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Abstract: Every year millions of people worldwide undergo surgical interventions, with the occur-
rence of mild or severe post-treatment consequences meaning that rehabilitation plays a key role
in modern medicine. Considering the cases of burns and plastic surgery, the pressing need for new
materials that can be used for wound patches or body fillers and are able to sustain tissue regeneration
and promote cell adhesion and proliferation is clear. The challenges facing next-generation implant
materials also include the need for improved structural properties for cellular organization and
morphogenic guidance together with optimal mechanical, rheological, and topographical behavior.
Herein, we propose for the first time a sodium alginate hydrogel obtained by a thiol–yne reaction,
easily synthesized using carbodiimide chemistry in a two-step reaction. The hydrogels were formed
in all cases within a few minutes of light irradiation, showing good self-standing properties under
solicitation. The mechanical, rheological, topographical, and swelling properties of the gels were also
tested and reported. Lastly, no cytotoxicity was detected among the hydrogels. Soluble extracts in cul-
ture media allowed cell proliferation, and no differences between samples were detected in terms of
metabolic activity and DNA content. These results suggest the potential use of these cytocompatible
hydrogels in tissue engineering and regenerative medicine.

Keywords: alginate hydrogels; click chemistry; thiol–yne reactions; tissue engineering

1. Introduction

Hydrogels are three-dimensional hydrophilic polymer networks that are able to absorb
and retain a large amount of water without dissolving or losing their characteristic resis-
tance properties [1–7]. Since Wichterle and Lim provided this definition and proved their
use in ophthalmology [8], their application has expanded to cover a wide range of fields
such as agriculture [9,10], sensors [11,12], and water-treatment solutions [13–15]. Never-
theless, since the beginning, their main area of implementation has been in biomedical
systems, and especially tissue engineering, due to their extreme analogy with the mam-
malian extracellular matrix (ECM) [4,5]. In fact, hydrogels are often designed to support
cell proliferation, differentiation, and migration. To facilitate these mechanisms, the gels
typically contain a percentage of polymer between 0.1 to 10% in weight, giving rise to macro-
scopic porous architectures. Moreover, the intrinsic structure permits oxygen and nutrient
transport, providing cells with an optimal hydrated 3D environment that mimics the native
soft tissue [16]. One of the main challenges in the sector is choosing the correct material for
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matrix construction; different approaches have been implemented in the past to accomplish
the task, i.e., employing synthetic [17], natural [18] or hybrid polymer solutions [19]. Gen-
erally, natural polymers are chosen because of their enhanced properties that are not easily
reproducible in the laboratory setting, such as their biocompatibility and biodegradability.
Notably, their easy extraction from natural sources, even from waste, and their abundance
also make them favorable materials, especially to meet current sustainability criteria. Algi-
nate is a natural polysaccharide usually extracted from brown algae through alkali solutions
(mostly NaOH treatments) [20]. It is formed by variable structural unit blocks of (1→4)
linked β-D-mannuronic acid and α-L-guluronic acid, depending on the algae species and its
original geographical area of production/growth [21]. Both structural units exhibit partially
deprotonated carboxylic groups under biological conditions, allowing hydrogel formation
by ionic crosslinking with divalent cations (e.g., Ba2+ and Ca2+). Nonetheless, sudden
changes in the hydrogel pH gradually restore the -COOH moieties, leading to hydrogel
dissolution [22,23]. Precisely for this reason, the alginates are often modified with func-
tional groups and then chemically crosslinked using different approaches. As a simple and
rapid technique, photopolymerization is widely used to produce chemically crosslinked
hydrogels in tissue engineering, thanks to the mild reaction conditions of room-temperature
physiological environments [24]. Acrylate- and methacrylate-functionalized natural poly-
mers are some of the most frequently used materials for processing scaffolds in tissue
engineering, even though it is commonly known that acrylate is toxic at medium/high
concentrations [25,26]. Instead, “click-chemistry” reactions, which produce high yields un-
der mild conditions (e.g., water-based environments or room temperature), are frequently
recognized as rapid, versatile, and regiospecific systems [27–29]. The huge popularity of
these materials combined with their increased biocompatibility make them highly attractive
in tissue engineering [30–32]. Thiol–yne reactions exploit the spatiotemporal, orthogonal,
and extremely selective reactions between alkyne and thiols, leading to more homogeneous
networks compared to (meth)acrylates [33–35]. Within this framework, in this study, we
successfully functionalized alginate using propargylamine in a two-step reaction to modify
a polysaccharide with yne moieties. The further addition of two types of dithiol crosslinkers
enabled the formation of the first reported alginate thiol–yne hydrogel in the literature,
whether under stoichiometric conditions or not. The rheological, mechanical, and swelling
properties of the hydrogels were evaluated to prove the simplicity of their formation as
well as their microscopic porous structures. Lastly, the cytocompatibility of the materials
was checked through cell proliferation analysis, including metabolic activity and DNA
content assays.

