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Which can Accelerate Distributed Machine Learning Better:
HOE-DCN with OXC or Hyper-FleX-LION?
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1. University of Science and Technology of China, Hefei, Anhui 230027, China, Email: zqzhu@ieee.org
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Abstract: We run various distributed machine learning (DML) architectures in a HOE-DCN with
OXC and an optical DCN based on Flex-LIONS (Hyper-FleX-LION). Experimental results show that
Hyper-FleX-LION gains better DML acceleration and improves acceleration ratio by up to 22.3%.
OCIS codes: (060.1155) Software-defined optical networks; (060.4251) Networks, assignment and routing algorithms.

1. Introduction
Recently, the wide applications of Big Data analytics have made machine learning (ML) indispensable in many field-
s [1, 2]. The rapid development of ML increased the complexity of ML models and caused the scale of ML training
to be huge. For instance, an ML model used by Google for language processing may utilize over 109 parameters [2].
Meanwhile, a large Internet company can train an ML model with over 1 PB training data for click-through-rate esti-
mation [3]. Such a massive scale of training can hardly run on a single machine. Hence, distributed ML (DML), which
segments and distributes training data over multiple machines for parallel training, has attracted intensive interests
recently [4]. DML is usually deployed in a data center network (DCN) to use its abundant IT resources, bringing new
challenges to DCNs. Firstly, the jobs of a large-scale DML typically have to span across multiple racks. Therefore,
during training, the parameter synchronization among DML nodes will generate heavy inter-rack traffic [3]. Secondly,
programmers can arrange a cluster of DML nodes into various architectures, each of which leads to a traffic pattern
with unique temporal and spatial characteristics [4]. The issues above can degrade the performance of the DML run-
ning in traditional DCNs based on electronic packet switching (EPS), and prolong the job completion time (JCT) [5].
For example, it is known that the EPS-based DCN built with fat-tree cannot efficiently support the DML based on the
Parameter Server architecture due to the inter-rack bottlenecks caused by DML-induced congestions [3].

As the parameter synchronization of DML needs to exchange large amounts of data among DML nodes, the related
inter-rack communications will be elephant flows [2, 3]. Hence, the inter-rack bottlenecks can be relieved by intro-
ducing optical circuit switching (OCS) and building hybrid optical/electrical DCN (HOE-DCN) [6,7]. Wang et al. [5]
verified that by reconfiguring the OCS part of a HOE-DCN adaptively, DML jobs could be accelerated to achieve
reduced JCT. However, their HOE-DCN was built with an optical cross-connect (OXC), which can only provide one-
to-one connectivity between inputs and outputs. Hence, the OCS part might have difficulty to properly adapt to the
traffic matrix of an arbitrary DML architecture. On the other hand, researchers showed that the Hyper-FleX-LION
architecture [8] supports reconfigurable all-to-all optical interconnects using a Flex-LIONS switch device [9].

In this work, we perform a comparative study to investigate which architecture can accelerate DML better, HOE-
DCN with OXC (HOE-w/OXC) or all-optical DCN based on Flex-LIONS (Hyper-FleX-LION)? We first analyze the
traffic patterns of four typical types of DML architectures [4] (i.e., Distributed Data Parallel (DDP), Ring-AllReduce
(Ring), Parameter Server (PS) and Peer-to-Peer (P2P)) and check whether the inter-rack topologies of the two types
of DCNs can adapt to them well. Then, to quantitatively evaluate the performance of HOE-w/OXC and Hyper-FleX-
LION on DML, we set up a small-scale DCN testbed that consists of 4 racks. Finally, we connected the racks with
HOE-w/OXC or Hyper-FleX-LION and conducted experiments in various DML scenarios. Our results show that for
all the experimental scenarios, Hyper-FleX-LION performs better than or at least as well as HOE-w/OXC on DML
acceleration. Specifically, Hyper-FleX-LION can improve the acceleration ratio up to 22.3% (over HOE-w/OXC).
2. Matching Degree between DML Traffic Patterns and DCN Architectures
Without loss of generality, we analyze the traffic patterns ofDDP, Ring, PS and P2P by assuming that the nodes of each
DML architecture are deployed in four racks of a DCN. The architecture and operation principle of Hyper-FleX-LION
is shown in Fig. 1(a). Here, we use off-the-shelf components to build the Hyper-FleX-LION, but it can also be realized
in a much more compact and energy-efficient way with integrated optical chips [9]. We have an arrayed waveguide
grating router (AWGR) sitting in the middle, and the transmitting and receiving structures of each rack are located at
its left and right sides, respectively [9]. For each rack, its top-of-rack (TOR) switch uses four transceivers (TRXs) as
shown in Fig. 1(a), where we use different numbers to indicate the wavelengths used by the TRXs (the color of each
number represents the source rack). In the transmitting structure, all the outputs of a ToR switch are multiplexed and
then enter a wavelength selective switch (WSS). One of the WSS’ outputs is connected to the AWGR, while the other



