜔𝑛𝑓 − 𝜂)𝜂 at the denominator which produces 

resonance when 𝜂 = 2𝜔𝑛𝑓 

In the following section, the application of the multiple scales method, to 
compute the transition curves is investigated.  



36 Stability Analysis Techniques to Study Systems Under Parametric 
Excitation: Explanation & Implementation 

 
2.5.2 Method of Multiple Scales (MMS) 

According to this approach, the response of the system is a function of multiple 
time scales i.e. fast and slow (Nayfeh A. H., 1993). Hence, it is possible to expand 
the response in terms of different time scales as well as the perturbation parameter 
𝜖. To do so, first, the following time scales are introduced: 

 
0

1  , 
T t
T t



 (2.68) 

where 𝑇0 and 𝑇1 introduce respectively fast and slow time scales. Then, the response 
𝑥 is expanded as the following first – order expansion: 

      0 1 0 0 1 1 0 1; , , ,x T T x T T x T T   (2.69) 

Then, by expressing the time derivatives in terms of the new time scales the 
ordinary differential equation would be transformed into a partial differential 
equation:    

 
0 1

2
2
0 0 12 2  , 

d D D
dt
d D D D
dt

  

  

 (2.70) 

where 𝐷𝑖 = 𝜕/𝜕𝑇𝑖. Substituting Eq. (2.69) and Eq. (2.70) in Eq. (2.61) results in 
the following partial differential equation:  

  2 2
0 0 0 0 1 1 0 0  1 0 0 0 0 02 cos 0ˆˆmD x kx mD x kx mD D x cD x k T x        (2.71) 

Following the same procedure as before and equating each power of 𝜖 to zero 
results in the subsequent equations:  

    2 2
0 0 0 0 1 1 0 1 1 00 cos sinnf nf nfD x x x A T T B T T        (2.72) 

 
2
0 1 1 0 1 0 0 0 0 0 02 cosˆˆmD x kx mD D x cD x k x T      (2.73) 

Replacing 𝑥0 from Eq. (2.72) in Eq. (2.73), yields the following equation for 𝑥1:  
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 (2.74) 

Comparing Eq. (2.74) and Eq. (2.66), it is evident that the response 𝑥1 will 
contain secular and small divisor terms. In detail, the expressions multiplied by 
−2𝜔𝑛𝑓 and 𝑐̂𝜔𝑛𝑓/𝑚 generate secular terms while the cosine and sine terms 
containing 𝜔𝑛𝑓 − 𝜂 result in small divisors.  

According to Lindstedt – Poincare method, the perturbation terms may change 
the natural frequency of the system, therefore, it could be expanded in terms of the 
perturbing parameter (Nayfeh A. H., 1993). Applying this procedure, the following 
would be obtained: 

  2 2 2 2
0 1  , nf O      (2.75) 

where 𝜔0 is the linear natural frequency. Since the aim here is to study the system 
around the parametric resonance and according to the small divisor obtained by 
straightforward expansion, the resonance occurs at 𝜔𝑛𝑓 = 𝜂/2. Therefore, 𝜔0 is 
considered to be equal to 𝜂/2. The objective here is to obtain 𝜔1. Substituting Eq. 
(2.75) in Eq. (2.61) results in the following:  
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 

 (2.76) 

Equating the coefficients of each power of 𝜖 to zero yields the following (taking 
into account that 𝜔0 = 𝜂/2):  

   
2

2
0 0 0 0 1 1 0 1 1 00 cos sin

4 2 2
D x x x A T T B T T  

      (2.77) 
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 (2.78) 

It is observable from Eq. (2.78) that by implementing Eq. (2.75) all the small 
divisor generator terms are converted to secular term generators. To have a uniform 
expansion of Eq. (2.69), one must eliminate all the expressions multiplied by 
sin

𝜂

2
𝑇0 and cos 𝜂

2
𝑇0 which gives rise to secular terms in the 𝑥1 (Nayfeh A. H., 

1993). Doing so, results in the subsequent equation:    
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 (2.79) 

Equating the coefficients of the 𝑠𝑖𝑛 and 𝑐𝑜𝑠 to zero results in the following first 
– order differential equations: 

      , X X   (2.80) 

where: 
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 (2.81) 
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The general form of the solution of Eq. (2.80) is {𝑋} = {𝑆}𝑒𝜆𝑇1. Substituting 

this solution in Eq. (2.80) yields the following eigenvalue problem: 

         0S S I S       (2.82) 

For non – trivial solutions, |Δ − 𝜆𝐼| = 0 that gives 𝜆 which are the eigenvalues of 
Δ: 

 
2 2 4
0 1

1,2
ˆ ˆ  4

2 2
k mc

m m






   (2.83) 

As was observed earlier in section 2.2, according to the Floquet theory, on the 
transition curves the responses are purely periodic. According to Eq. (2.77), 𝑥0 
would be purely periodic if the 𝐴1(𝑇1) and 𝐵1(𝑇1) are invariant with time. 

Accordingly, the vector {𝑋} = {
𝐴1
𝐵1
} given in Eq. (2.81) must be chosen in such a 

way to become a constant. To this end, it is necessary to equate the eigenvalues in 
Eq. (2.83) to zero. Doing so and using Eq. (2.60), results in the following: 

 
2 2 2

2 0
1 2

1  
4

k c
m






   (2.84) 

Substituting Eq. (2.84) in Eq. (2.75), the expression for the natural frequency 
would be: 

 
2 2 22

2 0
24 4nf

k c
m





   (2.85) 

Using Eq. (2.85) one can compute the Transition Curves in any plane of 
parameters of interest. 

2.5.3 Case study: 1-Dof mass – spring – damper model 

As mentioned at the beginning of section 2.5, the Perturbation method is 
implemented to a single Dof system given by Eq. (2.59). Since the current case 
study, depicted in Figure 3, is also a single Dof model, the mathematical procedure 
of applying MMS is completely the same as explained in section 2.5.2. Therefore, 
Eq. (2.85) can be adopted to compute the Transition Curves.  
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By neglecting the higher  – order terms, Eq. (2.85) for the current system can be 

rewritten as the following: 

 
2 2 22

2 1
2

1

1 0
4 4n

k C
m


 


  (2.86) 

To obtain the transition curves, Eq. (2.86) must be solved numerically. Taking 
𝜂 and 𝑘̂1 as the control parameters, the stability plot resulted from MMS 
implementation is shown in Figure 7. 

According to Figure 7, first – order expansion of the response (please refer to 
Eq. (2.69)) results in transition curves locating the instability due to the parametric 
resonance. For this study, the results from HBM (denoted by red dots) which were 
already approved by Floquet Theory are adopted as the reference to examine the 
preciseness of the transition curves obtained by MMS. As depicted in Figure 7, the 
accuracy of the transition curves from MMS to specify the unstable zone highly 
depends on the value of the perturbation parameter 𝜖. Here, the transition curves 
computed by MMS for 𝜖 = 0.1 is obtained and it is observable that the results 
computed by MMS overlap perfectly the ones from HBM. It can be implied from 
the results that that first order expansion of the response using MSM is accurate 
enough to locate the instabilities due to the primary parametric resonance.  

Furthermore, according to Figure 7, the implementation of MMS does not 
detect the unstable zone due to simple resonance. According to the zoomed view of 
the first unstable zone, no transition curves are resulted from employing MMS to 
highlight this region. This deficiency is because in implementing Lindstedt – 
Poincare method to obtain Eq. (2.75), 𝜔0 is considered to be equal to 𝜂/2 which is 
a representative frequency content of the responses due to the parametric 
resonances. This method will not be investigated anymore for the second case 
study.  
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Figure 7: Stability plot of a parametrically excited 1-Dof mass – spring – damper 

model containing the transition curves obtained by implementing MMS (𝝐 = 𝟎. 𝟏) 

2.6 Jacobian Based Approach (JBA)_Proposed Method 

Consider the following general form of the equation of motion of an n–Dof 
parametrically and externally excited system: 

            ( )M r C r K K t r f t       (2.87) 

Where in Eq. (2.87), 𝐾(𝑡) = 𝐾0 +𝐾𝑝 cos 𝜂𝑡 and {𝑓(𝑡)} = {𝐹𝐻} cos Ω𝑡. To 
implement HBM, the response at each Dof 𝑟𝑖 is expressed by the Fourier series in 
terms of the external force frequency Ω, the 𝑇 and 2𝑇 periodics components 
associted to 𝜂 and their harmonics: 

 
1 2

0,1, 1,

sin sΩ cossΩ sin cos
2 2
 

   

 
    

 
 

h hN N

i is is iz iz
s z

z t z tr b t a t e g  (2.88) 
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In Eq. (2.88) the odd and even values of 𝑁ℎ2 respectively correspond to 2𝑇 and 

𝑇 periodic responses and their harmonics. By collecting all the 𝑟𝑖 in Eq. (2.88) in a 
row column vector, substituting it in Eq. (2.87) and balancing the terms of the same 
frequency components, yields the subsequent set of algebraic equations: 

       R J U F   (2.89) 

Eq. (2.89) is called Residual equation and [𝐽], {𝑈}, {𝐹} and {R} are respectively 
Jacobian matrix, vector of harmonic amplitudes, vector of residuals and forcing 
vector. It must be noted that the balancing procedure is the same as explained in 
APPENDIX B. The aim here is to compute the vector {𝑈}. To do so, the residual 
{𝑅} must be minimized. Considering the residual to be very close to zero one can 
write: 

      
1U J F

  (2.90) 

By solving Eq. (2.90) for different values of Ω, computing and plotting the 
vector {𝑈}, well – known the Frequency Response plot which is a representative of 
a forced response analysis would be obtained.  

The idea of developing JBA is based on the Forced Response Analysis 
explained above using HBM of a harmonically excited system.  In this procedure, 
the domains of instabilities (unstable zones) are obtained without addressing the 
determinant of the Jacobian matrix which was the case in applying HBM. The 
motivation behind proposing this method and the implementation procedure is 
better addressed via a simple example. To this end, the case study presented in 
Figure 3 is adopted as a demonstrator.  

2.6.1 Case study: 1-Dof mass – spring – damper model 

Imagine that the system shown in Figure 3 is under a sinusoidal external force. 
Then, the governing equation of motion of the system is as follows: 

  1 1 1 1 1 11 cosvm C x K t x tx F     (2.91) 

For this study, Ω = 𝛼𝜂 and for simplicity 𝛼 = 1. To obtain the frequency 
response, HBM is adopted and the response of the system is expressed using Eq. 
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(2.88) considering 𝑁ℎ1 = 1 and 𝑁ℎ2 = 4 (𝑖 in Eq. (2.88) is dropped since the system 
has one Dof):  

 1

1 0 1

1 3 3

2 2 4 4

1sin cos
3 3sin cos sin cos

2 2 2 2
sin cos sin 2 cos 2

      e

      e

   

   

     

  

  



x a b t a t
t t t tg e g

t g t e t g t

 (2.92) 

By substituting Eq. (2.92) in Eq. (2.91) and balancing and organizing the 
resultant, the residual equation given by Eq. (2.89) would be derived. For the 
current model the Jacobian matrix [𝐽] and the vector {𝑈} and {𝐹} have the following 
forms: 

J
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[
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{𝑈} = {𝑎0 𝑏1 𝑎1 𝑒1 𝑔1 𝑒3 𝑔3 𝑒2 𝑔2 𝑒4 𝑔4}
𝑇 

{𝐹} = {0 0 0 −𝐹1 0 0 0 0 0 0 0 0}𝑇 

Then, Eq. (2.90) is solved for different values Ω and a single value 𝑘1 =

5000 (
N

m
) where the frequency response of the system is depicted in Figure 8. It 

must be noted that for this study the frequency of the external force Ω is considered 
to be the same as the frequency of the parametric excitation 𝜂.  
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Figure 8: Frequency response at 1 5000 
  

 

Nk
m

 

As shown in Figure 8, the components of the response given by Eq. (2.92) i.e. 
2T periodic, T periodic, and External force are distinguished and plotted separately. 
To clarify this point, the components illustrated by different solid lines in Figure 8 
are given as follows: 

1 1 3 3
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1

4

1

2 4

3 32T periodic                  e sin cos sin cos
2 2 2 2

sin cos sin 2 cos 2
External force              sin cos
T periodic                 e
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  
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t t t tg e g

t g t e t g
b t a t

t  (2.93) 

According to Figure 8, the frequency response has just a peak at 𝜂 = 𝜔𝑛 =

100(rad/s) which correponds to the simple resonance; however, in the previously 
obtained stability plots e.g. Figure 4, it has been observed that at 𝜂 around 2𝜔𝑛 the 
system has unbounded/unstable responses. This information is missed in Figure 8. 
To address this deficiency, consider the spy plot of the [𝐽]−1 given in Figure 9, 
where the frequency components of the unstable responses are highlighted by red 
rectangles. According to this figure, as long as the force vector {𝐹} contains zero 
values at the components related to the unstable responses, the corresponding 
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displacements within the vector of displacement {𝑈} would not be activated and 
accordingly, in the frequency response plot, no instability due to parametric 
excitation could be observed.  

 

Figure 9: spy plot of the  
1J   at 1 5000 

  
 

Nk
m

 

To solve such an issue, some test forces whose frequencies are tuned to the 
frequency component of the unstable response (denoted by the red rectangles in 
Figure 9) are put in the equations of motion as demonstrated in the following: 

  1 1 1 1 1 1 1  ,cosΩ    v TT Tm x C x K t x F t f f  (2.94) 

where: 
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Then, the earlier explained procedure of HBM is followed and Eq. (2.90) is 

obtained. Here, the matrix Jacobian [𝐽] and vector {𝑈} remain the same while the 
elements of {𝐹} in Figure 9 is as follows: 

𝐹𝑠𝑡𝑎𝑡𝑖𝑐 = {
0
0
} 𝐹Ω = {

−𝐹1
−𝐹1

}, 𝐹𝜂/2 = 𝐹3𝜂/2 = {
−𝐹𝑇𝑇
−𝐹𝑇𝑇

}, 𝐹𝜂 = 𝐹2𝜂 = {
−𝐹𝑇
−𝐹𝑇

}. 

The idea of tracking instability due to parametric excitation by adding to the 
equation of motion the so – called ‘’test forces‘’ whose frequencies are related to 
the unstable response is proposed in this thesis. Since this method originates from 
HBM, it is named ‘’Jacobian Based Approach (JBA)‘’. 

By solving Eq. (2.90) with new {𝐹}, the frequency response curve of the system 

when 𝑘1 = 5000 (
N

m
) is computed for different values of 𝜂 and shown in lower 

portion of Figure 10. In the upper part of this figure, the stability plot obtained by 
the Floquet theory (please check Figure 4), adopted as the reference, is depicted. 
According to this figure, the frequency response curve has a U – shape part around 
𝜂 ≅ 2𝜔𝑛 resulted from the 2T periodic components depicted by red solid lines 
(check Eq. (2.93)). By comparing the values of the 𝜂 at the peaks of the U – shape 
part and the values of 𝜂 at the intersections between the purple dashed line (line of 

𝑘1 = 5000 (
N

m
)) and the unstable zone in the upper part of Figure 10, it could be 

understood that the peaks of the U – shape part of the frequency response are 

associated with the boundaries of the unstable zone at 𝑘1 = 5000 (
N

m
) indicated by 

the vertical dashed blue lines.  
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Figure 10: Upper portion) Stability plot Floquet Theory, Lower Portion) Frequency response using JBA at 

1 5000 
  

 

Nk
m

 

In addition, the frequency response contains other peaks which are appeared 
due to triggering the resonance frequency of the system. For instance, in the 
frequency response plot, peak 1 occurs when 𝜂 = 𝜔𝑛. And, peaks 2 & 3 are due to 
the equality of the frequency components of the test forces introduced by Eq. (2.95) 
with the natural frequency of the system 𝜔𝑛. For instance, according to Figure 10, 

the value of 𝜂 at peak 2 is equal to 49.83 (rad
s
). Considering the frequency 

components of the T periodic components given in Eq. (2.93) the following is hold: 

𝜂 = 49.83 → 2𝜂 = 99.66 ≈ 𝜔𝑛 
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which triggers the resonance frequency of the system. Similarly, by considering the 

value of 𝜂 at peak 3 which is 66.85 (rad
s
), and taking into account the frequency 

components of 2T periodic components in Eq. (2.93), the following relation holds: 

𝜂 = 66.85 → 3𝜂/2 = 99.97 ≈ 𝜔𝑛 

which again triggers the resonance frequency of the system and justifies the 
presence of peak 3.  

In the implementation of JBA, considering a realistic value of 𝐹𝑇𝑇 and 𝐹𝑇 is not 
of concern and that is why they are named “test forces”. It is because the objective 
here is just to obtain and specify the location of the stability borders and knowing 
the amplitude of the response at these locations is not of interest. 

Up until now, the results from JBA are shown via frequency response plot, and 

for a single value of 𝑘1 = 5000 (
N

m
). It has been observed that by introducing the 

“test forces” whose frequencies are tuned according to the frequency of the 

responses at the unstable zones, the new frequency response curve would contain a 
U – shape part. Then, by comparing the values of 𝜂 at the tips of the U – shape part 

and the ones at the intersection of the line of 𝑘1 = 5000 (
N

m
) and the unstable region 

from Floquet theory, it is concluded that tips of the U – shape part of the frequency 
response locate the borders of the unstable zone.  