2. Materials and Methods
2.1. Materials

Sodium alginate from brown algae (SA, low viscosity); propargylamine (PA, 98%); N-
(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, ≥98%); N-
hydroxysuccinimide (NHS); 1,4-dithiothreitol (DTT); poly(ethylene glycol) dithiol (PEG-
SH, average Mn 1000); lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP, Z95%);
and hydrochloric acid solution (37%) were all purchased from Sigma-Aldrich and used
as received without further purification. Sodium hydroxide pellets were purchased
from Panreac, and pre-wetted dialysis membranes (MWCO 3500 Da Spectra/Por6) from
Spectrum Laboratories.

2.2. Synthesis of Alginate yne

A 1.5 wt% SA solution was prepared by dissolving 3 g of SA in 200 mL of DI water
in a round-bottom flask. Drops of aqueous HCl were slowly added to the flask until
reaching pH = 4. In a vial, the corresponding amounts of EDC and NHS, in a 1:1 molar
ratio, were solubilized in DI water and dropwise added into the alginate solution. The
pH was controlled using the HCl solution at a value of 5. The solution was stirred for 2 h
at RT, and then the pH was raised to 8.5 by slowly adding the corresponding amount of
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0.5 M NaOH solution. PA was subsequently added directly into the flask. The reaction was
left in the dark under stirring at RT for 16 h. Using this general procedure, two different
molar ratios for the reactants were assayed: SA/EDC/NHS/PA 1:1:1:1 (SA–PA-1) and
1:4:4:4 (SA–PA-4). At the end of the reaction, the color of the solution turned pale yellow.
The product (SA–PA) was then dialyzed for 4–6 days in DI water at RT in the dark with a
3.5 KDa membrane. The degree of functionalization was determined via NMR: 1H-NMR,
and 13C-NMR spectra were recorded on a Bruker Avance 400 MHz and Varian 500 MHz
spectrometers with samples dissolved in D2O at room temperature. The presence of the yne
moieties on the alginate backbone was further confirmed by both ATR-FTIR spectroscopy,
conducted using a FTIR PerkinElmer Spectrum One spectrometer, and Raman spectroscopy,
conducted using a Renishaw inVia Reflex system fitted with a 515 nm solid-state laser and a
CCD detector coupled to a confocal microscope. The Raman spectra were processed using
Renishaw WIRE 3.4 software.

2.3. Hydrogel Preparation via Photo-Crosslinking

A 5% wt solution was prepared by dissolving 100 mg of SA–PA-4 in 1.9 mL of DI water.
Then, 2 mg of LAP previously dissolved in 0.1 mL of DI water (2% wt with respect to SA–
PA-4) was added, and all reactants were stirred together in the dark until complete solution.

Different amounts of crosslinkers (DTT or PEG-SH) were solubilized in DI water until
a homogeneous solution was evidenced. Then, the crosslinkers were added to the SA–PA-4
solution and stirred in the dark until the complete homogenization of the products was
achieved. The formulation was poured into PDMS molds (≈H = 3 mm, D = 5 mm) and
irradiated for 5 min with polychromatic visible light from a Hg-Xe lamp (Hamamatsu LC8
LightningcureTM) fitted with a cut-off filter for λ < 400 nm and a light guide (50 mW/cm2).

2.4. Hydrogel Characterization

Real-time photorheological measurements were performed using an Anton PAAR
Modular Compact Rheometer (Physica MCR 302, Graz, Austria) in parallel-plate mode
(25 mm diameter), and the visible-light source was provided by positioning the light guide
of the visible Hamamatsu LC8 lamp under the bottom plate. During the measurements,
the gap between the two glass plates was set to 0.2 mm, and the sample was kept under a
constant shear frequency of 1 Hz. The irradiating light was switched on after 60 s to allow
the system to stabilize before the onset of polymerization. According to the preliminary
amplitude sweep measurements, all the tests were carried out in the linear viscoelastic
region at a strain amplitude of 50%. The photo-rheology was studied as a function of
the changes in the shear modulus (G′) and loss modulus (G”) of the sample versus the
exposure time.