three outputs go directly to the WSS in the receiving structures of other racks. In the receiving structure of each rack,
a WSS selects the received signals to distribute them to the TRXs of the ToR switch by a de-multiplexer (DEMUX).
Then, by utilizing the wavelength switching capability of the AWGR and adjusting the WSS’ switching states, we can
obtain various topologies to interconnect the racks (e.g., the configuration in Fig. 1(a) leads to a full-mesh).

Fig. 1(b) shows the traffic patterns of the DML architectures. The colorful arrows denote the traffic generated by
DML, and the purple and blue arrows represent the acceleration bandwidth for DML that can be provided by HOE-
w/OXC and Hyper-FleX-LION, respectively. Here, we define the acceleration bandwidth for DML (Accel-BW) as the
bandwidth that a DCN can provide to DML in addition to that for setting up the basic inter-rack communications. For
instance, both DDP and Ring have ring-like traffic matrices, whose basic inter-rack communications can be supported
with the fat-tree-based EPS part of HOE-w/OXC or two TRXs on each ToR switch in Hyper-FleX-LION. But, then, as
the OXC in HOE-w/OXC only provides one-to-one connectivity for Accel-BW, it can just connect the racks in pairs
(e.g., 1 to 2 and 3 to 4 in Fig. 1(b)), but cannot realize a ring-like inter-rack topology. On the other hand, as shown
in Fig. 1(c), we can reconfigure Hyper-FleX-LION to set up another ring-like inter-rack topology for Accel-BW. This
verifies that, in principle, Hyper-FleX-LION can accelerate DDP and Ring better than HOE-w/OXC.

Next, we consider PS, which uses a tree-like topology including a server node and n worker nodes, and denote a
DML with PS as PS(n). We first address PS(2), and place the server node on Rack 1 and two worker nodes on Racks 2
and 4. Fig. 1(b) suggests that the Accel-BW from HOE-w/OXC only works for one branch of the tree-like inter-rack
topology (e.g., 1 to 2). Meanwhile, with sufficient TRXs and adaptivity, Hyper-FleX-LION can establish another tree-
like topology for Accel-BW. However, the situation becomes different for PS(3), when an additional worker is placed
on Rack 3. As shown in Fig. 1(b), the Accel-BW from HOE-w/OXC still only works for one branch of the tree-like
topology, but as Hyper-FleX-LION already uses 3 TRXs on Rack 1 for the basic inter-rack communications of PS(3),
its Accel-BW can only work for a branch of the tree too. Hence, for PS(3), the Accel-BWs from HOE-w/OXC and
Hyper-FleX-LION are similar. Finally, it is P2P, in which each DML node only talks with one peer at a time. Here,
both HOE-w/OXC and Hyper-FleX-LION can provide Accel-BW, but Hyper-FleX-LION can allocate two more TRXs
on each rack to communicate with its peer rack. Hence, Hyper-FleX-LION also provides larger Accel-BW for P2P.

Fig. 1. (a) Hyper-FleX-LION, (b) Traffic patterns of DML architectures, and (c) Reconfiguration of Hyper-FleX-LION.

3. Experimental Evaluations
To quantify the performance difference of HOE-w/OXC and Hyper-FleX-LION on the four DML architectures, we
built a small-scale DCN testbed including four racks, each of which consists of two servers. Each server contains four
6-core CPUs and 32 GB of memory. To ensure fair comparisons, we equip four 1GbE optical ports on each ToR switch.
For HOE-w/OXC, we connect three ports on each ToR switch to the EPS-based inter-rack topology, which is based
on fat-tree, and the fourth port goes to an OXC. For Hyper-FleX-LION, the ports on ToR switches are connected with
the architecture in Fig. 1(a), consisting of one 8×8 AWGR, eight 1×9 WSS’, and several other passive components.
Note that the OXC, AWGR, and WSS’ in the experimental setup are all commercially available products.