Next, the JBA has been exploited to obtain the full stability plot where the 
unstable zones are illustrated for a range of (𝜂, 𝑘1) pairs. To do so, the following 
steps are taken:  

a) Perform the JBA for different values of 𝑘1 for a range of interest of 𝜂 
b) For each 𝑘1, build a frequency response plot like in Figure 10, 
c) In the frequency response plot from step b, collect the maximum of the peaks 

characterizing the domains of instabilities i.e. the tips of the U – shape part 
d) Plot the collected points from step c in the (𝜂, 𝑘1) plane 

By performing the above procedure for different values of 𝑘1, the stability plot 
presented in Figure 11 is obtained. According to this figure, the sequence of the 
points collected from the frequency response curve for each value of 𝑘1 forms 
Transition Curves locating the unstable zone due to the parametric resonance.  
Furthermore, the extra lines in Figure 11 are due to the collection of the peaks 
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denoted by 1, 2, and 3 in Figure 10. Such results from JBA implementation were 
expected since the core of this method is HBM whose results were already 
presented and studied in section 2.3.1.  

 
Figure 11: Stability plot of a parametrically excited 1-Dof mass – spring – damper 

model containing unstable zones obtained by Floquet Theory (black area) and the 
transition curves computed by implementing JBA 

To evaluate the performance of all the stability analysis approaches in terms of 

the time of the computation, a trial study of their performance when 𝑘1 = 5000 (
N

m
) 

& 10 (
rad

s
) ≤ η ≤ 250 (

rad

s
) is carried. The results of this trial study, presented in 

Table 2, indicate that JBA among all the methods is considerably time efficient. 

 

Unstable region due to 
Primary Parametric resonance

Unstable region due to 
Simple resonance

Line of Simple resonances 
w     ≈   .   rad/s

and   / ≈   𝟏

Line of Simple resonances 
w     ≈   .   rad/s

and   ≈   𝟏
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Table 2: The computational time of the different stability analysis approaches for 

1
N5000
m

k  
  

 
 & 

rad rad10 η 250
s s

   
    

   
 

Stability analysis approach Number of points Time of computation 

Floquet  50 samples of 𝜂 1.94 (s) 

MMS 
𝜂 is an unknown to be 

computed 1.46 (s) 

HBM 
𝜂 is an unknown to be 

computed  0.85 (s) 

Hill 50 samples of  𝜂 0.04 (s) 
JBA 50 samples of  𝜂 0.024 (s) 

2.7 Case Study: 2-Dof mass – spring – damper model 

Up until now, only instability due to the primary parametric resonance is 
observed. However, combination parametric resonance is a probable incident in 
structures under parametric excitation. Since combination parametric resonance 
occurs in systems with more than 1-Dof, in this section a 2-Dof coupled model of 
a mass – spring – damper presented in Figure 12 is adopted as a demonstrator. The 
governing equation of motion of this model is as follows: 
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   
11 1 1 1

22 2 2 2
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0
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           

           

c c

c c

K t K t Km x x x
C

K K t K tm x x x
 (2.96) 

In Eq. (2.96), 𝐾1(𝑡) and 𝐾2(𝑡) are direct stiffness of the masses 𝑚1 and 𝑚2 
respectively. Here 𝐾𝑐(𝑡) is the coupling between the two masses. For this study, 
𝐾1(𝑡), 𝐾2(𝑡) and 𝐾𝑐(𝑡) are considered to be harmonic functions of time which 
generate parametric excitation. The mathematical expressions of these stiffnesses 
are as follows: 
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 (2.97) 
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To obtain the stability plot of this model, the approaches explained in the 

preceding sections i.e. Floquet Theory, HBM, Hill’s method, and the newly 

developed method JBA are employed. The values presented in Table 3 are used in 
the subsequent sections. It must be noted that the damping like the previous case 
study is a proportional damping. For this study, the parameters 𝜂 and 𝑘1 are taken 
as the control parameters.  

 
Figure 12: 2DOF coupled Mass – Damper – Spring system with time – varying stiffnesses 

 
Table 3: Values of the parameters of the model in Figure 12  

Parameters Values 

𝑚1(kg) 10 

𝑚2(kg) 5 

𝐾1(N/m) 105 

𝐾2(N/m) 105 

𝜔𝑛1(rad/s) √𝐾1/𝑚1 = 100 

𝜔𝑛2(rad/s) √𝐾2/𝑚2 = 141.5 

𝑘2(rad/s) 5 × 103 

𝑘𝑐(rad/s) 103 

𝜁 0.001 

2.7.1 Floquet Theory  

To obtain the stability plot, it is first the Monodromy matrix of the model is 
computed. Then, by examining the eigenvalues of the Monodromy matrix and 
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comparing their modulus against 1, the stability shown in Figure 13 would be 
obtained. According to Figure 13, the stability plot contains three zones of 
instability due to the parametric excitation. Reminding that: 

n

n n

Primary Parametric Resonance Frequency:   

Combination Parametric Resonance Frequency: , ( ) 

2ω

ω ω







i

i j i j

l

l





 (2.98) 

where, 𝜔𝑛𝑖 and 𝜔𝑛𝑗 represent the natural frequencies of the system. For the current 
model 𝑖, 𝑗 = 1,2. In Figure 13 and according to Eq. (2.98), the first unstable zone, 
formed around 𝜂 = 2𝜔𝑛1, is appeared due to the 1st order Primary Parametric 
resonance when 𝜔𝑛𝑖 = 𝜔𝑛1 and  𝑙 = 1. Accordingly, the last unstable zone is arised 
as result of 1st order Primary Parametric resonance when 𝜔𝑛𝑖 = 𝜔𝑛2 and  𝑙 = 1.  

On the other hand, the middle unstable zone which was not previously observed 
is emerged due to the 1st order Combination Parametric Resonance of the 
summation type where in Eq. (2.98) 𝑙 = 1 and 𝜂 = |𝜔𝑛1 + 𝜔𝑛2|.  

In Figure 13, a small unstable zone due to the simple resonance when 𝜂 = 𝜔𝑛1 
is observed while no instability at 𝜂 = 𝜔𝑛2 is captured using Floquet Theory.   
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Figure 13: Stability plot of a parametrically excited 2-Dof mass – spring – damper model 

obtained by Floquet Theory  

2.7.1.1 Effect of damping ratio ζ  & Cross – Coupling parameter ck  

In this section, the influences of the damping ratio and cross – coupling stiffness 
on the stability plot are separately investigated.  

By setting the value of 𝜁 = 0.01 and fixing the rest of the parameters as given 
in Table 3, the stability plot using Floquet theory is presented in Figure 14. 
According to the results, the damping value has a reverse effect on the domain of 
instability which means the greater the damping the smaller the domain of 
instability will be. As is observable in Figure 14, by considering the higher damping 
ratio the unstable zones due to the simple and combination parametric resonances 
are disappeared. In addition, the unstable regions resulted from the Primary 
parametric resonances became smaller and more limited in their domain.  

Unstable zone due to 
Primary Parametric 

resonance

Unstable zone due to 
Primary Parametric 

resonance

Unstable zone due to 
Combination 

Parametric resonance
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The effect of the cross – coupling stiffness is investigated by increasing the 

value of 𝑘𝑐. Here by considering 𝑘𝑐 to be equal to 3 × 103 and keeping the rest of 
the parameters the same as in Table 3, the stability plot using the Floquet theory is 
displayed in Figure 15. As shown in this figure, the influence of the cross – coupling 
on the domain of the unstable regions, due to both the simple and parametric 
resonances, is linear. In other words, the increase of the cross – coupling stiffness 
results in the appearance of the more unstable responses and consequently growth 
of the instability regions. 

 
Figure 14: Effect of the damping on the instability regions  
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Figure 15: Effect of the cross – coupling on the instability regions  

2.7.2 HBM  

As was discussed in section 2.3, to obtain the stability plot using HBM, the 
response of the system must be expressed by the 𝑇 and 2𝑇 periodic responses via 
Fourier series. It is worth noting that 𝑇 is the period of the parametric excitation 
and is equal to 2𝜋/𝜂. To proceed with HBM, first the coordinates 𝑥1 and 𝑥2 are 
written as follows: 

 

 

1

1

1
0,2,4

0,2
2

,4

sin cos
2 2

sin cos     
2 2

 

 





 
  

 

 
  

 





N

z zT
z

N

T
h

h h

x

c

z t z ta b

h t h tx d
 (2.99) 



56 Stability Analysis Techniques to Study Systems Under Parametric 
Excitation: Explanation & Implementation 

 

 

2

2

1
1,3

1,3
2

sin cos
2 2

sin cos
2 2

 

 





 
  

 

 
  

 



 h

N

z zTT
z

N

hTT
h

z t z tx a b

h t h tcx d
 (2.100) 

And, truncating Eq. (2.99) and Eq. (2.100) by two harmonics i.e. 𝑁1 = 𝑁2 = 2 
and substituting them in Eq. (2.96), and balancing the resultant equations, yields 
the following equations: 
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To obtain the Transition Curves, the frequency of the parametric excitation 𝜂 
is considered to be an unknown. This leads the Jacobian matrices in Eq. (2.101) and 
Eq. (2.102) to become functions of 𝜂. For non – trivial solutions, the determinants 
of [𝐽𝑇] and [𝐽𝑇𝑇] must be equated to zero. By solving the determinants for different 
values of 𝑘1, the corresponding values of 𝜂 where non – trivial solutions exist would 
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be acquired. By collecting the values of 𝜂 for each value of 𝑘1 and plotting them, a 
stability plot presented in Figure 16 would be found.  

As depicted in Figure 16, the consideration of the harmonic components 
corresponding to the 2𝑇 periodic response in the Fourier series (please check Eq. 
(2.99) and Eq. (2.100)), results in the transition curves locating the instabilities due 
to the Primary Parametric Resonances, shown by purple dots. Furthermore, 
adopting the harmonic components corresponding to the T periodic response in the 
Fourier series gives the transition curves, the green dots, detecting the unstable 
responses due to the Simple Resonance. In Figure 16, all the transition curves 
obtained by HBM implementation accurately locate the unstable zones found by 
Floquet Theory. 

 
Figure 16: Stability plot of a parametrically excited 2-Dof mass – spring – damper 

model containing the transition curves obtained by HBM  

According to Figure 16, HBM is efficient in locating the unstable zones due to 
the primary parametric resonance while it misses the unstable arisen as a result of 
the Combination Parametric Resonance. This issue is observable in Figure 16 where 
the unstable region due to the combination parametric resonance, highlighted by 
the dashed rectangular, does not contain any transition curves.  
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To investigate this deficiency, the FFT of a trial point, point A in Figure 16, 

inside the unstable zone due to the combination parametric resonance, is depicted 
in Figure 17. This figure shows that the responses 𝑥1 and 𝑥2 at the unstable region 
resulted from the combination parametric resonance are quasi – periodic and 
possess two frequency components at 𝜔𝑛1 and 𝜔𝑛2 whose summation is equal to 
the value of 𝜂.  

 

Figure 17: FFT of the response of point A in Figure 16 where 1
Nk =5000
m

 
 
 

 

and n1 n 2     

To propose a general formula, the dominant frequencies in Figure 17 are 
denoted by 𝜔1 and 𝜔2 which have the following characteristic: 

 1 2     (2.103) 

Using Eq. (2.103), the responses 𝑥1 and 𝑥2 are expressed by the following 
Fourier series: 
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Truncating Eq. (2.104) and Eq. (2.105) by one harmonic, substituting them in 
Eq. (2.96) taking into account Eq.(2.103), and balancing the resultant equation, 
yields the following:   
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As pointed out earlier, to implement HBM to find the transition curves, it is 
necessary to keep one of the control parameters as an unknown. Then, to compute 
it, the determinant of the Jacobian matrix equated to zero must be solved by 
changing the other parameter. Here, 𝜂 is taken as the unknown. To find the 
transition curves, the determinant of [𝐽𝐶] in Eq. (2.106). However, in the 
determinant of this specific Jacobian matrix, there is another unknown which is 𝜔1.  

Accordingly, solving the determinant of [𝐽𝐶] does not suffice to find both 𝜂 and 
𝜔1. Therefore, another equation is required to compute both of the unknowns. As 
discussed in section 2.3 by Eq. (2.34), the additional equation is the highest minor 
of [𝐽𝐶]. Hence, to find the transition curves following Equations mus be solvbed 
simultaneously: 
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results in the stability plot depicted in Figure 18. As shown in this figure, by 
adopting the dominant frequencies of the quasi – periodic response at the unstable 
zone due to the combination parametric resonance, HBM can accurately detect all 
the unstable regions.  

It must be noted that in the next chapters, the general form of the Fourier Series 
given by Eq. (2.33) is adopted to mathematically demonstrate the coordinates by 
their harmonics. In this chapter, on the other hand, the Fourier expressions of each 
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harmonic are demonstrated individually to present the contribution of each 
harmonic in the stability plot.   

 
Figure 18: Full stability plot of a parametrically excited 2-Dof mass – spring – 

damper model containing the transition curves obtained by HBM 

2.7.3 Hill’s method  

In this section, the stability analysis of the 2-Dof model, given in Figure 12, 
using Hill’s method is performed. To proceed with this method the coordinates 𝑥1 
and 𝑥2 are first perturbed as explained in section 2.4 where the perturbing term is 
expressed by the Floquet Form signified in Eq. (2.42). Afterwards, the periodic 
vector X(𝑡) of each coordinate is expressed by the Fourier series associated to the 
2𝑇 and 𝑇 periodic responses: 
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The same procedure explained in section 2.4.1 is followed subsequently. After 
computing the Floquet Exponents, 2𝑛 of them with the smallest imaginary parts in 
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modulus are retained. Then, by checking the real parts of the retained Floquet 
Exponents against zero, the pairs of (𝑘1, 𝜂) at which the real parts are greater than 
zero are collected. Next, by plotting the collected pairs of (𝑘1, 𝜂), the stability plot 
presented in Figure 19 is found.  

To investigate the accuracy of the results from Hill’s method, the results from 

HBM implementation i.e. transition curves which were already approved by 
Floquet theory are adopted. As illustrated in Figure 19 the instabilities due to the 
Parametric and Simple resonances are perfectly acquired by Hill’s method.  

It must be noted that the frequency component related to the 2𝑇 periodic 
response in Eq. (2.108) allows Hill’s method to find the instability due to the 

combination parametric resonance which was not the case in HBM implementation.  

 
Figure 19: Stability plot of a parametrically excited 2-Dof mass – spring – damper model 

containing the transition curves obtained by Hill’s method 
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2.7.4 Jacobian Based Approach (JBA) 

In this section, the aim is to obtain the stability plot via the proposed method in 
this thesis. To start, consider external harmonic forces for each mass as follows: 
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Where 𝑓1(𝑡) = 𝐹1 cosΩ𝑡 and 𝑓2(𝑡) = 𝐹2 cosΩ𝑡. Using the information 
acquired by HBM about the frequency components in the unstable zone due to the 
combination resonance i.e. 𝜔1 and 𝜔2, the coordinates of the system are expanded 
by the following Fourier series: 
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For this study 𝑁ℎ1 = 𝑁ℎ3 = 1 and 𝑁ℎ2 = 4. It must be noted that the condition 
given by Eq. (2.103) holds here and accordingly 𝜔1 = 𝜂 − 𝜔2. By expressing 𝑥1 
and 𝑥2 according to Eq. (2.110), then substituting them in Eq. (2.109), balancing 
the resultant equation, the following residual equation would be obtained:  

       R J U F   (2.111) 

Then, by minimizing the residual vector {𝑅} (equate it to zero) the vector {𝑈} 
could be computed by the subsequent equation: 

      
1U J F

  (2.112) 

For this study Ω = 𝜂. By solving Eq. (2.112) for 𝑘1 = 6000 (
N

m
) and different 

values of 𝜂, the frequency reponse of the sysem for each coordinate is shown in 
Figure 20. According to the frequency response plots, the system has high 
amplitudes just at its resonances when 𝜂 = 𝜔𝑛1 , 𝜔𝑛2 in spite of the fact that 
instabilities were observed previously at other values of 𝜂. In Figure 20, the 
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contributions of the frequency components correspoding to the instability due to the 
parametric excitation are null. The legends in Figure 20 denote each frequency 
component used in Eq. (2.110).  

 
Figure 20: Frequency response of coordinates 1x  (on the left) & 2x  (on the right) at 

1
N6000
m

 
  

 
k  

To address the deficiency of the frequency response in Figure 20, like before, 
the spy plot presented in Figure 21 is taken into account. Here, the frequency 
contents characterizing the unstable zones due to the parametric excitation are 
highlighted by the red rectangles. It can be understood from Figure 21 that in order 
not to have null contributions of these frequencies within the frequency response 
plot, the components of the vector force inside the red rectangle on the right – hand 
side must not contain zeros.  