Amplitude sweep tests were performed on the cured hydrogels in the range of 1 to
1000% strain, with a frequency of 1 Hz.

The different photocured samples (≈h = 3 mm, d = 5 mm) were washed and left to
dry overnight. Once dry, the samples were weighed and soaked in DI water to evaluate the
swelling capability and kinetics. The samples were taken out at different time intervals and
weighed once the surface droplets were wiped off with wet paper until a constant weight
was reached. The swelling ratio (Sw%) was calculated as:

Sw (%) =
Wt − W0

W0
∗ 100 (1)

where Wt is the weight of the hydrogel sample at a specific time, and W0 is the initial
weight of the dried sample. All tests were performed in triplicate.

To determine the gel content (GC), previously dried samples were held in a metal net,
weighed, and then immersed in DI water (25 ◦C) for 24 h to dissolve the un-crosslinked
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polymer. The samples were then dried for 24 h (40 ◦C) in a vacuum oven and weighed
again. The gel content was determined as:

GC (%) =
Wi

Wf
∗ 100 (2)

where Wi is the initial weight and Wf is the weight after extraction.
The morphological characterization of the samples was carried out by field emission

scanning electron microscopy (FESEM, Zeiss Supra 40, Oberkochen, Germany). The hydro-
gel samples were first frozen, sectioned in half, and lyophilized before coating with a 5 nm
thick thin film of Pt/Pd.

Mechanical properties were evaluated by a dynamic compression test. Measurements
were performed on photocured samples (≈h = 9 mm, d = 5 mm) at RT using a universal test
system, MTS QTest1/L Elite, a uniaxial testing machine equipped with a 100 N load cell in
compression mode. Samples were placed between the compression plates. Each sample
was subsequently deformed at 1 mm/min. All measurements were performed in triplicate.

2.5. Cell Viability and Proliferation

Before the cell viability and proliferation assays, all the hydrogels were sterilized in a
48-well plate (Corning, Corning, NY, USA). The hydrogels were stored in 70% ethanol for a
week; carefully rinsed with PBS (phosphate-buffered saline, Thermo Fisher, Waltham, MA,
USA); and then sterilized with ultraviolet germicidal irradiation (UVGI) for 40 min. After a
final rinse with PBS, the hydrogels were covered with DMEM 1X (Gibco) supplemented
with 10% FBS (fetal bovine serum, Thermo Scientific) and antibiotics (100 U mL−1 penicillin
and 100 µgmL streptomycin sulfate (Sigma-Aldrich, St. Louis, MI, USA)). After 24 h of
contact between the culture medium and the hydrogels at 37 ◦C, the media containing
soluble extracts were collected and kept in the freezer until further use.

Cell assays were performed using C166-GFP mouse endothelial cell line (ATCC CRL-
2583™, (ATCC, Manassas, Virginia USA): 20,000 cells/mL were seeded in a 24-well culture
plate and allowed to adhere and grow for 24 h. Then, the media were changed for mix-
tures (1:1 and 1:5) of complete DMEM and the medium that had been in contact with
the hydrogels.

Inverted fluorescence microscopy (Olympus IX51, FITC filter λex/λem = 490/525 nm)
was used daily to evaluate any changes in the cell culture morphology and proliferation
that could indicate the leaching of toxins from the hydrogels. After 48 h, when the cell
cultures reached confluency, the metabolic activity of the cells was measured using an
Alamar Blue assay, following the instructions of the manufacturer (Biosource). This method
is non-toxic and uses the natural reducing power of living cells, generating a quantitative
measure of cell viability and cytotoxicity. Briefly, Alamar Blue dye (10% of the culture
volume) was added to each well containing living cells and incubated for 90 min. Then, the
fluorescence of each well was measured using a Synergy HT plate reader (BioTek, Winooski,
VT, USA) at 535/590 nm.

Finally, the DNA quantitation of cells was determined by fluorescent staining with
a FluoReporter® Blue Fluorometric dsDNA Quantitation Kit. This method is based on
the ability of the bisbenzimidazole derivative Hoechst 33258 to bind to A-T-rich regions
of double-stranded DNA. After binding to DNA, Hoechst 33258 exhibits an increase in
fluorescence, which is measured at the 360 nm excitation wavelength and 460 nm emission
wavelength using a microplate reader (BioTek, Synergy HT).