As for the DML, we use the famous CIFAR-10 data set (containing 60,000 32×32 color images in 10 different
classes) and train a convolutional neural network (CNN) for image classification. In a DML job, each node runs on
one server. To stress out the DCNs, we run multiple DML jobs simultaneously in each experiment and average the
job completion time (JCT) from 10 independent runs to get the average JCT of the experiment. In each experiment,
we first run the DML job in the EPS part of HOE-w/OXC and record the average JCT as the baseline, and then we
get the actual average JCT by running the job in HOE-w/OXC or Hyper-FleX-LION. Next, the acceleration ratio of
HOE-w/OXC or Hyper-FleX-LION can be obtained by dividing the baseline with the actual average JCT [5].

We architect the CNN with the well-known ResNet model, make its depth as 50 layers (i.e., ResNet-50), and use
the DML architectures in Fig. 1(b) to train it with 100% of the data in CIFAR-10. The results on acceleration ratio are



shown in Fig. 2(a). As expected, Hyper-FleX-LION provides larger acceleration ratios than HOE-w/OXC when the
DML uses DDP, Ring, PS(2) and P2P, while the two DCNs perform similarly for PS(3). This verifies our analysis
above. Finally, in Fig. 2(a), it is interesting to observe that even though the traffic patterns of DDP and Ring are the
same in Fig. 1(b), the acceleration ratios ofDDP are smaller than those of Ring in both HOE-w/OXC and Hyper-FleX-
LION. This is because DDP incorporates specific processing to reduce the data transfers among the DML nodes, i.e.,
DDP incurs less inter-rack communications than Ring [4]. In all, the acceleration ratios in Fig. 2(a) suggest that for
the five DML architectures, the improvements on acceleration ratio achieved by Hyper-FleX-LION over HOE-w/OXC
have a maximum of 22.3% (Ring) and an average value of 14.1%.

Next, we focus on Ring to further compare the performance of HOE-w/OXC and Hyper-FleX-LION on DML.
First, we consider three CNN models, i.e., ResNet-18, ResNet-34, and ResNet-50, and train them with 100% of the
data in CIFAR-10, using the DML with Ring. The experimental results in Fig. 2(b) indicate that Hyper-FleX-LION
outperforms HOE-w/OXC for all the CNN models. Meanwhile, we notice that as the complexity of the CNN model
increases, the improvement in acceleration ratio achieved by Hyper-FleX-LION becomes larger. This is because when
the CNN model is more complex with a larger number of layers, the parameters to be optimized and synchronized in a
DML job increase, which leads to more inter-rack data transfers. The results in Fig. 2(b) indicate that the improvements
in acceleration ratio achieved by Hyper-FleX-LION over HOE-w/OXC have an average value of 20.1%.

Finally, as certain DML might not use the full training data set in training, we consider the cases that DML with
Ring uses {25%,50%,75%,100%} of the data in CIFAR-10 to train the CNN in ResNet-50. The results are plotted
in Fig. 2(c). Once again, the advantage of Hyper-FleX-LION on DML acceleration can be seen clearly. Moreover,
the results also suggest that when the amount of training data increases, the advantage of Hyper-FleX-LION becomes
more significant. This is still because when the amount of inter-rack data transfers increases, the higher match degree
between inter-rack topology and DML traffic matrix in Hyper-FleX-LION exhibits a larger effect on reducing JCT. In
Fig. 2(c), the average improvement in acceleration ratio achieved by Hyper-FleX-LION is 20.5%. The results in Figs.
2(b) and 2(c) confirm that the advantage of Hyper-FleX-LION on DML acceleration increases with the CNN model’s
complexity and the amount of training data. This makes Hyper-FleX-LION more promising for large-scale DML.

(a) Different DML architectures (b) Various CNN models (c) Different sizes of training data

Fig. 2. Results on acceleration ratio (those in (b) and (c) are obtained with the DML architecture of Ring).

4. Summary
We compared HOE-w/OXC and Hyper-FleX-LION on DML acceleration theoretically and experimentally. Our results
verified that for all the DML scenarios, Hyper-FleX-LION performs better than or at least as well as HOE-w/OXC.
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