To solve this problem the so – called harmonic “test forces” whose frequencies 

are tuned according to the frequencies indicated in the red box in Figure 21 are 
added to the force vector of Eq. (2.109): 
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Figure 21: spy plot of the  
-1J  

Unlike HBM implementation where 𝜔1 was considered to be an unknown, here 
it is necessary to know the value of this parameter in Eq. (2.114). To do so, in the 
lower portion of Figure 22, the FFTs of points A and B (check the Upper portion of 

Figure 22) which are the intersections between the line of 𝑘1 = 6000 (
N

m
) and 

transition curves associated to the unstable zone due to combination parametric 
resonance are presented. In this figure the following mathematical relations are 
observed: 
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  1 1 1/ 2A B n     (2.115) 

  2 2 2/ 2A B n     (2.116) 

 2 1 2 1B B A A       (2.117) 

By subtracting Eq. (2.115) from Eq. (2.116): 

 2 1 2 1  ,A A n n       (2.118) 

and using Eq, (2.117) and Eq. (2.118): 

 2 1 2 1B B n n       (2.119) 

The following relations hold on the transition curves corresponding to the 
unstable region due to the parametric combination resonance: 

 1 2 AA A     (2.120) 

 1 2 BB B     (2.121) 

Subtraction of Eq. (2.120) and Eq. (2.121) from respectively Eq. (2.118) and 
Eq. (2.119) results in the following: 

  1 1 2 2 1/ 2 , A n n A AA A           (2.122) 

  1 1 2 2 1/ 2 , B n n B BB B           (2.123) 

Then, by adopting Eq. (2.122) and Eq. (2.123) the following general formula is 
proposed to compute 𝜔1 and 𝜔2 for a system with discrete natural frequencies: 
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 (2.124) 

This equation will also be obtained for a more complex system in chapter 4 and 
its credibility will be further approved.   
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Figure 22: Upper portion) Stability plot from HBM showing the intersections (points A & B) of the 

line of 1
N6000
m

 
  

 
k    and the transition curves encompassing the area of unstable responses due to the 

combination parametric resonance. Lower right portion) FFT of the response at points A. Lower left 
portion) FFT of the response at point B 

By inserting Eq. (2.124) in Eq. (2.114), employing the Fourier series of the 
coordinates given by Eq. (2.110), and solving Eq. (2.112), the new frequency 
response plot is displayed in Figure 23. By adding the test forces, the frequency 

𝜔𝐵1 
𝜔𝐵2 

v
b 

𝜔𝐴1 
𝜔𝐴2 
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response curve shown in Figure 23, contains multiple U - shape parts, represented 
by ➀, ➁, and ➂ whose peaks indicate the border of the unstable zones caused by 
the parametric resonances. By comparing the values of 𝜂 on the peaks of the U – 
shape part of the frequency response curve, denoted by the labels, and comparing 
them with their correspondence in the stability plot from Floquet theory, also 
represented by the labels, it can be understood that JBA specified the borders of the 
unstable zones at each value of  𝑘1. The values of 𝜂 in ➀ at peaks on the frequency 
response curve of the 2𝑇 periodic components of the coordinate 𝑥1 (please check 
the black solid line in the legend bar on the lower right portion of Figure 23), specify 
the borders of the unstable zone due to the Primary parametric resonance when 𝜂 ≅
2𝜔𝑛1. On other hand, the values of 𝜂 at the peaks in area ➂ associated with the 
frequency response of the 2𝑇 periodic components of coordinate 𝑥2 (please check 
the black dashed line in the legend bar on the lower right of portion Figure 23), 
indicate the borders of the unstable region as a result of the Primary parametric 
resonance when 𝜂 ≅ 2𝜔𝑛2.  

The values of 𝜂 at peaks in the zone ➁ boundary of the instability appeared 
because of the Combination parametric resonance when 𝜂 ≅ 𝜔𝑛1 +𝜔𝑛2. 
According to the zoomed view of ➁ shown in the upper right portion of Figure 23, 
the frequency response curves corresponding to the 𝜔1 & 𝜔2 components of both 
of the coordinates i.e. 𝑥1 and 𝑥2 (please check respectively the green solid and 
dashed lines in the legend bar) contain the two pairs of peaks at the same values of 
𝜂 but with different amplitudes. Where the values of 𝜂 at each pair specifies the 
border of the unstable region due to the combination parametric resonance. What 
could be understood here is that at the combination parametric resonance zone, each 
coordinate of the system is responding/oscillating at two frequencies at the same 
time whose summation is equal to the frequency of the parametric excitation.  

In Figure 23, the single peaks, excluding the peaks at ➀, ➁, and ➂, are appeared 
when the frequencies of the test forces become equal to one of the natural 

frequencies 𝜔𝑛1 or 𝜔𝑛2. For instance the peak at ➃ where 𝜂 = 50 (
rad

s
) is emerged 

since the frequency component 2𝜂 of test force 𝑓𝑇 in Eq. (2.114) generates 

resonance at 𝜔𝑛1 = 101 (
rad

s
).  
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Figure 23: Comparison of the results obtained by JBA (Lower plot) and the ones from Floquet Theory (Upper plot) 

at 1
N6000
m

 
  

 
k   

To compute the full stability plot using JBA the subsequent steps are performed 
sequentially: 

a) Perform the JBA for different values of 𝑘1 for a range of interest of 𝜂 
b) For each 𝑘1, build a frequency response plot like in Figure 23 
c) In the frequency response plot from step b, collect the maximum of the peaks 

characterizing the domains of instabilities i.e. the tips of the U – shape part i.e. 
peaks at ➀, ➁, and ➂ 

d) Plot the collected points from step c in the (𝜂, 𝑘1) plane 

By iterating the steps from a to d, as mentioned above, the stability plot shown 
in Figure 24 is acquired. As shown in this figure, the results from JBA perfectly 
locate the areas of instabilities due to the Primary and Combination parametric 
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resonances. Here, unlike Figure 11, due to the numerous line of simple resonances 
for the current model, they were disregarded from the stability plot in Figure 24 by 
suppressing the corresponding frequencies. 

 
Figure 24: The full stability plot obtained by JBA implementation and approved 

by the results from Floquet theory 

2.8 Conclusion  

This chapter has been dedicated to detailed explanations of the state-of-the-art 
stability analysis approaches of a parametrically excited system i.e. Floquet Theory, 
Hill’s method, Harmonic Balance Method (HBM), and Method of Multiple Scales 
(MMS). In this study, a new method named Jacobian Based Approach (JBA) to 
study the stability of a system under parametric excitation is proposed. To study 
and demonstrate the implementation procedure of each approach mentioned above, 
a model of a mass – spring – damper system is adopted as a demonstrator. In this 
model, the spring is considered to have a time – varying stiffness which introduces 
the parametric excitation to the system. By computing and comparing the stability 
plots from each approach, the following remarks are made: 



70 Stability Analysis Techniques to Study Systems Under Parametric 
Excitation: Explanation & Implementation 

 
 General remarks: 

o The effects of the cross – coupling stiffness and the damping on the 
unstable zones are contrary to each other. The increase of the cross – 
coupling stiffness leads to an increase in the domain of the unstable 
regions while the damping decreases the domain of the unstable zones. 

o Implementations of the Floquet theory and Hill’s method result in 

stability plots highlighting the unstable/unbounded responses.  
o The application of HBM and MMS leads to the computation of the 

transition curves indicating the border of the stable – unstable zones. 
o Adopting the 𝑇 periodic frequency components in Hill’s method results 

in finding the unstable regions due to the Simple resonances. 
o Adopting the 𝑇 periodic frequency components in HBM and JBA results 

in finding the transition curves encompassing the unbounded responses 
due to the Simple resonances. 

o JBA obtains accurately the transition curves in a very low computational 
time in comparison to other approaches.  

o JBA enables the study of the stability of a system under parametric 
excitation within the frequency response plot. Such a study was not 
found in the literature.  

 1-Dof parametrically excited model: 
o The stability plot of a 1-Dof system under parametric excitation contains 

two unstable zones due to the Primary Parametric and Simple 
resonances.  

o Hill’s method finds instabilities due to the Primary parametric 
resonances by employing the 2𝑇 periodic frequency components. 

o In implementing HBM and JBA, the consideration of the 2𝑇 periodic 
frequency components results in the transition curves enclosing the 
unstable responses due to the Primary parametric resonance. 

 2-Dof parametrically excited model:  
o In addition to Simple and Primary parametric resonances, there exist 

instabilities due to the Combination parametric resonance.  
o Hill’s method finds instabilities due to the Combination and Primary 

parametric resonances by employing the 2𝑇 periodic frequency 
components. 

o In implementing HBM and JBA, the consideration of the 2𝑇 periodic 
frequency components results in the transition curves enclosing the 
unstable responses due to the Primary parametric resonance.  

o To compute the transition curves locating the unstable responses due to 
the Combination parametric resonance using HBM and JBA, the Fourier 
series of the coordinates must contain two frequency components whose 
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ratio is irrational and their summation is equal to the frequency of the 
parametric excitation. 

For stability analysis of a linear system under parametric excitation, JBA is highly 
advantageous and efficient over other approaches since it deals with a linear 
residual equation (please refer to Eq. (2.89)) which could be easily solved. JBA is 
beneficial for studying globally the stability of a parametrically excited system 
since: 

 It functions in the frequency domain unlike Floquet theory 
 It does not deal with any eigenvalue problem like Hill’s method 
 Unlike the direct implementation of HBM, JBA does not require solving a 

polynomial with an unknown to obtain the stability plot 
 It does have as many mathematical difficulties as MMS specifically when the 

number of degrees of freedom increases.  
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Chapter 3 

Application of the State-of-the-art 
and New Stability Analysis Methods 
on a Realistic Case Study 

3.1 Introduction  

Rolling element bearing (REB) is one of the most important components in 
rotating machineries whose undesirable vibrations can lead to serious damages or 
even failures. Parametric excitation induced by REB as a result of the so – called 
“Varying Compliance Vibration” could be one of the sources of such unwanted 
vibrations. This phenomenon i.e. “Varying Compliance Vibration” generates time 
– dependent stiffness which introduces the parametric excitation in rotating 
systems.  

In section 3.2, the mathematical modeling of a Jeffcott rotor supported by the 
rolling bearings is explained. In this model, the bearings are modeled as springs 
whose stiffness changes with time. This results in a generation of parametric 
excitation within the system. 

Then, in section 3.3, the stability analysis of the parametrically excited Jeffcott 
rotor is carried out. Here, a modified and improved version of the HBM used for 
the computation of the transition curves in the previous chapter (denoted in this 
chapter as Simple HBM or SHBM), is given.  

The applicability of JBA, which is developed based on the forced response, to 
obtain the stability plot is investigated in section 3.4.  
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3.1 Jeffcott Rotor 

In this section, a Jeffcott rotor model supported by the Rolling Element Bearing 
(REB) is taken into account. The scheme of the model is depicted in Figure 25A. 
In this figure 𝑀𝑑 and 𝑅𝑑 denotes the mass and the radius of the disk. Ω is the 
rotational speed of the shaft and the geometric and mass centers of the disk are 
indicated by 𝑜𝑑𝑐 and 𝑜𝑑𝑔 respectively. The disk’s displacement coordinates are 
shown in Figure 25B. The following assumptions are adopted for this model 
(Tehrani, Gastaldi, and Berruti, 2021b): 

 The shaft is assumed to be massless; 

 The axial displacement is neglected; 

 The disk has no tilting motion hence the gyroscopic effect is negligible; 

 The mass of the disk is lumped at its mass center; 

 The system is symmetric with respect to the disk; 

 The outer race of the REB is rigid and fixed within a rigid casing; 

 The effective mass of the REB is negligible compared to the disk’s mass;  

 The REB’s inner race displacement is negligible compared to the displacement 
of the disk 
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A) 

 

B) 

 

Figure 25: A) Jeffcott rotor model supported by REB, B) Displacement 
coordinates of the unbalance disk during rotation  

In the following sections, the nonlinear contact forces of the REB using the 
well – known Hertz contact theory are first obtained. Then, through a proposed 
linearization procedure, the nonlinear contact forces are modeled as time – varying 
stiffnesses.  

3.2.1 REB modeling (Hertz Contact Theory) 

A model of REB with a fixed outer race and rotating inner race is shown in 
Figure 26. When the rotating inner race is loaded, some of the balls are put under 
compression. And, during the rotation (through time) of the inner race the position 
as well the number of the balls vary in the loading zone and results in alteration of 
the total contact force. This results in the change of the configuration in the loading 
zone, illustrated by Figure 26A, known as ‘Varying Compliance’, which induces 
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the so – called ‘Varying Compliance Vibrations’. In the loading zone, depicted in 
Figure 26B, the balls at their lower position are under maximum force (pressure), 
denoted by 𝐹𝑚𝑎𝑥. The domain of the loading zone depends on the amount of the 
clearance and here it is considered to be zero which results in 180° loading 
distribution. At the line of 180°, shown by 𝐹𝑚𝑖𝑛, minimum load would be exerted 
on the balls. In Figure 26B, Ω represents the angular velocity of the inner race that 
is the same as the shaft, (𝑥𝑏 , 𝑦𝑏) is the displacement coordinate of the inner race, 
𝜓𝑖 denotes the angular position of the ith ball with respect to the loading line (𝑦 
axis). Here 𝛿𝑖 indicates the deformation of the ith ball due to the contact force which 
is expressed as (Harris, 2001): 

  sin co ,si b i b ik x y     (3.1) 

where the contact (restoring) force based on Hertz theory is (Tiwari, Gupta, and 
Prakash, 2000): 

   sin cos
i

nn
i b i b iF k k x y       (3.2) 

Here 𝑘 is the contact stiffness between the ball and races and for the sphere – 
sphere contact the Hertzian exponent 𝑛 is equal to 3/2 (Harris, 2001). The angular 
position is defined by (Metsebo et al., 2016): 

  
2 1  , ci

b

i
N


     (3.3) 

where 𝜃𝑐 is the amount of angular rotation of the cage and is related to the rotational 
speed of the shaft Ω: 

 Ω ΩI

I O
c c

Dt t
D D


 

   
 

 (3.4) 

In Eq. (3.4) Ω𝑐 is the cage rotational speed and 𝐷𝐼 and 𝐷𝑂 represent the 
diameters of the inner and outer races respectively. According to the Hertz theory, 
the contact area between the balls and races has an ellipsoidal shape as depicted in 
Figure 26C (Harsha, 2005a).  
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A) 

 

B)  

 

C) 

 

 

Figure 26: A) Loaded REB model, B) Varying compliance, C) Elliptical contact 
demonstration1 

Computation of the contact stiffness 𝑘 requires knowing the curvatures in the 
contact area and the curvature sum. To this end, the following steps are performed 
(Tehrani, Gastaldi, and Berruti, 2021b): 

                                                 
1 The figure from B. J. Hamrock & W.J. Anderson, ‘Rolling-Element Bearings’, NASA 

REFERENCE PUBLICATION 1105, 1983 
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a) The local curvatures corresponding to the ball, inner and outer races are defined 

as (Harris, 2001): 

 
1ball:  , X Y

sd
    (3.5) 

 
1 1inner race: ,    , 

1.05I
XI YI

sD d
      (3.6) 

 
1 1outer race: ,    , 

1.05O
XO YO

sD d
       (3.7) 

where 𝑑𝑠 is the diameter of the ball. The representation of the curvatures is given 
in Figure 27. 

 

Figure 27: Corresponding curvatures of the contact area between one ball and races 

According to (Hamrock and Anderson, 1983), the concave surface has the 
negative curvature sign while the convex one has the positive sign. The curvature 
sum is: 

  , X Y X Y          (3.8) 
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and is dependent on which contact to be considered. If for instance, the ball – inner 
race contact area is taken into account then Eq. (3.8) would be ∑𝜌 = 𝛼𝑋 + 𝛼𝑌 +

𝛽𝑋𝐼 + 𝛽𝑌𝐼.  

b) To compute the deformation of the ith ball 𝛿𝑖, the formula proposed by (David 
E. Brewe and Hamrock, 1977) is adopted: 

  
1/38 2/3 *2.878 10i iF      (3.9) 

Here 𝐹𝑖 is the contact force between the ith ball and the inner/outer race 
(neglecting the contribution of the centrifugal force). The formula of the 
dimensionless parameter 𝛿∗ is given in APPENDIX D.  

c) Using Eq. (3.2), the contact stiffnesses corresponding to ball – inner/outer races 
are as follows: 
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 (3.10) 

d) And, the equivalent stiffness at the ball – races contact is (Harsha, 2005b): 
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 (3.11) 

Then, using (3.2), the total contact forces in the orthogonal directions would be: 
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It must be noted that the contact forces are computed based on the balls under 
compression. In other words, only the balls in the loading zone would be in contact 
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while the rest do not have any contribution to the contact force. Therefore, in Eq. 
(3.12) and Eq. (3.13), 𝑁𝑏′  denotes the number of the balls in the loading zone. 

The contact forces are nonlinear in terms of the displacement coordinate as well 
as time – dependent due to the presence of 𝜓𝑖. In the following section, by 
proposing a linearization process, the contact forces are linearized around a constant 
preload.  

3.2.2 Linearization of the contact force  

In this section, it will be shown that by linearizing the contact forces in Eq. 
(3.12) and Eq. (3.13) around a constant preload 𝐹̅𝑦, the nonlinear forces could be 
modeled as time – varying stiffnesses which introduce parametric excitation into 
the system. As a result, a linear relationship between the displacements of the inner 
race and contact forces is acquired which leads to less computational cost.  

First, it is assumed that the bearing is just under the vertical displacement of the 
inner race designated by 𝑦𝑏 which reduces Eq. (3.1) to (considering zero clearance): 

 cosi b iy   (3.14) 

Inserting Eq. (3.14) in Eq. (3.12) and Eq. (3.13) yields the following contact 
forces in the orthogonal directions: 

  
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By rotating the inner race and computing the contact forces from Eq. (3.15) and 
Eq. (3.16) at different times like 𝑡𝑗−1, 𝑡𝑗, 𝑡𝑗+1 … the force – displacement plot could 
be obtained as depicted in Figure 28. It is worth mentioning that the contact forces 
are obtained based on the number of balls within the loading zone. According to 
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Figure 28, at the instant time 𝑡𝑗, the contact forces are plotted against an interval of 
inner ring displacement 𝑦𝑏. Then the subsequent procedure is followed:  

I. First, an upper and lower bound of the preload, based on the working range of 
the bearing, are chosen, this corresponds to a range for 𝑦𝑏 denoted as 𝑦̅𝑏 in 
Figure 28. 

II. Then, a first – order polynomial is fitted to the force – displacement curve 
based on the ranges of preload and displacement determined in step I.  

III. Finally, the slope of the first – order polynomial fitted curve, representing the 
stiffness, is computed. 

As depicted in Figure 28, the slopes of the fitted curve at the 𝐹𝑌 − 𝑦𝑏 and 𝐹𝑋 −
𝑦𝑏 plots are direct and cross – coupling stiffnesses denoted respectively by 𝐾𝑦𝑦𝐿 
and 𝐾𝑥𝑦𝐿 which are time – dependent.  