2.6. Statistical Analysis

An unpaired Student’s t-test (GraphPad Prism4) was performed to compare the
metabolic activity and DNA content values of each sample. A p-value of less than 0.1 was
considered statistically nonsignificant.
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3. Results and Discussion
3.1. Synthesis of SA–PA

Amidation reactions in sodium alginate employing the coupling mechanism of
EDC/NHS have already been reported in numerous investigations with different de-
grees of modifications [36–38]; the choice of alginate in these reactions is usually driven by
the high amount of carboxylic acid present in the backbone. As far as we know, there no
precedent in the literature for the thiol–yne functionalization of alginate as it is described
here. Herein, we investigated the yne functionalization of sodium alginate by varying the
ratio between the functionalization molecules (coupling agents and propargylamine) in a
two-step reaction. The reaction scheme is illustrated in Figure 1.
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Figure 1. Reaction scheme of the two-step thiol–yne functionalization of alginate (SA–PA) by car-
bodiimide chemistry.

First, the polysaccharide was solubilized in DI water, lowering the pH to 4. This pH
value was important at this step to assure that all the alginate carboxylic groups were fully
protonated [39]. The subsequent attack on the -COOH groups by EDC and the formation
of a stable activated ester in the same site by NHS prepared the polysaccharide for further
amidation with PA [40–42]. Equally, the effective NHS-ester attack by amines could only
take place if they were in a neutral state, which was not possible at an acidic or physiological
pH [43]; for this reason, before the addition of PA, the pH was increased to 8.5 to enhance
the amine nucleophilicity [44,45]. Once the optimal pH was reached, the corresponding
amount of PA (considering a one-to-one reaction between PA and EDC/NHS) was added to
the reaction, which was then stirred in the dark to allow its completion. When an equimolar
ratio between the coupling agents and the alginate carboxylic acids was employed (SA–PA-
1), a very small degree of functionalization was achieved (below 2–3%), independently of
the pH values chosen and the duration of the reaction. Finally, when employing a four-fold
molar ratio in respect to the carboxylic alginate groups (SA–PA-4), the successful amidation
of the alginate took place.

Due to the position of the alginate signals in the 1H-NMR spectra, the signal cor-
responding to the triple bond fell between those of the alginate skeleton and could not
be precisely integrated (see Supporting Information, Figure S1). A more reliable signal
to quantify the number of triple bonds in the alginate structure was provided by the
methylene group of PA. Its presence and position were first unambiguously identified
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by a heteronuclear single quantum coherence experiment (HSQC, Figure 2A), which was
able to determine the carbon-proton single-bond correlation. In the figure, the -CH and
-CH3 groups are indicated in red, whereas -CH2 is indicated in blue. As highlighted in
Figure 2A, the signal at 3.35 ppm in the 1H-NMR spectrum correlated with the carbon at
35 ppm in the 13C-NMR spectrum, which corresponded to the PA methylene group [44,46].
The yne quantification of the SA–PA products was estimated by the integration of the
3.35 ppm signal, considering the anomeric -CH- of alginate at 5.05 ppm as an internal
standard (Figure 2B). Despite this, the integration of the peaks at 3.35 ppm and 5.05 ppm
was very difficult in the SA–PA-1 sample, and the degree of functionalization could only
be estimated to be lower than 2–3%. The ratio between the integrals of both signals in the
SA–PA-4 sample allowed an estimation of around 28% for the degree of functionalization.
For this reason, SA–PA-4 was chosen as the starting material for further characterizations.

Polymers 2022, 14, x FOR PEER REVIEW 6 of 18 
 

 

Due to the position of the alginate signals in the 1H-NMR spectra, the signal 
corresponding to the triple bond fell between those of the alginate skeleton and could not 
be precisely integrated (see Supporting Information, Figure S1). A more reliable signal to 
quantify the number of triple bonds in the alginate structure was provided by the 
methylene group of PA. Its presence and position were first unambiguously identified by 
a heteronuclear single quantum coherence experiment (HSQC, Figure 2A), which was 
able to determine the carbon-proton single-bond correlation. In the figure, the -CH and -
CH3 groups are indicated in red, whereas -CH2 is indicated in blue. As highlighted in 
Figure 2A, the signal at 3.35 ppm in the 1H-NMR spectrum correlated with the carbon at 
35 ppm in the 13C-NMR spectrum, which corresponded to the PA methylene group [44,46]. 
The yne quantification of the SA–PA products was estimated by the integration of the 3.35 
ppm signal, considering the anomeric -CH- of alginate at 5.05 ppm as an internal standard 
(Figure 2B). Despite this, the integration of the peaks at 3.35 ppm and 5.05 ppm was very 
difficult in the SA–PA-1 sample, and the degree of functionalization could only be 
estimated to be lower than 2–3%. The ratio between the integrals of both signals in the 
SA–PA-4 sample allowed an estimation of around 28% for the degree of functionalization. 
For this reason, SA–PA-4 was chosen as the starting material for further characterizations. 

