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Abstract: We study the performance of Hyper-Flex-LION optical interconnect architec-
ture under dynamic traffic with traffic-prediction-aided multi-cluster reconfiguration. The
simulation results show a 17.2% latency improvement and 36.9% packet loss reduction as
compared to a fixed topology. © 2022 The Author(s)

1. Introduction

Reconfigurable flat optical architectures enabled by silicon-photonic switches are emerging as an alternate to to-
day’s fat-tree-based high-performance computing (HPC) and data center (DC) network architectures to handle
communication-intensive applications with low latency requirement [1, 2]. The key to network reconfiguration
is to steer more bandwidth to the hot-spot links. In a dynamic traffic scenario, this requires either to estimate or
predict the traffic to adapt the topology as per future demands [3]. Although traffic prediction is a challenging task,
DC traffic characteristics have been exploited by machine learning (ML) models in traffic prediction [3–6]. Never-
theless, how to use the predicted traffic to adapt a multi-cluster HPC/DC topology to match future communication
patterns is still an open question in DC and HPC networks.

In this work, we propose a traffic-prediction-assisted multi-cluster topology and bandwidth reconfiguration
method. We use a long-short term memory (LSTM)-based encoder-decoder recurrent neural network to train
time-varying Top-of-Rack (ToR)-to-ToR traffic matrix, and utilize it to reconfigure the wavelengths over fiber
links connecting ToRs of reconfigurable Hyper-Flex-LION architecture [2]. Our simulation results show a 17.2%
improvement in the end-to-end packet latency and 36.9% improvement in packet loss rate with the reconfiguration
scheme when compared to a fixed architecture without reconfiguration.

2. Multi-FSR-based Reconfigurable DC Network Architecture

Fig. 2(a) depicts the architecture, which comprises of three layers: user plane, control and management plane,
and data plane. The application manager places the workloads of user plane into the servers and informs a net-
work manager about the new job mapping and its communication requirements. The network manager reconfig-
ures the underlining network topology using a software-defined network (SDN) controller, which calls a routing,
bandwidth and topology reconfiguration module to compute topology based on current and predicted traffic to
minimize traffic disruption. The SDN controller reconfigures the related ToRs (via OpenFlow by distributing new
flow entries) and the optical switch in each cluster. There is a Flex-LIONS optical switch (demonstrated in [7])
interconnecting a group of P ToR switches in each cluster. These clusters are interconnected in rows and columns
using multiple Flex-LIONSs to effectively build a Hyper-FleX network (a reconfigurable Hyper-X [2]). Here we
leverage two different free spectral ranges (FSRs) of Flex-LIONS [7]. FSR0 guarantees a fixed hierarchical all-
to-all connectivity while FSR1 is used to implement the interconnect bandwidth reconfiguration (see Fig. 2(b)).
This allows to maintain a shortest path connectivity during and after reconfiguration. The traffic prediction mod-
ule estimates the traffic demands between the ToRs for next timestep using a neural network model trained with
historical data from the database. The reconfiguration is triggered either periodically or intelligently.

3. Traffic Prediction-based Multi-Cluster Network Reconfiguration Scheme

Let Dt = {d}i, j
t , i, j = 1,2, . . . ,N be an N×N ToR-to-ToR traffic matrix measured at time t. The aim of a traffic

prediction (or regression) model is to forecast the subsequent L N×N traffic instances, given the last T time in-
stances prior. Thus, a regression model estimates D̂t+T :t+T+L = f

(
Xi

t:t+T ,W
)
, with D̂t+T :t+T+L the traffic forecast

for L time instances, W the model weights optimized during the training process and f (·) the estimator per se.
Among the recurrent networks, the LSTM encoder-decoder is known for its superior performance at temporal
prediction and it constitutes the learning algorithm for our work.

Given the predicted traffic matrix D̂t+1, the number of ports to connect a ToR to other ToRs in a cluster K,
and a topology connectivity graph G0 based on the fiber interconnects, the multi-cluster network reconfiguration



Fig. 1. (a) 2D Hyper-FleX LION interconnect architecture. (b) Clusters are organized into rows with
P ToRs per cluster. FSR0 guarantee fixed connectivity. FSR1 enables reconfiguration (see red links).

Algorithm 1 Multi-cluster connectivity graphs computation.