 

Figure 28: Equivalent time – varying stiffness by linearizing contact forces  
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Using the bearing values in Table 4 and collecting all the 𝐾𝑦𝑦𝐿 and 𝐾𝑥𝑦𝐿 for a 

timespan equivalent to 2𝜋 rotation of the inner race, the time signals and the 
corresponding FFTs of the resultant 𝐾𝑦𝑦𝐿 and 𝐾𝑥𝑦𝐿 are plotted and shown in Figure 
29. According to Figure 29A, the direct stiffness is purely sinusoidal, a cosine 
signal, and its FFT in Figure 29B contains a zero harmonic/static term and a 
predominant harmonic denoted by 𝐾𝑏𝑚 and 𝐾𝑏ℎ. According to this figure, the cross 
– coupling term is quasi sinusoidal with a sine – like signal and with regard to the 
FFT, it includes one predominant harmonic designated by 𝐾𝑏𝑐. According to the 
FFT plots in Figure 29B, the period of the signals is 2𝜋/𝑁𝑏 where 𝑁𝑏 is the number 
of balls. The expression for the direct and cross – coupling stiffnesses are: 

 cos
Lyy myy b cdyyK K K N    (3.17) 

 sin
Lxy dxy cbK K N   (3.18) 

By substituting 𝜃𝑐 from Eq. (3.4), 𝑁𝑏Ω𝑐 is known as the ‘varying compliance 

frequency’ and here would be denoted by Ω𝑣𝑐 = 𝑁𝑏Ω𝑐 = (
𝐷𝑖

𝐷𝑖++𝐷0
)Ω.  
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A) 

 

B) 

 

 Figure 29: A) The sinusoidal behavior of the time – varying stiffness during a complete 
rotation of the inner race, B) FFT of the time – varying stiffness  
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Since there is a 90° of phase shift between the orthogonal directions i.e. 𝑥 & 𝑦, 

the corresponding periodic siffnesses in the 𝑥 direction would be acquired by 𝜋/2 
rotation of Eq. (3.17) and Eq. (3.18). Then, the stiffness matrix of the REB could 
be expressed as: 

 
sin Ω sin Ω

cosΩ cosΩ

bm bh vc bc vc
b

bc vc bm bh vc

K K t K t
K

K t K K t
  

  
  

 (3.19) 

In the following section, the stability analysis of a Jeffcott rotor supported by 
REB, modeled as springs whose stiffness matrix is indicated by (3.19), would be 
carried out.  

Table 4: Bearing specifications  

REB Values 

𝐷𝐼(m) 35.18 × 10−3 

𝐷𝑂(m) 58.03 × 10−3 

𝑑𝑠(m) 
𝐷𝑂 − 𝐷𝐼

2
 

𝑁𝑏 9 

3.2.2 Governing Equations of motion of the Jeffcott rotor  

Adopting the stiffness matrix in Eq. (3.19), the governing equations of motion 
are: 

   
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 (3.21) 

Here, the parameter 𝐶 represents the overall damping of the system and 
parameters 𝐾𝑏𝑀, 𝐾𝑏𝐻 and 𝐾𝑏𝐶 are given in APPENDIX E. It is worth mentioning 
that since the system is symmetric with respect to the disk, the stiffness and 
damping parts i.e. (𝐾𝑏𝑀 + 𝐾𝑏𝐻 sinΩ𝑣𝑐), (−𝐾𝑏𝐶 sinΩ𝑣𝑐), (𝐾𝑏𝑀 + 𝐾𝑏𝐻 sinΩ𝑣𝑐), 
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(−𝐾𝑏𝐶 cosΩ𝑣𝑐) and 𝐶 in Eq. (3.20) and Eq. (3.21) refer to half of the system; 
therefore, their contribution is multiplied by a factor of two.  

In the subsequent sections, first, the stability of the rotor system under 
parametric excitation is investigated and a modification of HBM is proposed. Here, 
the disk is assumed to have zero eccentricity (𝑒 = 0). Then, the forced response 
(𝑒 ≠ 0) is taken into account where a new approach for stability analysis is 
developed.   

3.3 Trained Harmonic Balance Method (THBM) 

In this section, the stability of the rotor system under parametric excitation 
generated by the time – varying stiffnesses of the REB is investigated. For this 
study, the eccentricity of the disk is neglected i.e. 𝑒 = 0. Here, 𝑀𝑑 and Ω are 
adopted as the control parameters and the stability plot is presented on the (Ω,𝑀𝑑) 
plane. In some cases, for clarifications, the varying compliance frequency Ω𝑣𝑐 is 
substituted by Ω. The values of the parameters in Table 4 and Table 5 are adopted 
for numerical calculations.  

Table 5: the values of the parameters of the Jeffcott rotor  

𝑲𝒃𝒎(𝐍/𝐦) 𝑲𝒃𝒉(𝐍/𝐦) 𝑲𝒃𝒄(𝐍/𝐦) 

4.23 × 109 1.35 × 107 5.65 × 107 

𝑬(𝐆𝐏𝐚) 𝑳(𝐦) 𝑲𝒔(𝐍/𝐦) 

200 6𝐷𝑂 

48𝐸𝐼

(
𝐿
2)

3  

By implementing the state-of-the-art stability analysis approaches explained in 
chapter 2, i.e. Floquet theory, Hill’s method, and HBM, a stability plot containing 
the results from these three approaches is obtained and depicted in Figure 30.  

According to the results from Floquet theory, there are two unstable zones 
where the system’s responses are unbounded. It is worth pointing out again that the 
Floquet theory analyses the system in the time domain by examining the modulus 
of the Floquet multipliers (eigenvalues of the Monodromy matrix) against 1, 
according to Eq. (2.19). It must be noted that the results obtained by Floquet theory 
are considered as the reference here.  
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Figure 30: Stability plot of the Jeffcott rotor shown in the disk’s mass  dM  

– disk’s rotational speed    plane for 2500C   N.m/s  

Since the rotor system has two Dof, the occurrence of the instabilities due to 
both the Combination and Primary parametric resonances are expected. Therefore, 
the implementation of HBM is carried out by expressing the system’s coordinates 

according to Eq. (2.33) and solving the determinants of Eq. (2.34) simultaneously. 
Doing so, the transition curves denoted by the black dots in Figure 30 are obtained. 
These transition curves are acquired due to the consideration of the frequency 
contents corresponding to 𝜔1 and 𝜔2 in Eq. (2.33) while the contribution of the 𝑇 
and 2𝑇 periodic components are null. It indicates that the second unstable zone is 
appeared as a result of the Combination parametric resonance. It can be concluded 
that in a parametrically excited system with two equal natural frequencies i.e. two 
identical mode shapes, here first two bending modes, the instability due to the 
combination parametric resonance is probable. According to Figure 30, in applying 
HBM, an inaccurate prediction of the first unstable region is given. Due to this, this 
approach is named ‘Simple HBM (SBHM)’. Such inaccuracy is addressed later in 
this section. 

First unstable region
Unstable region due to Combination 

Parametric resonance
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Employing Hill’s method where the system’s coordinates are expressed by Eq. 

(2.46) and examining the modulus of the resultant Floquet exponents obtained by 
Eq. (2.52) results in finding an unstable zone presented by the blue dots in Figure 
30. It is observable here that Hill’s method accurately detects the second unstable 
zone while does not give any information about the first one. As pointed out earlier, 
in Figure 31, the second unstable zone is arisen due to the combination parametric 
resonance. As was observed and concluded in chapter 2, the presence of the 2𝑇 
(here 𝑇 = 2𝜋/Ω𝑣𝑐) periodic frequency components allows Hill’s method to find the 

second unstable zone in Figure 31.  

According to the results in Figure 30, SHBM is not efficient enough to find the 
first unstable zone which does not attribute to any kind of parametric resonances. 
Detecting this area of unbounded responses is of importance since it occurs at low 
rotational speeds. In the following, the reason that SHBM fails in finding the first 
unstable has been investigated. Using this information, the SHBM has been trained 
and the Trained HBM (THBM) procedure is introduced.   

According to the transition curves obtained by SHBM corresponding to the first 
unstable zone in Figure 30, one possibility of such inaccuracy could be because of 
considering wrong or imprecise frequency components in Eq. (2.33). To investigate 
this issue, a procedure described in Figure 31 is proposed. In this procedure, first, 
several trial points at the domain of interest, here the unstable regions, are selected. 
Then, by obtaining time responses and FFTs of those trial points, the domain of 
HBM formulation is identified. According to the FFT plots presented in Figure 32, 
the scope of HBM’s applicability in obtaining the transition curves is recognized 
and demonstrated as a flow chart shown in Figure 31. According to this figure, the 
‘Simple Formulation’ limits the HBM to find the transition curves corresponding 

to the second unstable zone. This zone is highlighted in red and corresponds to 
SHBM. On the other hand, by training the HBM by the ‘General Formulation’, 

represented by the blue area, both the unstable zones can be detected. The latter 
procedure, which is proposed in this study, is named ‘Trained HBM (THMB)’.   
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Figure 31: Investigation of the extra harmonics to adapt the SHBM for stability computation  

To explore the frequency components of THBM, the FFT plot of two randomly 
chosen unbounded responses at the unstable regions are obtained and shown in 
Figure 32. According to Figure 32A, the FFT of the response has two sideband 
frequencies at a distance of  Ω𝑣𝑐 from a leading frequency 𝜔𝑐. In Figure 32B on the 
other hand, the response has two dominant frequencies whose summation is equal 
to Ω𝑣𝑐. As already observed in chapter 2, such a FFT plot is typical of unstable 
responses resulted from combination parametric resonances. In THBM, the 
coordinates of the system are expressed by Fourier series containing the frequency 
components taken from the 1st unstable zone given in Figure 32A: 

2 31 1 2 3cos sin cos sin cos sin Rcd L L Rcx a t b t a t b t a t b t            (3.22) 

3 31 1 2 2cos sin cos sin cos sin  , cL Rcd L Ry c t d t c t d t c t d t            (3.23) 
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A) 

 

B) 

 

Figure 32: Sample FFT of the responses for  N.m/s and at A) First and B) 
Second unstable zones 

Considering Figure 32, since the frequency component 𝜔𝑐 is more significant 
with respect to frequencies 𝜔𝐿 and 𝜔𝑅 for 𝑦𝑑 and less notable comparing to 𝜔𝐿 and 
𝜔𝑅 for 𝑥𝑑, it is possible to simplify Eq. (3.22) and Eq. (3.23) by setting the 
coefficients 𝑎2 = 𝑏2 = 𝑐1 = 𝑑1 = 𝑐3 = 𝑑3 = 0.  

By injecting the resultant coordinates from Eq. (3.22) and Eq. (3.23), 
considering 𝑎2 = 𝑏2 = 𝑐1 = 𝑑1 = 𝑐3 = 𝑑3 = 0, in the governing equations of 
motion and balancing the terms of the same harmonics, an algebraic equation 
similar to Eq. (2.31) would be obtained. Here, the Jacobian matrix [𝐽] is considered 
to be a function of 𝜔𝑐 and Ω𝑣𝑐. By solving the two determinants of Eq. (2.34) 
simultaneously, the transition curves would be acquired as demonstrated in Figure 
33. Compared to the Floquet results, the first transition curve has the same shape as 
the corresponding unstable zone but encompasses a wider area. In other words, 
THBM is conservative in predicting the first unstable zone. The result for the 
second unstable zone is the same as the one obtained by applying SHBM.  

 

2500C 
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Figure 33: Comparison of the unstable zones computation using THBM 
and Floquet Theory for 2500C   N.m/s  

In Figure 32B, referring to the second unstable zone, the frequency 𝜔2 is 
claimed to be almost equal to 𝜔𝑐. To confirm this, the values of 𝜔1, 𝜔2 and 𝜔𝑐 are 
obtained for a specific case at 𝑀𝑑 = 8 kg on the second transition curve, as shown 
by the dashed blue line in Figure 33. The intersections of this line with the transition 
curves are called ‘Left’ and ‘Right’. The values of 𝜔1 and 𝜔2 are computed by 
SHBM (using Eq. (2.33) given in Chapter 2), while the value of 𝜔𝑐 is computed by 
THBM (using Eq. (3.22) and Eq. (3.23) given in the current Chapter). These values 
are presented in Figure 34. It is observable that the frequencies 𝜔2 and 𝜔𝑐 are almost 
equal to each other at the ‘Left’ and ‘Right’ intersections. This implies that 𝜔1 =

|Ω𝑣𝑐 − 𝜔2| can be written as  𝜔1 ≈ |Ω𝑣𝑐 −𝜔𝑐|. This is the reason why, even 
without knowing the frequencies 𝜔1 and 𝜔2, THBM allows to find, in addition to 
the first unstable zone, the second area of instability characterized by the 
frequencies 𝜔𝑐 and Ω𝑣𝑐 − 𝜔𝑐 (please refer to Figure 32B). 

It is worth noting that using THBM allows the computation of the transition 
curves even with unknown frequency content(s) while it is not the case in utilizing 
Hill’s method.  



90 Application of the State-of-the-art and New Stability Analysis 
Methods on a Realistic Case Study 

 
On the other hand, the main drawback of applying THBM is the high 

computational time specifically when the numbers of harmonics and Dof increase. 
The main motivation of the next section is to overcome this issue by proposing a 
new approach based on the forced response analysis.  

A)                                                                B) 

 

Figure 34: the values of the frequencies 1 2 ,    obtained by SHBM and c  
obtained by THBM for 2500C   N.m/s and at the intersection of the line of 

8dM   kg and the left transition curve corresponding to the labels(intersections) 
A) “Left” and B) “Right” shown in Figure 33 

3.4 Jacobian Based Approach (JBA)   

As was observed previously, to obtain the transition curves using THBM, the 
determinants of the Jacobian matrix and its highest minor must be solved. Since the 
determinants are polynomials, increasing the numbers of harmonics or Dofs results 
in the increment of the order of the polynomials and higher computational time.  

In this section, the implementation of  JBA to obtain the stability plot associated 
to the Jeffcott rotor is explained in detail. To initiate, the Jeffcott rotor induced by 
the eccentric force of the disk (𝑒 ≠ 0 in Eq. (3.20) and Eq. (3.21)) is taken into 
account. The analysis is performed for 𝑀𝑑 = 8 kg and 𝑒 = 3 × 10−3m. Since the 
system is under two exciting forces, parametric excitation and eccentricity force, 
the frequency content of the system is based on Table 6. 
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Table 6: Frequency contents  

Dominant Frequency 
components ωc 

ωc

− Ωvc 
ωc

+ Ωvc 
Ω Ωvc 

Ω
− Ωvc 

Ω
+ Ωvc 

Unstable zone × × ×     

Stable zone    × × × × 

In Table 6, the frequency components at the unstable zone relate to the 
frequency contents of the unbounded responses due to the parametric excitation as 
was noticed in the previous section. While the stable zone comprises the converging 
responses whose frequency contents are associated with the forcing frequencies and 
their combination (Haslam, Schwingshackl, and Rix, 2020). Adopting these 
frequencies, the system’s coordinates are expressed as follows:  

 

     

   

   

1 1 2 vc 2 vc 3 vc

3 vc 4 vc 4 vc

5 c 5 c 6 vc 6 vc

7 vc 7 vc

cos Ω sin Ω cosΩ sin Ω cos Ω Ω

sin Ω Ω cos Ω Ω sin Ω Ω

cos ω sin ω cos Ω sin Ω
    

cos Ω sin Ω

d

c c

c c

a t b t a t b t a t
x

b t a t b t

a t b t a t b t

a t b t

 

 

     
  

       

     
  

     

 (3.25) 

 

     

   

   

8 8 9 vc 9 vc 10 vc

10 vc 11 vc 11 vc

12 c 12 c 13 vc 13 vc

14 vc 14 vc

cosΩ sin Ω cosΩ sin Ω cos Ω Ω

sin Ω Ω cos Ω Ω sin Ω Ω

cosω sin ω cos Ω sin Ω
    

cos Ω sin Ω

d

c c

c c

a t b t a t b t a t
y

b t a t b t

a t b t a t b t

a t b t

 

 

     
  

       

     
  

     

 (3.26) 

Inserting Eq. (3.25) and Eq. (3.26) in the equations of motion and balancing the 
terms with the same harmonics yields the following algebraic equations:  

       1 1  , R J U F   (3.27) 

where [𝐽1] is the Jacobian matrix, {𝑈1} = {𝑎1, 𝑎2, … , 𝑏13, 𝑏14}
𝑇 is the vector of 

each harmonic amplitude and {𝐹} and {𝑅} are the forcing and the residual 

vectors respectively. To obtain the frequency response, the residual must be 

close to zero; hence: 
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      1 1

1U J F
  (3.28) 

By determining the {𝑈1} in Eq. (3.28) for each value of Ω and computing its 
modulus, the frequency response curve shown in Figure 35 is obtained. This plot 
contains one peak at Ω ≈ 7485 rad/s, denoted by point C, which corresponds to the 
natural frequency of the system according to the Campbell diagram in Figure 36. 
The difference in the values is because the peak C in Figure 35 designates the 
damped natural frequency whereas the undamped natural frequency is presented by 
the Campbell diagram in Figure 36.  

Furthermore, the frequency response possesses two small peaks at lower 
frequencies denoted by points A and B. These extra modes that are generated due 
to the varying compliance phenomena (Yang et al., 2018), and negligible compared 
to the main mode of the system, are not present in the Campbell diagram of Figure 
36.  

 
Figure 35: Frequency response of the system for 8dM   kg and 2500C   N.m/s 
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Figure 36: Campbell diagram for 8dM   kg and 2500C   N.m/s 

The Campbell diagram of Figure 36 has been obtained by computing the 
eigenvalues of the mass and stiffness matrices where the time – varying part of the 
stiffness was disregarded. As already observed, no horizontal lines corresponding 
to peaks A and B in Figure 23 are visible. To obtain a Campbell diagram giving all 
the possible modes, the time – dependent parts of the stiffness matrix must be taken 
into account. A practical way to include these time – dependent parts, is to make 
use of the Jacobian matrix [𝐽1] (Tehrani, Gastaldi and Berruti, 2021a).  