 
Figure 2. HSQC (A) and 1H-NMR (B) spectra of SA–PA products. The PA methylene is indicated as 
(a), while the anomeric methyl of alginate is indicated as (b). 

Figure 2. HSQC (A) and 1H-NMR (B) spectra of SA–PA products. The PA methylene is indicated as
(a), while the anomeric methyl of alginate is indicated as (b).

The presence of the yne moieties in SA–PA-4 was also investigated through ATR
FTIR and Raman spectroscopy. While FTIR spectroscopy relies on the absorption or
transmission of light with a wide range of wavenumbers, Raman spectroscopy involves
the study of inelastic scattering from lamps with specific wavenumbers. These techniques
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are usually complementary, as some chemical bonds are more active and visible in Raman
spectroscopy, especially if the proportion between bonds is low [47]. Alkynes usually fall
into this category, and that is why a sharp and well-defined peak could be noted on the
Raman spectrum shown in Figure 3A at 2122 cm−1 [48]. For the sake of completeness,
Raman spectroscopy was also compared with FTIR spectroscopy for the absorption spectra
of synthetized SA–PA-4 and PA (Figure 3B); low light absorption could be seen in SA–PA-4
at the same wavenumber as the triple bond of PA [49], again supporting the successful
functionalization of the natural polymer.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

The presence of the yne moieties in SA–PA-4 was also investigated through ATR 
FTIR and Raman spectroscopy. While FTIR spectroscopy relies on the absorption or 
transmission of light with a wide range of wavenumbers, Raman spectroscopy involves 
the study of inelastic scattering from lamps with specific wavenumbers. These techniques 
are usually complementary, as some chemical bonds are more active and visible in Raman 
spectroscopy, especially if the proportion between bonds is low [47]. Alkynes usually fall 
into this category, and that is why a sharp and well-defined peak could be noted on the 
Raman spectrum shown in Figure 3A at 2122 cm−1 [48]. For the sake of completeness, 
Raman spectroscopy was also compared with FTIR spectroscopy for the absorption 
spectra of synthetized SA–PA-4 and PA (Figure 3B); low light absorption could be seen in 
SA–PA-4 at the same wavenumber as the triple bond of PA [49], again supporting the 
successful functionalization of the natural polymer. 

 
Figure 3. Raman spectroscopy of SA–PA-4 with the alkyne bond highlighted at 2122 cm−1 (A) and 
infrared spectra of SA–PA-4 and PA (B) with the same bond evidenced. 

3.2. Preparation and Characterization of Thiol–yne Hydrogels 
Two dithiol crosslinkers of different chain lengths and molecular weights, both 

already examined in tissue engineering applications [50], were selected to prepare thiol–
yne hydrogels, namely dithiothreitol (DTT, chain length = 4, Mw 155) and poly(ethylene 
glycol) dithiol (PEG-SH, chain length ≈ 24, average Mn 1000). According to the thiol–yne 
mechanism, each alkyne reacts first with a single thiol to form a vinyl sulfide; then, if a 
second thiol approaches the reactive species, the addition of a second thyil radical takes 
place, and a dithioether is formed [51]. Thus, eight different DI-water-based formulations 
(four based on DTT and four based on PEG-SH) with incremental amounts of crosslinkers 
were prepared to create hydrogels, as shown in Table 1. 

Table 1. Thiol–yne formulations. All the hydrogels included 5 wt% SA–PA-4 and 2 phr of LAP 
photo-initiator and were irradiated for 5 min. 

Sample Crosslinker (HS-R-SH) Molar Ratio (SA–PA:HS-R-SH) 
0.05 DTT DTT 1:0.05 
0.1 DTT DTT 1:0.1 
0.2 DTT DTT 1:0.2 
0.3 DTT DTT 1:0.3 

0.05 S-PEG PEG-SH 1:0.05 
0.1 S-PEG PEG-SH 1:0.1 
0.2 S-PEG PEG-SH 1:0.2 
0.3 S-PEG PEG-SH 1:0.3 

Figure 3. Raman spectroscopy of SA–PA-4 with the alkyne bond highlighted at 2122 cm−1 (A) and
infrared spectra of SA–PA-4 and PA (B) with the same bond evidenced.