1: Input: Weight Wt+1← Normalized predicted traffic D̂t+1, connectivity graph G0. Output: topology Gt+1
2: P← a set of shortest paths from all-to-all source-destination (s−d) pairs based on a connectivity graph G0.
3: while ToRs’ port-pairs are available in any cluster, or maxWt+1 is not −∞ do
4: Select a s−d pair (i, j) which maximizes the product of weight vector wi,: and available ports.
5: Iterate over each hop on the shortest path pi, j ∈ P from node i to j.
6: If all hops have available port-pairs, add a link to each hop on pi, j, decrease wi, j by a wavelength capacity.
7: Otherwise, repeat previous two steps on another shortest path. If not, assign wi, j←−∞.
8: end while
9: Connect remaining available port-pairs in each cluster of G0 based on the decreasing order of traffic D̂t+1.

algorithm recomputes the topology at time t for next time interval. Our proposed multi-cluster topology reconfigu-
ration scheme is summarized in Algorithm 1. The basic idea is to iteratively interconnect ToR ports on the shortest
path of larger amounts of traffic to be provisioned over largest number of available ports. We utilize one-step ahead
computed topology to identify ports and corresponding links to be added or removed when a reconfiguration is
triggered. More importantly, we adopt a block-before-reconfigure approach to stop accepting new packets to ports
to be reconfigured to reduce packet loss during the reconfiguration phase.

4. Results

We used Netbench simulator to study the performance of reconfiguration in a 2-FSR-based Hyper-FleX-LION
under dynamic traffic. The capacity of all links is 10 Gb/s with 20 ns delay, and the port can buffer 150K bytes
data. The number of ToRs and servers per ToR is 16, which are organized in a 4 clusters. The servers across
multiple clusters generate non-uniform traffic based on four HPC applications traces (i.e. Fill Boundary, Crystal
Router, MiniFE and MiniDFT) in a sequential order [8]. The flow arrival events are generated with a Poisson
process with rate λt . At each arrival event, one source-destination pair is selected from a spatial traffic probability
distribution of a running application. Furthermore, to demonstrate the dynamic temporal traffic, we considered a
lognormal distribution with mean as a superposed sinusoidal function and variance as 1 to train and predict the
test traffic matrices, as shown in Fig. 2. The equal-cost multipath (ECMP) routing with flow splitting mechanism
is used to forward the packets over multiple wavelengths of shortest paths. The LSTM encoder-decoder model is
trained to predict traffic for next timestep with the window length 4. Each encoder and decoder has 100 LSTM
cells, and the model is trained with an Adam optimizer with a learning rate 0.001.

Fig. 2 (left) shows the overall arrival rate of traffic. 70% is used for training, 10% for validation and 20% for
testing. The mean square error loss for the normalized training and validation dataset is 0̃.003 after 50 epochs.
Fig. 2 (right) shows the overall flow arrival rate from ToR 0 to 1 on top, and from ToR 3 to 4 in the bottom. We
can see that the model predicts well not only the overall arrival rates, but also individual ToR-to-ToR pairs. Fig.
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Fig. 2. True and predicted overall traffic flow rate (left), and ToR-to-ToR traffic data (right).
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Fig. 3. (Left) Average end-to-end packet latency, (right) packet loss rate w/ and w/o reconfiguration.

3 depicts the effect of predicted traffic to logical topology extraction when we reconfigure every 10 seconds with
a reconfiguration time of 100 ms. We also evaluate the algorithm under fixed topology, i.e., no reconfiguration
scenario. The left plot shows network latency, i.e., average end-to-end packet latency for the time-varying test
data. First, we can see the reconfiguration reduces the packet latency. The percentage improvement in latency
by the reconfiguration scheme over fixed topology is 17.2%. Furthermore, the packet latency exhibits abrupt
transition (low-to-high) due the reconfiguration process. Fig. 3 (right) shows the packet loss rate under the fixed
and reconfiguration scenarios. Interestingly, both exhibit high packet losses when the traffic is either increased
from low to high (at∼ t = 340s) or remains higher (t = 370 : 390s), which is also observed in latency. Nevertheless,
the packet loss rate improvement for the reconfiguration scenario as compared to the no reconfiguration is 36.9%.

5. Conclusions

We studied the performance of a ML-assisted multi-cluster reconfiguration scheme in a Hyper-Flex-LION inter-
connect architecture. The results show 17.2% and 36.9% improvement in packet latency and loss, respectively.
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