To proceed, first, the spy plot of Eq. (3.28) organized by its frequency 
components is presented in Figure 37. Here, the frequency contents indicated by 
the purple, orange, and green boxes correspond respectively to the static terms, 
stable and unstable responses. The governing equation of the orange block matrix 
including the responses at peaks A, B, and C is:   

  
vc vc

vc vc

Ω Ω

Ω Ω1

Ω Ω Ω Ω

Ω Ω Ω Ω

 , vc vc

S

U F
U F

J
U F

U F



 

 

   
   
   

   
   
   
   

 (3.29) 

where: 

        
1 2Ω ΩS S S SJ M i C K
     (3.30) 
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Here, the mass [𝑀𝑠] and damping [𝐶𝑠] matrices are diagonal while the stiffness 

matrix [𝐾𝑠] contains off – diagonal elements due to the presence of the cross – 
coupling terms as shown in Eq. (3.19). The comprehensive Campbell diagram in 
Figure 38, including the modes due to the parametric excitation, is obtained through 
an eigenvalue analysis using the stiffness, damping, and mass matrices of Eq. (3.30)
. According to Figure 38, the presence of the eigenfrequencies related to the 

parametric excitation i.e. point A and B in Figure 35, is due to considering the 

time-dependent stiffness terms. As observed earlier, since the difference between 
the damped and undamped natural frequencies are not significant, the undamped 
ones (those related to 𝐾𝑆, 𝑀𝑆) are plotted in Figure 38. The damped natural 
frequencies can be easily obtained by adopting a state-space representation where 
the matrix 𝐶𝑆 is considered in the eigenvalue computation.  

 
Figure 37: Spy plot of the inverse of the Jacobian matrix for 8dM   kg and 2500C   N.m/s 
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Figure 38: Campbell diagram obtained by using the mass and stiffness matrices 

from HBM for 8dM   kg and 2500C   N.m/s 

To check the accuracy of the HBM, the time responses of the trial points 1, 2, 
3, and 4 picked from the frequency response in Figure 35, are obtained via HBM 
and DTI (direct time integration) and demonstrated in Figure 39. Here, at points 1 
and 3 the time signals from HBM well match the ones obtained by DTI. On the 
other hand, the responses at points 2 and 4, intentionally chosen at the unstable 
zones, diverge according to DTI whereas based on HBM are bounded.  
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Figure 39: Time response of the sample points in Figure 35 obtained by direct time 

integration and HBM f for 8dM   kg and 2500C  N.m/s 

To better investigate such inaccuracy of HBM, the frequency response of the 
system in Figure 35 is presented based on its frequency components as shown in 
Figure 40. In this figure, the components representing the stable responses, Figure 
40a and Figure 40b, are present; however, the ones corresponding to the unstable 
responses, Figure 40c, are null. This explains why the frequency response in Figure 
35 and also the time responses of points 1 and 2 in Figure 39 do not contain any 
information about the instabilities induced by the parametric excitation. In the 
following, the solution to solve this deficiency is addressed.  
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Figure 40: Discrete demonstration of the frequency response based on the frequency 
components a)   & Ωvc , b) vcΩ Ω  & Ω Ωvc  and c) c , -c vc   & c vc   

considered in HBM given in Table 10 for 8dM   kg and 2500C  N.m/s 

It is worth mentioning that the peak in Figure 40a corresponds to the natural 
frequency of the system as denoted by point C in Figure 35. In addition, in Figure 
40b the first peaks of the dotted and solid curves are associated respectively with 
peaks A and B in Figure 35. 

To solve the issue related to the absence of instability due to the parametric 
excitation within the frequency response JBA is implemented. To do so, first, Eq. 
(3.28) is rewritten as: 

 

0 0 00 0
0 0  , 
0 0

S S S

U U U

U J F
U J F
U J F

    
    

    
        

 (3.31) 
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where, the indices 0, S and, U represent the static terms and frequency components 
related to the stable and unstable responses respectively. Due to the null 
contribution of the Ω𝑣𝑐 component shown in Figure 40a, it is placed in the 𝐽0 block. 
It is evident from Eq. (3.31) that stable and unstable responses are fully uncoupled; 
accordingly, the unstable responses 𝑈𝑈 could not be excited by the force vector 
corresponding to the stable responses 𝐹𝑆. In order to be able to trigger the vector 
𝑈𝑈, at least one of the entries of the vector 𝐹𝑈 must be nonzero.  

For the current system, the key information required to implement JBA is to 
know the value of the leading frequency 𝜔𝑐. To this end, the values of 𝜔𝑐 on the 
transition curves computed by THBM are presented in Figure 41. According to this 
figure, 𝜔𝑐 has unique values on the transition curves corresponding to the first 
unstable zone while its values vary on the transition curves encompassing the 
second unstable zone. Here the purple dots represent the values of the natural 
frequency 𝜔𝑛 of the system without parametric excitation (Equivalent to point C in 
Figure 35). As is noticeable, the values of 𝜔𝑐 in the first unstable region is almost 
equal to 𝜔𝑛; while in the second unstable region the values of the 𝜔𝑐 at the left side 
of the transition curve are close to 𝜔𝑛. Accordingly, for this study 𝜔𝑐 is equated to 
the corresponding 𝜔𝑛 at 𝑀𝑑 = 8kg.  

 

Figure 41: The values of c  at first and second transition curves using THBM 
for 2500C  N.m/s 
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Applying JBA by assigning a sinusoidal force with the 𝜔𝑐 component and a 

unit amplitude to 𝐹𝜔𝑐
, the results are obtained and demonstrated in Figure 42. It 

must be noted that since the contributions of the frequency components Ω, Ω𝑣𝑐 and 
Ω ± Ω𝑣𝑐, shown in Figure 40, remain unchanged, they are not presented in Figure 
42.  

According to Figure 42a), the frequency response of the 𝜔𝑐 component contains 
two peaks at frequencies equal to the ones at the intersections of the 𝑀𝑑 = 8kg line 
and the first transition curve obtained by THBM. These two peaks determine the 
borders of the first unstable zone, within the frequency response, whose inside area 
contains the unstable responses. Furthermore, as shown in Figure 42b), there are 
two other peaks at higher rotational speeds which correspond to the second unstable 
zone. Compared to THBM, here JBA is predicting a bigger area of instability (more 
conservative) at the second unstable zone; this is because the chosen value of 𝜔𝑐, 
𝜔𝑛, is not precise at this region as stated in Figure 41. The domain of this area is 
represented by the dashed green lines while the ones corresponding to the actual 
domain of instability are demonstrated by the red dashed lines.  
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Figure 42: Illustration of the instability borders in the frequency response using 
JBA for 8dM   kg and 2500C  N.m/s 

As observed in this chapter and also in chapter 2, implementation of HBM 
allows to find just the transition curves where the responses are periodic and 
bounded; however, no information about the inside zone is given. Since JBA 
originates from HBM, implementing this approach results in obtaining a frequency 
response containing peaks at frequencies equal to the ones of the transition curves.  

To obtain the full stability plot via JBA, the following steps must be taken: 

a) Perform the JBA for different values of 𝑀𝑑 for an interval of Ω 
b) For each 𝑀𝑑, build the JBA plot (like in Figure 42) 
c) Collect the frequency values corresponding to the peaks demonstrating 

the domains of instabilities  
d) Plot the collected points from the previous step 
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By performing the procedure above, the transition curves acquired by JBA are 

demonstrated in Figure 43. According to this figure, the first transition curve 
obtained by JBA completely overlaps the one from THBM while is conservative 
compared to the result from Floquet theory. On the other hand, the second transition 
curve resulted from JBA predicts a wider area of instability which encompasses the 
domain of instability obtained by THBM and Floquet theory. This is because the 
value of the 𝜔𝑐 used here in JBA is accurate for the first unstable zone while not 
for the second unstable zone. 

 

Figure 43: Stability plot of the rotor system obtained by the THBM, Floquet 
theory, and JBA for 2500C  N.m/s 

 To provide an assessment of the applicability and efficiency of JBA in 
comparison to THBM and Floquet theory, all three approaches are performed for 
the 200 values of 𝑀𝑑 and 200 values Ω𝑣𝑐 for: 1(kg) ≤ Md ≤ 10(kg) & 1(rad/s) ≤

Ωvc ≤ 2 × 104(rad/s). As shown in Table 7, the computational time of the JBA 

compared with the other approaches is extremely low. Considering the results 

from these three approaches, it could be claimed that by knowing the 

frequency contents, JBA is a powerful tool for stability analysis of a system 

under parametric excitation. 
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Table 7: Comparison of the computational time of the different stability analysis 

approaches to obtain the complete stability plot  for    d1 kg M 10 kg   & 

4rad rad1 Ω 10
s s

   
    

   
 

Stability analysis approach Number of points Time of computation 

Floquet  
200 samples of Md 
200 samples of Ω 10800 (s) 

THBM 
200 samples of Md 

Ω is an unknown to be 
computed 

6540 (s) 

JBA 
200 samples of Md 
200 samples of Ω 3 (s) 

3.5 Conclusion  

In this chapter, the stability analysis of a Jeffcott rotor induced by the varying 
compliance of the supporting Rolling Element Bearing (REB) is taken into account. 
By linearizing the nonlinear contact forces generated due to the varying 
compliance, this phenomenon has been modeled by a set of time – varying 
stiffnesses which are sources of parametric excitation. 

In this study, an improved procedure of HBM denoted by ‘THBM’ and a new 

procedure named ‘JBA’ to obtain the stability plot of the Jeffcott rotor system under 

parametric excitation are proposed. Here the stability plot, containing unstable 
regions, obtained from Floquet theory implementation is adopted as the reference. 
And, the accuracy and efficiency of THBM and JBA in computing the stability plots 
are examined by comparing them with the results from Floquet theory. 

The following remarks are inferred for this study:  

 The stability plot contains two unstable zones at low and high rotational speeds 
of the shaft. 

 The domain of instabilities detected by implementing Hill’s method is just valid 

at the second unstable zone. 

 SHBM finds just the transition curves corresponding to the second unstable 
zone while it gives an insufficient prediction of the transition curves regarding 
the first unstable region. 
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 Using THBM, where the frequency components are chosen based on the 

frequency contents of the first unstable zone, acceptably determines the 
transition curves associated with both of the unstable regions. 

 The Campbell diagram built by the eigenvalues of the Mass and Stiffness 
matrices without considering the time – varying parts, is not able to demonstrate 
the extra modes generated by the parametric excitation. 

 Conducting the eigenvalue problem using mass and stiffness matrices extracted 
from the Jacobian matrix, where the time – varying stiffnesses are taken into 
account, results in a Campbell diagram illustrating the natural frequencies due 
to the parametric excitation. 

 The spy plot of the Jacobian matrix shows that the absence of instabilities due 
to the parametric excitation in the frequency response plot is due to not 
considering any contribution of the frequency components related to the 
unstable regions within the force vector.  

 Employing JBA, where some test harmonic forces possessing frequency 
components at the unstable zones are considered, the domain of instabilities in 
addition to the simple resonances are specified within the frequency response 
plot. 

 The comparison of the stability plots produced by JBA, THBM, and Floquet 
theory implies that the JBA is a highly cost – efficient and accurate method to 
build the stability plot. 
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Chapter 4 

Study of the JBA Applicability and 
Experimental Investigation of 
Instability due to Parametric 
Excitation  

4.1 Introduction 

In this chapter, the stability analysis of a continuous system under parametric 
excitation is taken into account.   

The first part of this chapter focuses on further study of the JBA method, 
developed in the previous chapter, in obtaining the stability plot of the structure.  

In the second part, an experimental study of instability due to parametric 
excitation is taken into consideration. The test case, adopted as a demonstrator, 
consists of a cantilever beam mounted on a spring with a time – varying stiffness. 

4.2 Mathematical modeling  

The schematic of a cantilever beam is depicted in Figure 44. In this figure, 𝐿 
represents the length of the beam with 𝑏 × ℎ rectangular cross – section. In this 
study, the beam has been modeled by seven Bernoulli – Euler beam elements with 
translational and rotational nodal DOFs. At the distance 𝐿𝑚 from the clamped 
support, the system is supported by a spring whose stiffness is time – dependent 
and denoted by: 

    0 1 cosk t K t    (4.1) 
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Eq. (4.1) is a parametric excitation where 𝐾0 and 𝜂 designate respectively the 

amplitude and the frequency. The correspondence between the Eq. (4.1)  and the 
experimental set – up will be further justified in section 5.3. The governing 
equations of motion of a cantilever beam shown in Figure 44 are as follows: 

              1 1   1
0

n n n n n n n n n
M y C y K k t H y

     
     (4.2) 

Here 𝑛 denotes the number of DOFs of the system and the matrices [𝑀], [𝐾] 
and [𝐶] represent the mass, stiffness, and damping of the system respectively. The 
damping is mass – stiffness proportional and computed by 𝛼[𝑀] + 𝛽[𝐾]. 
According to Figure 44, the spring is placed at node E, indicated by the red dot, and 
just constraints the translational displacement 𝑦𝐸. To specify this point in Eq. (4.2) 
a vector of Heaviside functions 𝐻 is multiplied by 𝑘(𝑡). The vector has a unitary 
value 𝐻 = 1 at node E only, while it is 𝐻 = 0 at all other nodes. 

 

Figure 44: Schematic of a cantilever beam mounted on a time – varying spring  

4.3 Stability analysis  

In the previous chapters, the probability of instability (unbounded/unstable 
responses) occurrences at frequencies close to the parametric resonance 
frequencies, mentioned in Eq. (1.2), has been investigated. Here, due to the 
presence of time – dependent stiffness denoted by (4.1), there is a possibility of 
structure’s instability emergence at specific parametric excitation frequencies 𝜂. 
Hence, obtaining the stability plot where the regions of the unstable responses are 
highlighted is of great importance. In this section, first, the stability plot obtained 
by Hill’s method is given; then, in a separate subsection, a detailed procedure of 
JBA implementation to compute the stability diagram is presented. It must be noted 
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that for this study 𝐾0 and 𝜂 are taken as the control parameters and accordingly the 
stability plot is presented at the (𝜂 , 𝐾0) plane. The values of the system’s 

parameters are given in Table 8.  

Table 8: System’s parameters & Natural frequencies     

𝒉(𝐦) 𝒃(𝐦) 𝑳(𝐦) 𝑳𝒎(𝐦) 𝑬(𝐏𝐚) 𝝆(𝐤𝐠/𝐦 ) 𝑴𝒔(𝐤𝐠) 

3
× 10−3 

30
× 10−3 

540
× 10−3 

155
× 10−3 

70
× 109 

2700 
10
× 10−3 

𝝎𝒏𝟏   𝝎𝒏  

8.4 Hz (52.7 rad/s) 51.1 Hz (321 rad/s) 

Eq. (4.2) is similar to a multi – Dofs Mathieu equation and to implement Hill’s 

method, the coordinates of the system {𝑦} in Eq. (4.2) must be expressed according 
to Eq. (2.46) containing 𝑇 and 2𝑇 periodic responses. Here, 𝑇 is the period of the 
parametric excitation and is equal to 2𝜋/𝜂. Solving the eigenvalue problem given 
by Eq. (2.49) and adopting the proper Floquet exponents based on the criteria given 
at the end of section 2.4, results in the stability plot shown in Figure 45.  
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Figure 45: Stability plot of the cantilever beam using Hill’s method  

The stability plot in Figure 45 comprises three unstable regions highlighted by 
the black areas. To specify the type of each unstable zone, first, for all the values of 
𝐾0, the values of twice the first two natural frequencies (2𝜔𝑛1 & 2𝜔𝑛2) and their 
summation (𝜔𝑛1 + 𝜔𝑛2) are computed. These values are depicted by the green 
dashed lines in Figure 45. As shown here, the green dashed lines corresponding to 
2𝜔𝑛1 and 2𝜔𝑛2 respectively pass through the 1st and 3rd unstable regions which 
implies that these instabilities are trigged due to the Primary Parametric 
Resonances. Correspondingly in Figure 45, the unstable region in the middle where 
the line of 𝜔𝑛1 + 𝜔𝑛2 passes, is appeared by the Combination Parametric 
Resonances. It must be noted that the results obtained by Hill’s method were 

already justified by the one from Floquet theory (Please refer to APPENDIX F).  

Although Hill’s method has high accuracy and is computationally more 
efficient than Floquet theory, it still takes a considerable amount of time to provide 

Unstable region due to 
Primary

Parametric resonance

Unstable region due to 
Primary

Parametric resonance

Unstable region due to 
Combination

Parametric resonance
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the stability plot for high Dof systems; For this reason, the JBA method is proposed 
as an alternative to Hill. In the following section, the implementation of JBA is 
explained and the efficiency and accuracy of this new method in comparison to 
Hill’s method are further investigated.  

4.3.1 Jacobian Based Approach (JBA) 

As was discussed in chapter 3, unlike Hill’s method and Floquet theory which 
detect the unstable zone, the JBA method computes the transition curves 
corresponding to an unstable zone. In addition, for specific values of the system’s 

parameters, JBA implementation results in a frequency response plot where the 
borders of instability are specified.  

To implement JBA, the lateral motion of each node 𝑦𝑖 is expressed by the 
Fourier series:  
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 (4.3) 

where 𝑖 denotes the nodes’ number. In Eq. (4.3) the first set of Fourier series 
corresponds to 𝑇 and 2𝑇 periodic responses (with frequencies 𝑧ηt

2
 ) and the second 

part (with unknown frequencies 𝑠𝜔1 and 𝑠𝜔2) associates with the responses at the 
combination parametric resonance zone.  