3.2. Preparation and Characterization of Thiol–yne Hydrogels

Two dithiol crosslinkers of different chain lengths and molecular weights, both al-
ready examined in tissue engineering applications [50], were selected to prepare thiol–yne
hydrogels, namely dithiothreitol (DTT, chain length = 4, Mw 155) and poly(ethylene gly-
col) dithiol (PEG-SH, chain length ≈ 24, average Mn 1000). According to the thiol–yne
mechanism, each alkyne reacts first with a single thiol to form a vinyl sulfide; then, if a
second thiol approaches the reactive species, the addition of a second thyil radical takes
place, and a dithioether is formed [51]. Thus, eight different DI-water-based formulations
(four based on DTT and four based on PEG-SH) with incremental amounts of crosslinkers
were prepared to create hydrogels, as shown in Table 1.

Table 1. Thiol–yne formulations. All the hydrogels included 5 wt% SA–PA-4 and 2 phr of LAP
photo-initiator and were irradiated for 5 min.

Sample Crosslinker (HS-R-SH) Molar Ratio (SA–PA:HS-R-SH)

0.05 DTT DTT 1:0.05
0.1 DTT DTT 1:0.1
0.2 DTT DTT 1:0.2
0.3 DTT DTT 1:0.3

0.05 S-PEG PEG-SH 1:0.05
0.1 S-PEG PEG-SH 1:0.1
0.2 S-PEG PEG-SH 1:0.2
0.3 S-PEG PEG-SH 1:0.3

An LAP visible-light photo-initiator was chosen because of its low biotoxicity [52].
The quantity of crosslinkers was chosen to modulate the rigidity of the hydrogels according
to the future possible applications (a stoichiometric ratio between the yne moieties and the
crosslinkers was used in the 0.3 DTT or S-PEG formulations). The actual network formation,
system reactivity, and optimal irradiation time were investigated for all the formulations
by photo-rheology (Figure 4A,C). After an initial stabilization time of 60 s, the lamp was
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switched on and the increase in the storage/loss modulus was recorded over time. The gel
point of the S-PEG formulations (the timepoint at which the solution underwent gelation,
represented by the crossover between G′ and G”, Table 2) was lower than that of the DTT
molecules in all cases, with a minimum of 95 s for S-PEG 0.2, indicating a higher reactivity
for these crosslinkers. Moreover, the sharper slope of the curve in the S-PEG formulations as
well as the clear and defined upper plateau suggested an enhanced rate of polymerization
when this crosslinker was used, even though the 0.1 DTT hydrogel possessed a slightly
better shear storage modulus. This was not surprising, due to the shorter molecular
weight of the DTT crosslinkers and the subsequent increased final mechanical rigidity [53].
However, the lower molecular weight of the DTT crosslinkers could also explain the
reduced reactivity of the systems; in fact, once the molecule was one-side bonded, its
mobility was significantly lower than that of high-molecular-weight crosslinkers. Instead,
long-molecular-chain crosslinkers possess long, flexible chains, increasing the possibility
of meeting a second alginate alkyne reactive site [54]. The best properties in terms of
inhibition time (the time needed for the storage modulus to increase from the initial bottom
plateau), polymerization rate, and final G′ value were obtained, respectively, from the
0.1 DTT and 0.2 S-PEG hydrogels. All the experimental data are reported in Table 2. The
amplitude-sweep measurements (Figure 4B,D) supported the aforementioned results, with
the lowest yield points (the strain value at which the hydrogel started to collapse (Table 2))
obtained for the 0.1 DTT and 0.2 S-PEG hydrogels. Indeed, a more crosslinked structure
was proposed for 0.2 S-PEG, while a shorter length between crosslinks was suggested for
0.1 DTT; this theory could also explain the higher fragility of the 0.1 DTT hydrogel, as
measured by the lower yield point [55].

Considering the degree of the substitution of the SA–PA-4 polysaccharide (28%) and
the thiol–yne mechanism, the best properties overall were expected from the 0.3 DTT and
0.3 S-PEG hydrogels, respectively. However, while the worst properties at a lower molar
ratio between the functionalized alginate and the crosslinkers (0.05 DTT, 0.05 S-PEG, and
0.1 S-PEG) were caused by a non-complete network formation (as confirmed by the low
value of gel content, Table 2), the slightly worse properties of the 0.2 DTT, 0.3 DTT, and 0.3
S-PEG formulations could be explained by two different mechanisms.