In the same way, the external test force at the desired node (here the tip of the 
beam) is stated in terms of the same harmonic components adopted in Eq. (4.3):  
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 (4.4) 

To compute the unknown frequencies 𝜔1 and 𝜔2, the same procedure given in 
section  2.7.4 is followed. To proceed, first, an optional value of 𝐾0, here 800 N/m, 
is chosen. Then, a horizontal dashed line at 𝐾0 = 800 N/m as shown in the upper 
plot of Figure 46 is depicted. The intersections denoted by points A and B, at the 
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border of the middle unstable zone corresponding to the combination resonance are 
then obtained. The FFTs of the responses computed at these two points are depicted 
in the lower part of Figure 46.  

 

Figure 46: FFT of points A & B shown on the stability plot in the upper portion  

By observing Figure 46, the following relationships between the frequencies 
components are deduced:  

  1 1 1/ 2A B n     (4.5) 

  2 2 2/ 2A B n     (4.6) 

 2 1 2 1B B A A       (4.7) 

1
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Subtracting Eq. (4.5) from Eq. (4.6) and using Eq. (4.7): 

 2 1 2 1  ,A A n n       (4.8) 

and from Eq. (4.7) and Eq. (4.8): 

 2 1 2 1B B n n       (4.9) 

The following relations are valid at the unstable zone resulting from the 
parametric combination resonance: 

 1 2 AA A     (4.10) 

 1 2 BB B     (4.11) 

Subtracting Eq. (4.10) from Eq. (4.8) and, Eq. (4.11) from Eq. (4.9) would 
result in the subsequent expressions of 𝜔1𝐴, 𝜔1𝐵, 𝜔2𝐴 and 𝜔2𝐵: 

  1 1 2 2 1/ 2 , A n n A AA A           (4.12) 

  1 1 2 2 1/ 2 , B n n B BB B           (4.13) 

Considering Eq. (4.12) and Eq. (4.13), the general following expressions for 
the frequencies 𝜔1 and 𝜔2 are proposed:  

 
 1 2

1 2 1 , 
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  
   

 
  

n n
 (4.14) 

Substituting Eq. (4.3) and Eq. (4.4) in Eq. (4.2) and using Eq.(4.14) and 
following the HBM process, yields the subsequent residual equation: 

         ,  ex J UR F  (4.15) 

where {𝐹𝑒𝑥} and {𝑈} are respectively the vectors of external forces and amplitudes 
of the Fourier expressions in Eq. (4.3) and [𝐽] is the Jacobian matrix. Considering 
𝑁ℎ1 = 4 and 𝑁ℎ2 = 1 in Eq. (4.3) and Eq. (4.4), the frequency components adopted 
in Eq. (4.15) are as follows:  
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3 ,  , , 2 ,  , 

2 2
 

     (4.16) 

By minimizing the residual {𝑅} in Eq. (4.15) a frequency response shown in 
Figure 47 containing peaks corresponding to the borders of the instabilities would 
be obtained. In this figure, the blue curve is the response of the system to the 
external test forces with the frequencies associated with the unstable regions due to 
primary parametric resonances i.e. frequencies 𝑧ηt/2 in Eq. (4.4); conversely, the 
purple curve corresponds to the system’s response to the external test forces having 
the frequency components related to unstable zones as a result of the parametric 
combination resonances i.e. frequencies 𝑠𝜔1 and 𝑠𝜔2 in Eq. (4.4). 

 

Figure 47: Investigation of the instability borders using JBA 



112 Study of the JBA Applicability and Experimental Investigation of 
Instability due to Parametric Excitation 

 
According to the stability plot, shown in the upper portion of Figure 47, there 

are two regions of instability due to the primary parametric resonances; 
accordingly, the blue curve, resulted from the frequency contents present in this 
region, contains two sets of dual peaks which specifies accurately the borders of 
these regions. This is shown in Figure 47 by dashed red lines connecting each pair 
of dual peaks to the stability plot (obtained using Hill’s method) at 𝐾0 = 800 N/m 
and the corresponding values of 𝜂. Correspondingly, in Figure 47, the purple curve 
is obtained by considering the frequency components associated with the unstable 
regions due to the combination parametric resonances. This curve contains one set 
of dual peaks which accurately specifies the limit of this unstable region.  

In Figure 47, it is noticeable that the results from the JBA implementation 
contain two extra peaks, denoted by ① & ②, which have nothing to do with 
instability detection. The emergence of such peaks is a by-product of the method 
itself. The reason is that, when the external test force vector in Eq. (4.4) inserted 
into the equations of motion is swept for a range of 𝜂, it may happen that the exciting 
frequency coincides with one of the natural frequencies causing a resonance. For 
instance, the first peak of the blue curve at 𝜂 = 33 rad/s, marked by ①, makes the 
system resonate. This is because at 𝜂 = 33 rad/s one of the frequencies in Eq. (4.4)
, 3𝜂/2, will be equal to 𝜔𝑛1 = 52.7 rad/s. Accordingly, for the peak ② of the 
purple curve, when 𝜂 = 165.9  rad/s and considering Eq. (4.14), it holds 𝜔1 = 𝜔𝑛1 
which also results in the resonance of the system. It should be noted that these extra 
contributions can be easily filtered out a priori and they are shown here only to 
demonstrate a full implementation of the JBA method. 

As mentioned in the previous chapter, to build the stability plot using JBA, the 
following procedure must be followed: 

a) Perform the JBA for different values of 𝐾0 for an interval of 𝜂 
b) For each 𝐾0, build a plot like in Figure 47 
c) Collect the frequency values corresponding to the peaks demonstrating 

the domains of instabilities  
d) Plot the collected points from the previous step 

Doing so, the stability plot obtained by JBA is given in Figure 48. In this figure, 
it can be observed that the transition curves computed by JBA accurately locate all 
the unstable regions obtained through Hill’s method. Here, the blue transition 

curves determine the border of the instabilities due to the primary parametric 
resonances while the purple one characterizes the unstable zone induced by 
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combination parametric resonances. In addition, the first and second lines of simple 
resonances shown in Figure 48 (see the labels at the bottom left), are the collection 
of the peaks ① and ② shown in Figure 47 for different values of 𝐾0.  

To make a comparison, in terms of computational time, between JBA and Hill’s 

method, a portion of the stability plot at 600 N/m ≤ 𝐾0 ≤ 800 N/m and 0 rad/s ≤
𝜂 ≤ 700 rad/s considering 500 values for each parameter, is recomputed where the 
duration of the computation is presented in Table 9. It must be noted that the reason 
for choosing this portion of the stability plot is that this part contains just the 
unstable regions which could be computationally time – consuming to obtain. In 
this way, the efficiency of the two methods can be examined more precisely. 

 

Figure 48: Comparison of the stability plots obtained JBA & Hill’s method 
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According to Table 9, JBA is almost 45 times faster than Hill in obtaining the 
stability plot. 

Table 9: The computational time for obtaining the complete stability plot via Hill’s 

method and JBA for 0
N N600 800
m m

K   
    

   
 & 

rad rad0 700
s s


   

    
   

 

Stability analysis 
approaches 

Number of samples 
Time of 

computation 

Hill’s method 
500 samples of 𝐾0 

500 samples of 𝜂 
5807 (s) 

JBA 
500 samples of 𝐾0 

500 samples of 𝜂 
127 (s) 

Based on the studies on JBA in the current and previous chapters, a guideline 
for the implementation of this method, according to the number of Dof, is provided 
in Table 10. 

Table 10: Summary of the frequency contents of the unstable responses due to parametric 
resonance for systems of increasing complexity (the output of this table is used for the JBA 

implementation) 

Dof of the System 
under parametric 

excitation with 
frequency 𝜂 

Primary 
Parametric 
Resonance 

(PPR) 

Combination 
Parametric 
Resonance 

(CPR) 

Dominant Frequency contents 

1-Dof system with 
single eigenfrequency ✓  

PPR: 
2𝑇 periodic 

responses (𝑇 =
2𝜋

𝜂
): 

𝑧𝜂

2
 , 𝑧 = 1… , 𝑛ℎ 

CPR: 
 

Null 

2-Dof system with 
identical 

eigenfrequencies: 
(𝜔𝑛1 = 𝜔𝑛2 = 𝜔𝑛) 

 ✓ 𝜔𝑛 , 𝜔𝑛 ± 𝜂 

N-Dof system (𝑁 ≥ 2) 
considering the first 

two modes with 
different 

eigenfrequencies 

✓ ✓ 

PPR: 
𝑧𝜂

2
 , 𝑧 = 1… , 𝑛ℎ 

CPR: 
𝜔1

=
|𝜂 + 𝜔𝑛1 −𝜔𝑛2|

2
  

𝜔2 = 𝜂 − 𝜔1 
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4.4 Experimental rig set-up  

In order to experimentally evidence the presence of instabilities due to the 
parametric excitation, a test rig was designed as a demonstrator. As depicted in 
Figure 49, to generate the parametric excitation, an electromagnet unit and a 
permanent magnet, attached to the beam, are utilized. The force generated by the 
electromagnet simulates a spring with time – varying stiffness which will be 
justified and formulated in the next section. In Figure 49, the gap between the 
electromagnet and the permanent magnet is designated by 𝐿0; it will be shown that 
the gap is the key parameter in calculating the magnetic force and consequently the 
time – varying stiffness. The magnet apparatus (electromagnet and permanent 
magnet) is placed at a distance 𝐿𝑚 from the clamped support which is the same as 
the mathematical model shown in Figure 44. The electromagnet is activated by an 
amplified AC current generated by a NI ConpactRIO system. To measure the 
vibrations, a measuring point denoted by the green dot in Figure 49, close to the tip 
of the beam, is selected. The response is measured by a Polytec Laser vibrometer.  

 

Figure 49: Schema of the experimental setup 

The real view of the rig is presented in Figure 50. According to this figure, an 
electromagnet made of two coils wrapped around a U -shaped core of ferromagnetic 
packed plates is used. To induce the beam by a magnetic field (and as a consequence 
an excitation force), two prismatic extensions are attached to the end sides of the 
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U-shape core. Since the beam is made of aluminum, a thin steel plate as the 
permanent magnet is attached to the beam. As indicated in Figure 50 and Figure 51, 
the electromagnet is mounted on a force transducer which directly measures the 
magnetic force denoted by 𝐹𝑚. This is highly advantageous since the computation 
of the magnetic force is possible without knowing the electrical parameters. It must 
be noted that to compute the real magnetic force generated by the electromagnet, 
𝐹0, the measured force 𝐹𝑚 must be multiplied by a calibration factor at the 
corresponding frequency. The calibration plot will be explained and shown in the 
next section. 

 

 

Figure 50: Test rig 
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Figure 51: Actual magnetic force generated by the magnet (𝐹0) and the force 
measured by the transducer (𝐹𝑚)  

4.4.1 Time – varying stiffness generated by the electromagnet  

According to (Firrone, Berruti and Gola, 2013), the magnetic force is expressed 
by the following formula: 

  
 

 2
0

1 cos  
m

Af t t
L y

 


 (4.17) 

The procedure to obtain Eq. (4.17) is given in APPENDIX G. Here, 𝑦𝑚 
represents the displacement of the measuring point, illustrated in Figure 51, 
recorded by the laser vibrometer, 𝜂 is the frequency of the electromagnet and 𝐴 is 
defined as (Berruti, Firrone and Gola, 2011): 

 
2 2

2
airN S IA  

  (4.18) 

Here, the parameters 𝑁, 𝜇𝑎𝑖𝑟, 𝑆′ and 𝐼 represent respectively the number of 
turns of the coils, the air permeability, the area of each coil facing the permanent 
magnet, and the amplitude of the AC current.  

At frequencies far from the resonance, the displacement of the beam is almost 
negligible with respect to the gap 𝐿0. In other words, the beam has infinitesimal 
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oscillation around its equilibrium 𝑦𝑚 = 0. To this end, the magnetic force in Eq. 
(4.17) could be expanded, using the Taylor series, around the equilibrium (Zaghari, 
Rustighi, and Ghandchi Tehrani, 2018). Collecting just the first – order terms of the 
expansion, the force would in Eq. (4.17) becomes: 
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 (4.19) 

Eq. (4.19) comprises two terms: a periodic force denoted by 𝐹0(1 − cos 𝜂𝑡) 
and a force due to a time – varying stiffness denoted by 𝐾0(1 − cos 𝜂)𝑦𝑚. In Eq. 
(4.19), the constant 𝐴 is: 

 2
0 0  , A F L  (4.20) 

and would be obtained by knowing 𝐹0which is connected to the measured force 𝐹𝑚. 

As was mentioned earlier and is also observable from Eq. (4.20), the constant 
𝐴 could be obtained without the need of Eq. (4.18). Eq. (4.20) could be then used 
in Eq. (4.19) to compute 𝐾0 = 2𝐴/𝐿0

3  and as a result 𝑓(𝑡). As pointed out before, 
the gap 𝐿0 is the key parameter and its different values result in different amplitudes 
of both the external force and the time – varying stiffness. 

In the following section, the presence of instability in the rig will be proven 
experimentally and the results would be verified by the numerical model.  

4.5 Stability analysis of the test rig (Experimental – 
Numerical verification) 

The aim of this experimental study is to prove the presence of instability at the 
combination parametric resonance frequency. For this purpose, the parametric 
frequency is tuned close to the summation of the first two natural frequencies i.e. 
𝜂 ≈ 𝜔𝑛1 + 𝜔𝑛2. The first two natural frequencies of the numerical and the 
experimental models are given in Table 11. According to this table, there is a small 
difference between the eigenfrequencies of the numerical and experimental models; 
therefore, the numerical model is reasonably accurate. 
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Table 11: First two Natural Frequencies of the cantilever beam  

Numerical Model Test Rig 

𝜔𝑛1 = 8.4 Hz (52.7 rad/s)   𝜔𝑛1 = 8.36 Hz (52.5 rad/s) 

𝜔𝑛2 = 51.1 Hz (321 rad/s) 𝜔𝑛2 = 50.47 Hz (317.1 rad/s) 

It must be noted that the frequency fed to the electromagnet from the control 
system is an electrical frequency which is half of the mechanical frequency. 

The electromagnet is fed by an alternate current with an Electrical frequency 
𝜂𝑒. This corresponds to an alternate excitation force on the beam given by Eq.(4.17) 
whose frequency 𝜂 is two times the electrical frequency 𝜂𝑒, as demonstrated in 
(Firrone, Berruti, and Gola, 2013). Therefore: 

 / 2  e   (4.21) 

For this study, the beam is excited close to the parametric combination 
resonance frequency ≈ 𝜔𝑛1 + 𝜔𝑛2 = 58.8 (Hz) , which corresponds to the 
electromagnet “electrical” frequency 𝜂𝑒 ≈

𝜔𝑛1+𝜔𝑛2

2
≈ 29.4 (Hz). 

According to Eq. (4.19), to compute the parameter 𝐴 and correspondingly 𝐾0, 
the amplitude of the periodic force 𝐹0 at the frequency 𝜂 must be determined. As 
referred earlier, 𝐹0 depends on 𝐹𝑚(see Figure 51). To find the relationship between 
actual and measured forces i.e. 𝐹0  and 𝐹𝑚 respectively, a calibration process is 
performed in (Berruti, Firrone and Gola, 2011). In this study, the authors designed 
a calibration bench unit shown in Figure 52A that comprises an inertial mass made 
of aluminum (4) holding a force transducer (2) which is attached to another inertial 
mass (1). In this configuration, the force transducer carries a ferromagnetic anchor 
(3) which is placed parallel to the anchor of the electromagnet. By feeding the 
electromagnet by the alternating current with the electrical frequency 𝜂𝑒, the 
resulting harmonic magnetic force 𝐹0 on the ferromagnetic anchor (3) has  a 
frequency 𝜂 which is twice 𝜂𝑒. By measuring the amplitude of the input force 𝐹𝑚 
and the amplitude of the force 𝐹0 exerted on the anchor and computing their ratio 
for different electrical frequencies, the calibration diagram depicted in Figure 52B 
is obtained.  

According to Figure 52B, the measuring point for the current test rig, shown by 
the orange dot, is out of the calibration curve. To be able to find the calibration 
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coefficient of the working frequency of this experiment i.e. 𝜂𝑒 ≈

𝜔𝑛1+𝜔𝑛2

2
≈

29.4 (Hz), an extrapolation between the two labeled frequencies at 50 and 55 Hz 
in Figure 52, which are the closest frequencies to the measured one, is performed. 
Then the measured force 𝐹𝑚 at 29.4 (HZ) is divided by the corresponding 
calculated calibration coefficient to obtain the associated 𝐹0.  

A) 

 

B) 

 

Figure 52: A) Calibration bench. B) Calibration curve of the electromagnet unit (Firrone, Berruti, and 
Gola, 2013) 

By knowing how to compute the parameter 𝐹0, it is now possible to compare 
the experimental and the numerical results. To this end, first, the behavior of the 
test rig for three values of the gap 𝐿0 = 7 mm, 8 mm, 9 mm is studied. The 
electrical frequency of the magnet 𝜂𝑒 is kept  close to the combination parametric 
resonance frequency i.e. 𝜂𝑒 ≈

𝜔𝑛1+𝜔𝑛2

2
, where the high amplitude oscillations are 

observed. The displacement of the beam and the force are measured in the time 
domain. The FFTs of the measured signals are shown in Figure 53 by solid blue 
lines (force in the upper part and displacement in the lower part). The amplitude of 
the force at the excitation frequency 𝜂 is the targeted force 𝐹0. It is worth mentioning 
that the value of 𝐹0 shown in the upper portion of Figure 53 is obtained from the 
measured force Fm by using the calibration coefficient, corresponding to the orange 
point, shown in Figure 52. According to Figure 53, for all the gap values, the FFT 
of the actual magnetic force exerted on the beam, 𝐹0, contains a high peak at the 
frequency close to 𝜔𝑛1 + 𝜔𝑛2 and two other small peaks corresponding to 𝜔𝑛1 and 
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𝜔𝑛2. The presence of the frequency component at 𝜔𝑛1 +𝜔𝑛2 is due to the 
frequency of the electromagnet exciting at this frequency; while the contributions 
of the first two natural frequencies, 𝜔𝑛1 and 𝜔𝑛2, in the FFT of the force are due to 
the presence of these frequency contents in the response of the beam, shown in the 
lower portion of Figure 53. The FFT of the response contains two higher peaks at 
frequencies 𝜔𝑛1 and 𝜔𝑛2 which is typical of responses at the combination 
parametric resonances and a smaller peak at the forcing frequency. The presence of 
the two high peaks at 𝜔𝑛1 and 𝜔𝑛2 in the FFT of the response, typical of the 
combination parametric resonance, approves the generation of the parametric 
excitation by the electromagnetic force. 