The first mechanism involves the radical-scavenging properties of thiols in water
environments (such as the human body). For example, many studies have proven the
radical-scavenging behavior under physiological conditions of glutathione (GHS) or thi-
ols in general, which is mostly related to the beneficial effects of preventing biological
free radicals [56–59]. One of the radical-scavenging paths (the most common) follows
the reaction:

R• + SH � RH + S• (3)

S• + S−� SS•− (4)

SS•− + O2→ SS + O2•− (5)

Table 2. Rheological, mechanical, and swelling properties of the thiol–yne hydrogels.

Sample Gel
Point (s)

Induction
Point (s)

Time to
Plateau (s)

Storage
Modulus
G′ (KPa)

Yield Point
(%)

Swelling
Equilibrium

(%)

Swelling
Time to

Plateau (h)
%GEL (%)

0.05 DTT 237 153 / 0.03 1110 1045 ± 26 1 41 ± 6
0.1 DTT 139 87 / 3.8 89 781 ± 63 1 72 ± 1
0.2 DTT 153 97 / 0.81 337 835 ± 46 1 62 ± 0.5
0.3 DTT 142 87 / 0.3 613 932 ± 16 1 53 ± 4

0.05 S-PEG 129 100 ≈200 0.11 570 / 1 33 ± 4
0.1 S-PEG 100 86 ≈200 1.7 185 802 ± 37 1 70 ± 3
0.2 S-PEG 95 86 ≈200 2.3 266 791 ± 47 1 75 ± 2
0.3 S-PEG 98 86 ≈200 1.1 377 1306 ± 222 1 57 ± 4
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This reaction can be kinetically driven in the direction of removing thiyl radicals
through a rapid reaction with thiolate anions (which are always present at a physiological
pH in water, contrary to bulk polymerization). If the SS•− product meets oxygen, the
reaction becomes irreversible at a near-diffusion-controlled rate [60]. Moreover, it was
proven than dithiols, especially DTT, are more effective as radical scavengers [61,62]. In
fact, after photopolymerization, especially with DTT crosslinkers, the hydrogels were not
optically transparent but mildly turbid, a symptom of disulfide formation [63]. To illustrate
the reaction between thiols, Figure 5 depicts the transparent appearance of the hydrogels
after washing, compared to their opaque appearance just after photopolymerization. This
observation could support the idea of disulfide creation between the crosslinkers and
the subsequent washing away of the unbounded molecules after swelling, which is also
suggested by the low gel content observed in all the formed hydrogels (Table 2).
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Apart from the radical-scavenging effect of thiols in water environments, thiols are
also known to act as chain transfer agents in free-radical polymerization [64–66]. Especially
in aqueous solutions [67], a higher thiol concentration could lead to incremental radical
chain transfer phenomena and a subsequent decrease in crosslinking, explaining the poorer
mechanical properties at higher molar ratios.

Moreover, even if thiol–yne reactions exhibit a one yne/two thiols stoichiometric ratio,
a certain degree of homopolymerization between the alkynes and vinyl sulfides is often
exhibited [51].

The three mechanisms combined could explain the decreased photo-rheological prop-
erties in thiol–yne stoichiometric conditions.

The swelling kinetics of the different hydrogels were also evaluated. The different
formulations were irradiated for 5 min (50 mW/cm2) in cylindrical molds (H ≈ 3 mm,
D ≈ 5 mm), leading to the formation of hydrogels presenting differences in mechanical
resistance. The cylindrical hydrogels were soaked in DI water and weighted at different
time points (being careful to remove the extra water by wiping). Figure 5A,B report
the swelling kinetics and capability of the studied hydrogels, while Table 2 reports the
swelling equilibrium and time to equilibrium values. The same trend was observed as in
the photo-rheology properties, with 0.1 DTT and 0.2 S-PEG presenting the lowest level
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of swelling in their categories, supporting the proposed mechanism. Between the two
best hydrogels in each category, similar values were observed (781 and 791% swelling
for 0.1 DTT and 0.2 S-PEG, respectively). Interesting, in all cases the obtained swelling
equilibriums were comparable to or higher than the corresponding values reported for
(meth)acrylate photocured alginate hydrogels [68–71]. For all these reasons, 0.1 DTT and
0.2 S-PEG were selected for further investigations.

The 0.1 DTT and 0.2 S-PEG samples were freeze-dried, and their inner architecture
was observed by field emission scanning electron microscopy (FESEM). Both samples
presented the typical porous structure that is required in hydrogels designed for scaf-
fold/filler applications. As is visible in Figure 6A,B, the 0.1 DTT sample presented a less
homogeneous structure, while the 0.2 S-PEG sample showed a more compact network with
regular porosity.