   

   

a) 𝐿0 = 7 mm b) 𝐿0 = 8 mm c) 𝐿0 = 9 mm 

Figure 53: FFT of the force and displacement of the rig and mathematical model for different values of 0L  

In order to compare the experimental results with numerical ones for each 𝐿0 
value and at 𝜂 ≈ 𝜔𝑛1 +𝜔𝑛2, the following quantities must be determined: 

 the amplitude of the external force 𝐹0 

𝝎𝒏𝟏 𝝎𝒏  

𝝎𝒏𝟏 +𝝎𝒏  

𝝎𝒏  

𝝎𝒏𝟏 
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 the amplitude of the time – varying stiffness 𝐾0 
 the modal damping ratio 𝜁 

The values of 𝐹0 are read from the FFT of the magnetic force in the upper 
portion of Figure 53. These values which are denoted by the labels correspond to 
the peaks at the forcing frequency 𝜂 ≈ 𝜔𝑛1 + 𝜔𝑛2. Inserting the values of 𝐹0 and 
corresponding 𝐿0 in Eq. (4.20) results in three different values of the coefficient 𝐴. 
In section 4.4.1, it has been shown that the strength of the time – varying stiffness 
(parametric excitation) generated by the electromagnet unit is a function of the gap 
value 𝐿0 between the beam and the electromagnet’s head. Here, it has also been 
proven mathematically that the amplitude of the time – varying stiffness 𝐾0 is 
proportional to 1/𝐿03  which implies that the small gaps generate big time – varying 
stiffness and vice versa (Check Eq. (4.19) and Eq. (4.20)). Considering this point, 
since the damping matrix is proportional and accordingly depends on the stiffness 
matrix of the beam which is a function of 𝐾0, hence the damping matrix depends 
on the gap 𝐿0. Therefore, the damping matrix must be updated for each value of 𝐿0.  

To determine the modal damping ratio, three tests/experiments for each of the 
following gap values: 𝐿0 = 7 mm, 8 mm, 9 mm, in all the cases instability has been 
observed experimentally, are carried out. Then, a series of numerical simulations 
for each gap value 𝐿0 are performed. For each numerical attempt, a specific value 
is assigned to the modal damping ratio 𝜁 and at the end, the highest value which 
ensures the numerical system to reach instability was chosen. By repeating this 
procedure for all nine experiments (three for each 𝐿0), the selected values of 𝜁 are 
collected and presented in Figure 54. To be able to predict the modal damping ratios 
for different gaps in 7mm ≤ 𝐿0 ≤ 9 mm, two curves (Polynomial & Power) which 
best approximate the values of 𝜁 as function of 𝐿0 are fitted. For this study, the 
Polynomial fitted curve is chosen as the representative formula of 𝜁. Since 
instability is not observed experimentally for 𝐿0 > 9 mm, the modal damping is 
kept fixed and equal to the value of 𝜁 at 𝐿0 = 9 mm.  
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Figure 54: Modal damping ratio of the test rig  

Then, by performing the Numerical analysis, the FFTs of the magnetic force 
i.e. 𝐹0(1 − cos 𝜂𝑡) presented in Eq. (4.19) and the response of the same node as the 
test rig are plotted by the black solid lines in Figure 53. According to these results, 
a good agreement between the numerical and experimental results could be 
observed.  

The only difference here is that the mathematical model oscillates unboundedly 
at the combination parametric frequency through time while the experimental rig 
reaches a steady state with high amplitude. This could be due to additional damping 
at the clamped support as a result of friction of the bolts as depicted in Figure 50. 
This point is better clarified in Figure 55 where the time signals of the measuring 
point, obtained Numerically and Experimentally for 𝐿0 = 8 mm, are demonstrated. 
According to this figure, the time response in the mathematical model grows 
exponentially through time while in the experimental model the oscillations 
increase initially and then enter a steady – state. This shows that there is(are) extra 
damping(s) in the experimental model that prevents unbounded growth of the 
vibrations via time.  
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Figure 55: Numerical & Experimental time response of the measuring point for 0 8 L  mm 

It must be pointed out that as 𝐿0 increases the effect of the parametric excitation 
becomes less and this is due to the dependency of 𝐾0 on the gap as shown in Figure 
56. Furthermore, considering the FFT of the responses in the lower portion of 
Figure 53, it is observable that the amplitude of the response at frequencies 𝜔𝑛1 and 
𝜔𝑛2 decreases as the electromagnet is put farther from the beam.  
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Figure 56: Amplitude of the time – varying stiffness 0K  as a function of the gap 0L  

A numerical stability plot with the modified damping ratio obtained from 
Figure 54 has been performed and is shown in Figure 57. It must be noted again 
that the formula of the 𝜁 is valid for 𝐾0s corresponding to the gap range of 7 mm ≤

𝐿0 ≤ 9 mm while for 𝐾0 correspoding to 𝐿0 > 9 mm the constant value of 𝜁 at 
𝐿0 = 9 mm is adopted. According to Figure 57, the experimental results for 𝐾0 
related to 𝐿0 = 7 mm, 8 mm, 9 mm, presented by red circles, are at the unstable 
region. Howevre, as 𝐿0 goes beyond 9 mm the system becomes stable which is also 
confirmed experimentally. Here, the stable responses at 𝐾0 correspoding to 𝐿0 =
10 mm and 11 mm are denoted by greeen squares which are outside the unstable 
zone.  

A feature of the adopted electromagnet unit is that the FFT of the magnetic 
force signal contains a frequency component at half of the inserted frequency. Since 
the instabilities caused by the primary parametric resonances occur when the 
exciting frequency is almost equal to twice the natural frequency (see Figure 45), 
the existence of the aforementioned half frequency component results in the 
system’s simple resonance rather than parametric resonance. Therefore, detection 

of the unstable zones due to the primary parametric resonances are excluded from 
the current experimental work.  



126 Study of the JBA Applicability and Experimental Investigation of 
Instability due to Parametric Excitation 

 

 

Figure 57: Stability plot corresponding to the test rig at the combination parametric 
resonance frequency  

4.6 Conclusion  

In this chapter a test case, consisting of a cantilever beam mounted on a spring 
with a time – varying stiffness is adopted as a demonstrator. In the first part of this 
chapter, the developed method JBA is applied to this demonstrator. The 
performance of the JBA has been examined and compared to the results from Hill’s 

method. In the second part of the chapter, an experimental study of instability 
induced by parametric excitation on the same demonstrator has been carried out.  

 The methods for the detection of unstable responses, coming from the literature 
(i.e. Hill’s method) and proposed by the authors (Jacobian Based Approach), 

successfully identify the unstable regions of the system.  

 It has been observed that by knowing the frequency contents of the responses at 
the unstable regions, JBA can obtain the full stability plot. 

 By comparing the stability plots and computational time obtained by JBA and 
Hill’s methods, the accuracy and efficiency of the JBA have been guaranteed. 
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 Utilizing the electromagnet in the test rig enables to trigger the instability at 

parametric combination resonance frequency which is typical of parametric 
excitation. 

 The experimental results based on the direct measurement of the magnetic force 
confirm the results from the numerical simulation in terms of the frequency 
content of the response and stability characteristics. 

 The amplitude of the unstable response in the numerical simulation is greater 
than the experimental one. This may be caused by disregarding additional 
sources of damping in the numerical model, e.g. friction at the bolts, which may 
limit the amplitude of the response. 

 The peculiar characteristics of the combination resonance unstable response, 
i.e. large amplitude and multiple frequencies which are, in turn, different from 
the exciting frequency, make the experimental set up a good candidate for 
different applications, e.g. energy harvesting, multi-modal investigations, etc. 
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Chapter 5 

Conclusion & Future Research 
Activities 

5.1 An overview of the thesis  

Parametrically excited systems are prone to unstable responses or high 
amplitude oscillations. The peculiarity of such instabilities is their occurrence at the 
so – called “Parametric Resonance Frequencies” which are different from the 
frequencies causing the simple resonances. Therefore, the stability analysis of 
structures under parametric excitation to detect the regions of instability is of high 
importance. The presence of instability is generally shown by the ‘Stability Plot’ 

where the domains of unstable responses are highlighted as a function of some 
system parameters.  

The possibility of instability occurrence due to parametric excitation was 
examined in the thesis starting from the theoretical basis, going through the 
development of new methods to track the presence of instability, and ending with 
the search for experimental evidence of the presence of instability. 

The 2nd chapter of the thesis is dedicated to the detailed explanations of the 
state-of-the-art stability analysis approaches i.e. Floquet theory, Hill’s method, 

Harmonic Balance Method (HBM), Multiple Scales Method (MSM), and newly 
proposed method i.e. Jacobian Based Approach (JBA). In this chapter, a model of 
Mass – Spring – Damper is adopted as a simple, academic but applicable example 
to demonstrate a detailed implementation procedure of each of the aforementioned 
stability analysis approaches. In this chapter, it has been demonstrated that the 
stability plot of a 1-Dof parametrically excited system contains just instabilities due 
to the Simple and Primary Parametric Resonances. However, in case of a 2-Dof 
parametrically excited system, the instabilities as a result of Combination 
Parametric Resonance as well as Simple and Primary Parametric Resonances are 
present in the stability plot. In this chapter, the performance of the recently 
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developed method, Jacobian Based Approach, in terms of accuracy and 
computational time efficiency has been addressed.  

In chapter 3, an improved HBM implementation called “Trained HBM 

(THBM)” is proposed and the applicability of the newly developed method, 
Jacobian Based Approach (JBA) is investigated. For this study, a Jeffcott rotor 
model supported by rolling bearing elements (REB), whose effect is modeled by 
time – varying stiffnesses (source of parametric excitation), is adopted as a 
demonstrator. In the first part of this study, it has been observed that not all the 
state-of-the-art methods i.e. simple implementation of HBM (SHBM) and Hill’s 

method, can successfully identify all unstable regions due to parametric excitation. 
It is demonstrated that, by proposing and applying THBM and comparing the results 
to the ones from Floquet theory, the stability plot containing all the unstable regions 
can be obtained. However, THBM had the drawback of demanding too much 
computational time, which is unacceptable specifically for systems with more than 
two degrees of freedom. Then, the implementation of the new stability analysis 
technique i.e. JBA, as a simpler and faster method was then proposed. The 
performance of this method is examined by obtaining the stability plot and 
recording the time of the computation. In this study, the accuracy of the results from 
JBA has been promised and it has been shown JBA to be 3600 times faster than the 
Floquet theory and 2180 times faster than THBM which proves its efficiency. 

Further evaluation of JBA for the stability analysis of a system under parametric 
excitation as well as the experimental study of the instability induced by the 
parametric excitation are fulfilled in chapter 4. In this chapter, a cantilever beam 
model mounted on a spring with time – varying stiffness is employed as a 
demonstrator. In the first part of this chapter, the applicability of JBA in obtaining 
the stability plot is investigated. Here, the resultant stability plot from the JBA 
implementation and the one acquired via Hill’s method, already validated by the 
results from the Floquet theory, are compared. It has been shown that JBA is 
computationally efficient and precisely detects all the unstable regions caused by 
the Primary and Combination parametric resonances. The experimental 
investigation of the instability due to the parametric excitation is performed in the 
second part of chapter 4. A test rig, comprising a cantilever beam and an 
electromagnet unit, is designed and adopted as a test case. Here, it is proven that 
the electromagnet force generates a spring – like effect with varying stiffness. A 
diverging response, interpreted as instability, is obtained by setting the electrical 
frequency of the magnet equal to the combination parametric resonance frequency. 
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A good correlation, in terms of the frequency contents, between the experimental 
and predicted numerical results is also achieved. 

5.2 Concluding remarks  

The major contributions of this thesis are listed below: 

 A detailed analysis of the state-of-the-art approaches, i.e. Floquet theory, Hill’s 

method, Multiple Scales method, and Harmonic Balance method, to detect the 
unstable zones due to the parametric. 

 A refinement of the HBM named here Trained HBM (THBM) to obtain the 
complete stability plot, in particular for the case of a parametrically excited 2-
Dof system having equal eigenfrequencies. 

 The development of a new, accurate, and computationally efficient stability 
analysis method based on the forced response analysis named “Jacobian Based 

Approach (JBA)”. 
 Design of a simple test rig to demonstrate, in a laboratory condition, the 

presence of instability due to parametric excitation generated by means of an 
electromagnet. In particular, the experiment provides measurements of the 
response and direct measurement of magnetic force, from which the variable 
stiffness can be computed. 

 Validation of the numerical results by the ones from the experiment, in case of 

unstable dynamic response induced by parametric excitation.  

5.3 Recommendations for future works 

The newly proposed stability analysis method, JBA, requires substantial 
studies. To verify the suitability and capability of JBA in obtaining the stability 
plots, it should be applied to more complex systems under parametric excitation. 
Some of the potential future research objectives are listed in the following: 

 Implementation of JBA to study a parametrically excited rotor systems due to a 

cracked shaft. 
 Employment of JBA for stability analysis of a gearbox system with a time – 

varying mesh stiffness.  
 Application of JBA in a comb – drive actuator MEMS with an electrostatic time 

– dependent stiffness due to input voltage variation. 
 Investigation of JBA applicability for the stability analysis of parametrically 

excited wind turbines due to varying gravitational force.  
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Appendices 

7.1 APPENDIX A 

To clarify Eq. (2.20) when |𝜆𝑛| ≈ 1, consider 𝑦𝑛(𝑡 + 𝑚𝑇) = 𝜆𝑛
𝑚𝑦𝑛(𝑡) from Eq. 

(2.18). When: 

 𝜆𝑛 ≈ 1, for any values of 𝑚: 

𝑦𝑛(𝑡 + 𝑚𝑇) = 𝑦𝑛(𝑡) → 𝑦𝑛(𝑡 + 𝑻) = 𝑦𝑛(𝑡), minimum period is 𝑇 (A.1) 

 𝜆𝑛 ≈ −1, for odd values of 𝑚: 

𝑦𝑛(𝑡 + 𝑚𝑇) = −𝑦𝑛(𝑡) → No periodic (A.2) 

 𝜆𝑛 ≈ −1, for even values of 𝑚: 

𝑦𝑛(𝑡 + 𝑚𝑇) = −𝑦𝑛(𝑡) → 𝑦𝑛(𝑡 +  𝑻) = 𝑦𝑛(𝑡), minimum period is 2𝑇 (A.3) 

7.2 APPENDIX B: Jacobian matrix [𝑱]  

In Eq. (2.31), X and its derivatives are as follows: 

{𝑟} = ∑ (𝑎⃗𝑧 sin
𝑧𝜂𝑡

2
+ 𝑏⃗⃗𝑧 cos

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

 

{𝑟̇} = ∑
𝑧𝜂

2
(𝑎⃗𝑧 cos

𝑧𝜂𝑡

2
− 𝑏⃗⃗𝑧 sin

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

 

{𝑟̈} = − ∑ (
𝑧𝜂

2
)
2

(𝑎⃗𝑧 sin
𝑧𝜂𝑡

2
+ 𝑏⃗⃗𝑧 cos

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

 

(B.1) 

Substituting Eq. (B.1) in 𝐸(𝑝) presented by Eq. (2.31), results in the following: 
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−𝑀 ∑ (
𝑧𝜂

2
)
2

(𝑎⃗𝑧 sin
𝑧𝜂𝑡

2
+ 𝑏⃗⃗𝑧 cos

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

+ 𝐶 ∑
𝑧𝜂

2
(𝑎⃗𝑧 cos

𝑧𝜂𝑡

2
− 𝑏⃗⃗𝑧 sin

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

+ (𝐾 + 𝐾(𝑡)) ∑ (𝑎⃗𝑧 sin
𝑧𝜂𝑡

2
+ 𝑏⃗⃗𝑧 cos

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

= 0 ,  

(B.2) 

where, by organizing Eq. (B.2), the following equation would be obtained: 

(−𝑀 ∑ (
𝑧𝜂

2
)
2

𝑎⃗𝑧

∞

𝑧=0,1,2,…

− 𝐶 ∑
𝑧𝜂

2
𝑏⃗⃗𝑧

∞

𝑧=0,1,2,…

+ (𝐾 + 𝐾(𝑡)) ∑ 𝑎⃗𝑧

∞

𝑧=0,1,2,…

) sin
𝑧𝜂𝑡

2

+ (−𝑀 ∑ (
𝑧𝜂

2
)
2

𝑏⃗⃗𝑧

∞

𝑧=0,1,2,…

+ 𝐶 ∑
𝑧𝜂

2
𝑎⃗𝑧

∞

𝑧=0,1,2,…

+ (𝐾 + 𝐾(𝑡)) ∑ 𝑏⃗⃗𝑧

∞

𝑧=0,1,2,…

) cos
𝑧𝜂𝑡

2
= 0 

(B.3) 

Considering the zth harmonic of Eq. (B.3) and equating the sin and cosine terms to 
zero:  

(𝐾 + 𝐾(𝑡) − 𝑀 (
𝑧𝜂

2
)
2

) 𝑎𝑧 − 𝐶 (
𝑧𝜂

2
) 𝑏𝑧 = 0 (B.4) 

(𝐾 + 𝐾(𝑡) − 𝑀 (
𝑧𝜂

2
)
2

) 𝑏𝑧 + 𝐶 (
𝑧𝜂

2
) 𝑎𝑧 = 0 (B.5) 

Eq. (C.4) and (C.5) could be written as: 

[
(𝐾 + 𝐾(𝑡) −𝑀 (

𝑧𝜂

2
)
2

) −𝐶 (
𝑧𝜂

2
)

𝐶 (
𝑧𝜂

2
) (𝐾 + 𝐾(𝑡) − 𝑀 (

𝑧𝜂

2
)
2

)

] {
𝑎𝑧
𝑏𝑧
} = 0 (B.6) 

Truncating the Fourier series by 𝑁ℎ harmonics: 
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𝒛 = 𝟎: 

[
𝐾 + 𝐾(𝑡) 0

0 𝐾 + 𝐾(𝑡)
] {
𝑎0
𝑏0
} = 0 

𝒛 = 𝟏: 

[
(𝐾 + 𝐾(𝑡) −𝑀 (

𝜂

2
)
2

) −𝐶 (
𝜂

2
)

𝐶 (
𝜂

2
) (𝐾 + 𝐾(𝑡) − 𝑀 (

𝜂

2
)
2

)

] {
𝑎1
𝑏1
} = 0 

. 

. 

𝒛 = 𝑵𝒉: 

[
 
 
 
 (𝐾 + 𝐾(𝑡) − 𝑀 (

𝑁ℎ𝜂

2
)
2

) −𝐶 (
𝑁ℎ𝜂

2
)

𝐶 (
𝑁ℎ𝜂

2
) (𝐾 + 𝐾(𝑡) − 𝑀 (

𝑁ℎ𝜂

2
)
2

)
]
 
 
 
 

{
𝑎𝑁ℎ

𝑏𝑁ℎ

} = 0 

(B.7) 

Collecting all the harmonics, Eq. (B.7) could be written in the following compact 
form: 

[𝐽]{𝐴} = 0 ,  (B.8) 

Where: 

{𝐴} =

{
 
 
 

 
 
 
𝒂𝟎
𝒃𝟎
⋮
𝒂𝒛
𝒃𝒛
⋮

𝒂𝑵𝒉

𝒃𝑵𝒉}
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 𝐉 =

[
 
 
 
 
 
 
 
 
 
 
𝑲(𝒕)

⋱

[
(𝑲 + 𝑲(𝒕) − 𝑴(

𝒛𝜼

 
)
 

) −𝑪 (
𝒛𝜼

 
)

𝑪 (
𝒛𝜼

 
) (𝑲 + 𝑲(𝒕) − 𝑴(

𝒛𝜼

 
)
 

)
]

⋱

[
(𝑲 + 𝑲(𝒕) − 𝑴(

𝑵𝒉𝜼

 
)
 

) −𝑪(
𝑵𝒉𝜼

 
)

𝑪 (
𝑵𝒉𝜼

 
) (𝑲 +𝑲(𝒕) −𝑴(

𝑵𝒉𝜼

 
)
 

)
]

]
 
 
 
 
 
 
 
 
 
 

 

7.3 APPENDIX C: Formation of Eq. (2.47)  

In Eq. (2.45), X and its derivatives are as follows: 

𝑋 = ∑ (𝑎⃗𝑧 sin
𝑧𝜂𝑡

2
+ 𝑏⃗⃗𝑧 cos

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

 

𝑋̇ = ∑
𝑧𝜂

2
(𝑎⃗𝑧 cos

𝑧𝜂𝑡

2
− 𝑏⃗⃗𝑧 sin

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

 

𝑋̈ = − ∑ (
𝑧𝜂

2
)
2

(𝑎⃗𝑧 sin
𝑧𝜂𝑡

2
+ 𝑏⃗⃗𝑧 cos

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

 

(C.1) 

Substituting Eq. (C.1) in 𝐸(𝑝) presented by Eq. (2.45), results in the following: 

(−𝑀 ∑ (
𝑧𝜂

2
)
2

(𝑎⃗𝑧 sin
𝑧𝜂𝑡

2
+ 𝑏⃗⃗𝑧 cos

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

+ 𝐶 ∑
𝑧𝜂

2
(𝑎⃗𝑧 cos

𝑧𝜂𝑡

2
− 𝑏⃗⃗𝑧 sin

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

+ (𝐾 + 𝐾(𝑡) + 𝑀𝛾2) ∑ (𝑎⃗𝑧 sin
𝑧𝜂𝑡

2
+ 𝑏⃗⃗𝑧 cos

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

+ (2𝑀 ∑
𝑧𝜂

2
(𝑎⃗𝑧 cos

𝑧𝜂𝑡

2
− 𝑏⃗⃗𝑧 sin

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

+ 𝐶 ∑ (𝑎⃗𝑧 sin
𝑧𝜂𝑡

2
+ 𝑏⃗⃗𝑧 cos

𝑧𝜂𝑡

2
)

∞

𝑧=0,1,2,…

) 𝛾)𝑒𝛾𝑡 = 0 ,  

(C.2) 

where, by organizing Eq. (C.2), the following equation would be obtained: 
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((−𝑀 ∑ (
𝑧𝜂

2
)
2

𝑎⃗𝑧

∞

𝑧=0,1,2,…

− 𝐶 ∑
𝑧𝜂

2
𝑏⃗⃗𝑧

∞

𝑧=0,1,2,…

+ (𝐾 + 𝐾(𝑡)) ∑ 𝑎⃗𝑧

∞

𝑧=0,1,2,…

+ (−2𝑀 ∑
𝑧𝜂

2
𝑏⃗⃗𝑧

∞

𝑧=0,1,2,…

+ 𝐶 ∑ 𝑎⃗𝑧

∞

𝑧=0,1,2,…

)𝛾

+𝑀𝛾2 ∑ 𝑎⃗𝑧

∞

𝑧=0,1,2,…

) sin
𝑧𝜂𝑡

2

+ (−𝑀 ∑ (
𝑧𝜂

2
)
2

𝑏⃗⃗𝑧

∞

𝑧=0,1,2,…

+ 𝐶 ∑
𝑧𝜂

2
𝑎⃗𝑧

∞

𝑧=0,1,2,…

+ (𝐾 + 𝐾(𝑡)) ∑ 𝑏⃗⃗𝑧

∞

𝑧=0,1,2,…

+ (2𝑀 ∑
𝑧𝜂

2
𝑎⃗𝑧

∞

𝑧=0,1,2,…

+ 𝐶 ∑ 𝑏⃗⃗𝑧

∞

𝑧=0,1,2,…

)𝛾

+𝑀𝛾2 ∑ 𝑏⃗⃗𝑧

∞

𝑧=0,1,2,…

) cos
𝑧𝜂𝑡

2
)𝑒𝛾𝑡 = 0 

(C.3) 

Considering the zth harmonic of Eq. (C.3) and equating the Sine and Cosine terms 
to zero:  

(𝐾 + 𝐾(𝑡) − 𝑀 (
𝑧𝜂

2
)
2

) 𝑎𝑧 − 𝐶 (
𝑧𝜂

2
) 𝑏𝑧 + (−𝑀𝜂𝑧𝑏𝑧 + 𝐶𝑎𝑧)𝛾

+ 𝑀𝛾2𝑎𝑧 = 0 
(C.4) 

(𝐾 + 𝐾(𝑡) − 𝑀 (
𝑧𝜂

2
)
2

) 𝑏𝑧 + 𝐶 (
𝑧𝜂

2
) 𝑎𝑧 + (−𝑀𝜂𝑧𝑎𝑧 + 𝐶𝑏𝑧)𝛾

+ 𝑀𝛾2𝑏𝑧 = 0 
(C.5) 

Eq. (C.4) and Eq. (C.5) could be combined and written as: 

([
(𝐾 + 𝐾(𝑡) − 𝑀 (

𝑧𝜂

2
)
2

) −𝐶 (
𝑧𝜂

2
)

𝐶 (
𝑧𝜂

2
) (𝐾 + 𝐾(𝑡) − 𝑀 (

𝑧𝜂

2
)
2

)

]

+ [
𝐶 −𝑀𝜂𝑧

−𝑀𝜂𝑧 𝐶
] 𝛾 + [

𝑀 0
0 𝑀

] 𝛾2){
𝑎𝑧
𝑏𝑧
} = 0 

(C.6) 

Truncating the Fourier series by 𝑁ℎ harmonics: 
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𝒛 = 𝟎: 

([
𝐾 + 𝐾(𝑡) 0

0 𝐾 + 𝐾(𝑡)
] + [

𝐶 0
0 𝐶

] 𝛾 + [
𝑀 0
0 𝑀

] 𝛾2) {
𝑎0
𝑏0
} = 0 

𝒛 = 𝟏: 

([
(𝐾 + 𝐾(𝑡) − 𝑀 (

𝜂

2
)
2

) −𝐶 (
𝜂

2
)

𝐶 (
𝜂

2
) (𝐾 + 𝐾(𝑡) − 𝑀 (

𝜂

2
)
2

)

]

+ [
𝐶 −𝑀𝜂

−𝑀𝜂 𝐶
] 𝛾 + [

𝑀 0
0 𝑀

] 𝛾2){
𝑎1
𝑏1
} = 0 

. 

. 

𝒛 = 𝑵𝒉: 

(

 
 

[
 
 
 
 (𝐾 + 𝐾(𝑡) − 𝑀 (

𝑁ℎ𝜂

2
)
2

) −𝐶 (
𝑁ℎ𝜂

2
)

𝐶 (
𝑁ℎ𝜂

2
) (𝐾 + 𝐾(𝑡) − 𝑀 (

𝑁ℎ𝜂

2
)
2

)
]
 
 
 
 

+ [
𝐶 −𝑀𝜂𝑁ℎ

−𝑀𝜂𝑁ℎ 𝐶
] 𝛾 + [

𝑀 0
0 𝑀

] 𝛾2

)

 
 
{
𝑎𝑁ℎ

𝑏𝑁ℎ

} = 0 

(C.7) 

Collecting all the harmonics, Eq. (C.7) could be written in the following compact 
form: 

(𝛾2Γ2 + 𝛾Γ1 + J)𝑢 = 0 ,  (C.8) 

Where: 
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𝒖 =

{
 
 
 

 
 
 
𝒂𝟎
𝒃𝟎
⋮
𝒂𝒛
𝒃𝒛
⋮

𝒂𝑵𝒉

𝒃𝑵𝒉}
 
 
 

 
 
 

 , 𝚪𝟏 =

[
 
 
 
 
 
 
𝑪

⋱

[
𝑪 −𝑴𝒛𝜼

−𝑴𝒛𝜼 𝑪
]

⋱

[
𝑪 −𝑴𝜼𝑵𝒉

−𝑴𝜼𝑵𝒉 𝑪
]
]
 
 
 
 
 
 

 

𝚪 =

[
 
 
 
 
 
 
𝑴

⋱

[
𝑴 𝟎
𝟎 𝑴

]

⋱

[
𝑴 𝟎
𝟎 𝑴

]]
 
 
 
 
 
 

 

 𝐉 =

[
 
 
 
 
 
 
 
 
 
 
𝑲(𝒕)

⋱

[
(𝑲 + 𝑲(𝒕) − 𝑴(

𝒛𝜼

 
)
 

) −𝑪 (
𝒛𝜼

 
)

𝑪 (
𝒛𝜼

 
) (𝑲 + 𝑲(𝒕) − 𝑴(

𝒛𝜼

 
)
 

)
]

⋱

[
(𝑲 + 𝑲(𝒕) − 𝑴(

𝑵𝒉𝜼

 
)
 

) −𝑪(
𝑵𝒉𝜼

 
)

𝑪 (
𝑵𝒉𝜼

 
) (𝑲 +𝑲(𝒕) −𝑴(

𝑵𝒉𝜼

 
)
 

)
]

]
 
 
 
 
 
 
 
 
 
 

 

 

7.4 APPENDIX D: Computation Procedure of *δ  (David E. 
Brewe and Hamrock, 1977) 

The proposed formula for 𝛿∗ by is as follows: 

𝛿∗ =
2ℱ

𝜋
(
𝜋

𝜅2𝔼
)

1
3
 ,  (D.1) 

where 𝜅 is the ratio of the projected contact ellipse semi-axes 𝑎 and 𝑏 as shown in 
Figure 58 and ℱ and 𝔼 are elliptic integrals. The latter parameters are defined as 
follows (David E Brewe and Hamrock, 1977): 
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𝜅 =
𝑎

𝑏
 ,  (D.2) 

𝔼 = 1.0003 +
0.5968

𝑅𝑌
𝑅𝑋

 ,  (D.3) 

ℱ = 1.5277 + 0.6023 ln (
𝑅𝑌
𝑅𝑋
) ,  

(D.4) 

where the parameters 𝑅𝑌 and 𝑅𝑋 and the ratio in Eq. (D.2) are:  

𝑅𝑋 =
1

2(𝛼𝑋 + 𝛽𝑋)
 

𝑅𝑌 =
1

2(𝛼𝑦 + 𝛽𝑦)
 

𝑎

𝑏
= 1.0339 (

𝑅𝑌
𝑅𝑋
)
0.636

 

(D.5) 

Here,  𝛼𝑋 and 𝛼𝑌 are the curvatures of the ball’s contact ellipse presented in Eq. 

(3.5); and, 𝛽𝑋 and 𝛽𝑌 are the curvatures indicated in Eq. (3.6) and Eq. (3.7) for inner 
and outer races respectively. Depending on which contact stiffness is of interest to 
compute, ball – inner or ball – outer races, the value of 𝛿∗ changes. 
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Figure 58: Schematic of the ball – races contact area with semi – axes 
demonstration of the contact surface2  

7.5 APPENDIX E: Equivalent Stiffness Computation in 
Jeffcott Rotor  

The simplified model of Figure 25 where the REB are modeled as springs is 
shown in Figure 59. The total displacement of the system is as follows: 

𝛿 = 𝛿𝑏 + 𝛿𝑠 → {
𝑥
𝑦} = {

𝑥𝑏
𝑦𝑏
} + {

𝑥𝑠
𝑦𝑠
}  (E.1) 

In addition:  

                                                 
2 The figure is taken from M.M. Gola, Machine Design Lecture Notes 2015 , Politecnico di 

Torino 
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{
𝐹𝑥
𝐹𝑦
} = [

𝑘𝑥𝑥 𝑘𝑥𝑦
𝑘𝑦𝑥 𝑘𝑦𝑦

] {
𝑥𝑏
𝑦𝑏
} , {

𝐹𝑥
𝐹𝑦
} = [

𝐾𝑠 0
0 𝐾𝑠

] {
𝑥𝑠
𝑦𝑠
} ,  (E.2) 

where the first matrix corresponds to the time – varying stiffness of the REB given 

by Eq. (3.19) and 𝐾𝑠 is the stiffness of the shaft. Substituting {
𝑥𝑏
𝑦𝑏
} and {

𝑥𝑠
𝑦𝑠
} from 

Eq. (E.2) in Eq. (E.1) reults in: 

{
𝑥
𝑦} = {

𝐹𝑥
𝐹𝑦
} ([

𝑘𝑥𝑥 𝑘𝑥𝑦
𝑘𝑦𝑥 𝑘𝑦𝑦

]

−1

+ [
𝐾𝑠 0
0 𝐾𝑠

]
−1

) = {
𝐹𝑥
𝐹𝑦
} [Δ] (E.3) 

Consequently, the equivalent stiffness system denoted by 𝐾𝑒𝑞 is equal to [Δ]−1. 

 

Figure 59: Equivalent mass – spring – damper model of Jeffcott rotor 

 



 149 

 
7.6 APPENDIX F: Confirmation of the results in Figure 45  

 

Figure 60: Equivalent mass – spring – damper model of Jeffcott rotor 

 

7.7 APPENDIX G: Magnetic force  

For the equivalent circuit of the electromagnet presented in Figure 61 the 
following relationship could be written (Firrone, Berruti and Gola, 2013): 

2𝑁𝑖 = 2ℜ𝑎𝑖𝑟Φ = 2
𝑙𝑎𝑖𝑟
𝜇𝑎𝑖𝑟𝑆′

Φ ,  (G.1) 

where 𝑁 is the number of turns of the coil, 𝑖 is the current and Φ is the magnetic 
flux. 𝑙𝑖𝑎𝑟 is the gap between the beam and the electromagnet, 𝜇𝑎𝑖𝑟 is the 
permeability of the air and 𝑆′ is the area of the wedge head of the electromagnet 
facing the beam in which Φ/𝑆′ represents the magnetic field denoted by 𝐵. 
Therefore: 
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𝐵 =
𝑁𝑖. 𝜇𝑎𝑖𝑟
𝑙𝑎𝑖𝑟

 (G.2) 

The exciting force generated by the two coils according to the principle of 
energy conservation (Tlalolini et al., 2018):  

𝑓 = 2𝑓𝑐𝑜𝑖𝑙 = 2(
𝐵2𝑆′

2𝜇𝑎𝑖𝑟
) (G.3) 

Substituting 𝐵 from Eq. (G.2) in Eq. (G.3) and considering the alternating 
current as 𝑖 = 𝐼 sin 𝜂𝑒𝑡, the magnetic force would be: 

𝑓 =
𝑁2. 𝜇𝑎𝑖𝑟𝑆

′

𝑙𝑎𝑖𝑟
2 𝐼2 sin2 𝜂𝑡 =

𝑁2. 𝜇𝑎𝑖𝑟𝑆
′

𝑙𝑎𝑖𝑟
2

𝐼2

2
(1 − cos 2𝜂𝑒𝑡)

=
𝐴

𝑙𝑎𝑖𝑟
2

(1 − cos 𝜂𝑡) 
(G.4) 

 

 

Figure 61: Schematic of equivalent magnetic circuit taken from (Berruti, Firrone, and Gola, 2011) 

 