The two selected hydrogels were also subjected to a compression test in a cylindrical
shape (Figure 6C, d = 5, h = 9). The results showed mechanical properties in the same
order of magnitude for the 0.2 S-PEG and 0.1 DTT hydrogels in terms of storage modulus
(E′), ultimate compression strength, and deformation at break (See Figure 6C). Moreover,
the absolute mechanical values reported here were comparable to or higher than those
of other proposed alginate hydrogels obtained using methacrylates [72,73] or thiol–ene
reactions [36]. The better values obtained for 0.2 S-PEG with respect to 0.1 DTT could be
attributed to the more homogeneous network, as was also observed in the FESEM images,
and to the more deformable crosslinked structure (due to the higher molecular weight of
the PEG crosslinker).

3.3. Cell Viability and Proliferation

The different hydrogels were sterilized as described above and immersed in complete
medium for 24 h at 37 ◦C previous to the biological evaluation. Laterally, autofluorescent
C166-GFP endothelial cells were seeded and allowed to adhere for 24 h in a 12-well plate.
According to ISO 10993-5 recommendations, to ensure that no toxic substances were
released from the hydrogels, culture media that had been in contact with the hydrogels
were added to the endothelial cells growing in the culture plate. Their proliferation was
assessed via inverted bright-field microscopy for 48 h (Figure 7A). At this point, their
metabolic activity and DNA content was quantified to assess hydrogel cytocompatibility
(Figure 7B,C, respectively).

As can be seen in the micrographs (Figure 7A), no morphological changes were
observed after culture media replacement. No detached cells or evidence of necrotic or
apoptotic cell bodies were identified. In all samples, a healthy and confluent cell monolayer
was photographed. With respect to the mitochondrial metabolic analysis (Alamar Blue
assay, Figure 7B), all samples showed proper levels of cell activity. Accordingly, the DNA
proliferation analysis (Figure 7C) corroborated our previous observations, with similar
levels of DNA content for all conditions. Additionally, no statistically significant differences
were found, either in the metabolic activity or in the DNA content of the cultured cells
when compared to a control in which the media were not changed.

In summary, no thiol–yne alginate hydrogel showed any signs of indirect in vitro
cytotoxicity. These results open up new possibilities for tissue engineering applications of
these hydrogels in clinical therapies. According to our results and considering the presented
mechanical properties, DTT alginate hydrogels (0.1 DTT) could be implemented in clinical
indications with no strict structural requirements, e.g., as protective dermal patches or
other wound dressings [74]. In contrast, based on their mechanical properties, the 0.2
S-PEG hydrogels could be used as surgical fillers in cosmetic plastic surgery procedures or
after tumour resections. In these situations, alginate hydrogel fillers are commonly used to
maintain body structures or to sustain tissue proliferation and organism regeneration [75].
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Figure 6. Field emission scanning electron microscopy morphology of 0.1 DTT (A) and 0.2 S-PEG
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the table on the right shows the reported values of compression elastic modulus (E′), the ulti-
mate compression strength (UCS), and the elongation at rupture (εr). All values are reported with
standard deviation.
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4. Conclusions

The successful and simple production of alginate hydrogels by thiol–yne reactions was
here reported for the first time; in all cases, the properties of the hydrogels were suitable
for wound-dressing or surgical filler applications. Well-known carbodiimide chemistry
methods allowed us to achieve up to 28% substitution of the yne moieties on the algi-
nate backbone, permitting the formation of hydrogels using two different types of dithiol
crosslinkers, i.e., 1,4-dithiothreitol (DTT) and poly(ethylene glycol) dithiol (PEG-SH). The
gel characterization showed the reactivity of the system within a few minutes of irradiation,
despite the radical-scavenging and chain transfer properties of thiols. Furthermore, the
mechanical, rheological, topographical, and swelling properties of the formed gels pre-
sented similar or higher values compared to the standard and more cytotoxic (meth)acrylate
photocured alginate hydrogels, supporting the proposed applications of these materials.
Lastly, the hydrogels obtained by thiol–yne reactions showed no signs of releasing cytotoxic
byproducts that would impede their biomedical applicability. Cells in contact with culture
media extracts exhibited optimal proliferation measured in terms of metabolic activity and
DNA content. In conclusion, these new cytocompatible hydrogels are promising candidates
for medical applications such as wound dressings or surgical fillings.
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